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Superfluid transport in quantum spin chains

Silas Hoffman,1 Daniel Loss,1 and Yaroslav Tserkovnyak2

1Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
2Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

(Received 26 October 2018; revised 7 January 2023; accepted 17 January 2023; published 2 February 2023)

Spin superfluids enable long-distance spin transport through classical ferromagnets by developing topo-
logically stable magnetic textures. For small spins at low dimensions, however, the topological protection
suffers from strong quantum fluctuations. We study the remanence of spin superfluidity inherited from the
classical magnet by considering the two-terminal spin transport through a finite spin-1/2 magnetic chain with
planar exchange. By fermionizing the system, we recast the spin-transport problem in terms of quasiparticle
transmission through a superconducting region. We show that the topological underpinnings of a semiclassical
spin superfluid relate to the topological superconductivity in the fermionic representation. In particular, we find
an efficient spin transmission through the magnetic region of a characteristic resonant length, which can be
related to the properties of the boundary Majorana zero modes.
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I. INTRODUCTION

In magnetic insulating materials, spin transport is mediated
via spin-wave excitations or magnons rather than electrons
[1]. Because the excitations in ferromagnetic insulators are
bosonic, magnons are capable of supporting Bose-Einstein
condensates [2] and even spin superfluid transport [3–5].

For a quasi-one-dimensional easy-plane magnet, the mag-
netic order is topologically characterized by the winding
number of the mapping from R1 to S1. When a spin bias
is applied to the boundary of such a system, topological
defects in the magnetic texture, which are characterized by
nontrivial winding numbers, are nucleated [6]. The ensuing
topological transport yields a long-range spin supercurrent
[4,7] subject to thermal [8] or quantum [9] phase slips. Such
a supercurrent is suppressed, however, when the topological
protection is destroyed by applying a magnetic field greater
than the in-plane anisotropy. A preferred (easy) axis within the
plane, furthermore, can reduce the mobility of the topological
texture [7].

In contrast to (semi)classical magnets, the elementary
excitations in quantum spin chains exhibit strong quantum
fluctuations. In particular, in the extreme case of the low-
est spin 1/2, it is unclear to which extent the superfluid
character of the winding dynamics is applicable and useful.
Recent spin-caloritronic experiments on spin liquids have
demonstrated that spin can be transported via quantum spin
excitations by thermal biasing [10]. With these practical tools
in hand, an important open question concerns the possi-
bility of long-range collective spin flows in quantum spin
chains.

In this paper, we consider two semi-infinite XY spin chains,
which realize Fermi-liquid-like spin reservoirs (Fig. 1). They
supply and drain spin currents from a central region, whose
transport is examined with an eye on spin superfluidity. We
control the spin ordering and, consequently, the transport
properties of the central region by applying an out-of-plane

magnetic field, which, in the semiclassical view, would tune
the superfluid density, and an axial anisotropy within the easy
(xy) plane, which breaks rotational symmetry and would pin
the condensate phase. When the spins are uniformly ordered
by a sufficiently large magnetic field, transport of low-energy
excitations between the reservoirs is exponentially suppressed
with the length of the central region. A chain with an easy-
plane anisotropy and a sufficiently small applied magnetic
field affords zero-energy excitations which are transported
ballistically. Although the bulk spectrum is gapped when there
is an easy-axis anisotropy in the xy plane, evanescent domain
walls at the ends of the chain survive which contribute to
the transport. This is explicated by performing a nonlocal
transformation which maps the spin operators to fermions
[11]. In the fermionic language, the localized domain walls
correspond to Majorana end modes. Analogous to the effect
Majoranas have on the charge transport in topological super-
conductors, these localized domain walls qualitatively affect
the transport in anisotropic spin chains. Specifically, for a suf-
ficiently long central region, zero-energy excitations carrying
positive spin along the z axis are perfectly reflected off the
central region carrying negative spin; this is the analog of a
perfect Andreev reflection from a topological superconductor
[12]. Furthermore, zero-energy excitations can be ballistically
transported through the central region when it is a certain res-
onant length, defined below, tunable by an applied magnetic
field. This corresponds to perfect conductance of a fermion
through a topological superconductor of the same resonant
length; we are unaware of a discussion of such an effect in
the literature.

II. GROUND STATES AND DOMAIN-WALL EXCITATIONS

A simple model to illustrate quantum transport is an
N-site spin-1/2 ferromagnetic chain with a planar exchange
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FIG. 1. (a) Schematic of our spin-1/2 chain setup. The left and
right sides are semi-infinite spin chains (blue circles) wherein the
spins are symmetrically coupled in the xy plane via an exchange
coupling. The central region is of length L and has an in-plane
anisotropy parameterized by α. (b) The left and right sides, absent
of anisotropy, have a gapless spectrum, while the anisotropic central
region is gapped. An incoming spin excitation, which is generically
in a superposition of positive (a↑) and negative (a↓) spin collinear
with the z axis, can be reflected (transmitted) as a spin up, R↑ (T↑),
or spin down, R↓ (T↓), excitation.

coupling,

H = −J
N−1∑
i=1

[
(1 + α)σ x

i σ x
i+1 + (1 − α)σ y

i σ
y
i+1

] − h
N∑

i=1

σ z
i ,

(1)

where σ
μ
i for μ = x, y, z are the Pauli matrices acting on

a spin at site i. Here, J is the exchange coupling between
adjacent sites, α parameterizes the asymmetry in the xy
plane, and h is the magnitude of an applied magnetic field
along the z axis. Lengths are measured in units of the lattice
spacing a. For the following discussion, we assume ferromag-
netic exchange and so restrict the parameters as such, J > 0
and 0 � α � 1 [13]. If there is no anisotropy, α = 0, the
Hamiltonian is rotationally symmetric about the z axis. For
finite α, this symmetry is reduced to rotations by π . There is
a quantum phase transition when the magnetic field is equal
to the exchange, |h| = J . When |h| > J , the ground state is a
nondegenerate with spins aligning according to the sign of the
magnetic field. When |h| < J and α �= 0, the ground state is
doubly degenerate. In the case of a quantum Ising chain absent
of magnetic field, α = 1 and h = 0, the two ground states
correspond to the spins pointing homogenously parallel or
antiparallel to the anisotropy axis. For the more general case,
α < 1, at low fields, we can picture the magnetic moment
along the (easy) anisotropy axis as an order parameter.

The spectrum is easily found upon performing a
Jordan-Wigner transformation [11,14]. Defining a spinless
fermionic creation (annihilation) operator at site j, c†

j =
σ+

j P j (c j = σ−
j P j) where σ±

j = (σ x
j ± iσ y

j )/2 and P j =∏
l< j (−σ z

l ). That is, c†
j or c j polarize the spin at site j parallel

or antiparallel to the z axis, respectively, while the sites before
j are rotated by π around the z axis. When acting on the
paramagnetic ground state, this corresponds to a spin flip at
site j [Fig. 2(a)]. In the doubly degenerate phase, the action
of these operators is most easily visualized in the Ising limit
wherein the excitation is a domain wall at site j polarized
parallel or antiparallel to the z axis [Fig. 2(b)], establishing a

x

z y

FIG. 2. The action of a fermionic creation operator, c†
i , (a) flips

the spin at site i when |h| > J and (b) creates a domain wall pointing
along the z axis when acting on the degenerate ground state, for |h| <

J . (c) A superposition of ci + c†
i [(d) ci − c†

i ] rotates all sites before i
by π around the z axis and the site i by π around the x (y) axis.

ferromagnetic analog of the Villain mode [15]. Although the
spins are not collinear away from the Ising limit, 0 < α < 1,
the action of c†

j and c j on the ground state can similarly be
regarded as the creation of a domain wall at site j.

Using these fermionic operators, Eq. (1) becomes

H = −J

2

N−1∑
i=1

(c†
i ci+1 + αc†

i c†
i+1 + H.c.) − h

N∑
i=1

(c†
i ci − 1/2).

(2)

This is the Kitaev chain [16], describing a spinless metal
(p-wave superconductor) for α = 0 (α �= 0). The bulk ex-
citations are known [17] and can be found in terms of the
Fourier-transformed operators ck and c†

k (see Appendix A). In
the spin chain (metal) picture, ck creates holes carrying −h̄
spin quantized along the z axis (negative charge), while c†

k
creates particles carrying h̄ spin (positive charge). Although
conventionally these are regarded as delocalized particles or
holes in the metallic picture, they can be equally well viewed
as delocalized domain walls in the spin picture.

When the magnetic field is small, |h| < J , and the chain
is absent of anisotropy, α = 0, the spectrum consists of a
partially filled gapless band [17]. There are two zero-energy
modes with ±k0 = ± cos−1(h/J ) defining the Fermi points.
A zero-energy mode can be constructed as a superposition of
ck0 and c†

k0
: a↓ck0 + a↑c†

k0
with a↑ (a↓) the spin-down (spin-

up) amplitudes of the mode. Consider an excitation which
has equal spin-up and spin-down amplitudes, a↑ = a↓eiϕ =
eiϕ/2/

√
2. Note that these are delocalized Majorana fermions

as they are Hermitian. In the spin language, such an operator
takes the form

(eiϕ/2ck0 + e−iϕ/2c†
k0

)/
√

2

=
∑

j

P j
[

cos(k0 j + ϕ/2)σ x
j + sin(k0 j + ϕ/2)σ y

j

]
/
√

2.

(3)

In order to get a sense of the action of this operator, suppose it
acts on a chain uniformly polarized along the x axis. The oper-
ator P j rotates the spins on the sites proceeding j by π around
the z axis. The latter operator in Eq. (3) effectively rotates the
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spin on site j by an angle 2(k0 j + ϕ/2). Consequently, the
resultant state is a delocalized Bloch domain wall in which the
spin at the center rotates clockwise with wavelength π/k0 as it
propagates along the chain [18]. Similarly, taking k0 → −k0,
the state is a domain wall rotating counterclockwise.

In the doubly degenerate ground state, |h| < J and α �= 0,
the bulk spectrum is gapped. However, in a finite or semi-
infinite chain, there exist zero-energy modes at the ends. In the
fermionic language, these are the celebrated Majorana zero
modes [16]. Together, these end modes form a nonlocal com-
plex fermionic state which can be occupied or unoccupied,
parametrizing the double degeneracy of the ground state. For
the quantum Ising chain in the absence of magnetic field, α =
1 and h = 0, the zero-energy modes are localized to a single
site: the modes at the left and right end are σ x

1 and PNσ
y
N ,

respectively [14]. The action of the product of these operators
reverses the bulk Ising order. In the regime when h < 0 and
|h| � J , the spin chain is largely polarized antiparallel to the
z axis [19]. Focusing on low-energy excitations, we can pass
from a discrete coordinate to a continuum, �, measured with
respect to the end of the chain. The mode at the left end
is created by the operator

∫
d�σ x

� P�(e−κ+� − e−κ−�), where
κ+ = α and κ− = (1 + h/J )/α. The mode at the right end
is then created by

∫
d�σ

y
�P�(eκ+� − eκ−�) (see Appendix A).

Although the ground states in a finite magnetic field are not
uniformly ordered chains collinear with the x axis, the product
of the zero-energy operators likewise reverses the bulk order
between the two ground states. Analogous to the operators
defined in Eq. (3) that create delocalized domain walls, the
zero-energy operators create domain walls localized at the
ends of the finite spin chain. When |h| > J , the system is triv-
ially gapped and there exist no zero-energy bulk or localized
modes.

III. TRANSPORT

To calculate the transport properties of a finite-size chain,
consider a geometry in which the translational symmetry is
broken: two semi-infinite isotropic spin chains (α = 0) are
connected to either side of a finite anisotropic chain (α �=
0) of length L. See Fig. 1(a). The left and right isotropic
sections of the chain are leads which provide a gapless
source and drain of spin excitations, respectively, which probe
the transport properties of the central gapped anisotropic
region. Our setup is equivalent to a spinless normal metal|p-
wave superconductor|normal metal junction through which
charge transport is mapped to spin transport in the spin chain
[Fig. 1(b)]. In general, the leads are held at a different mag-
netic field, h′, from the magnetic field of the central region,
h. Furthermore, after going from the discrete chain to the
continuum limit, we include a δ-function potential of strength
U separating the leads from the central region. Physically,
this corresponds to a local magnetic field (scalar potential),
on the scale of the lattice spacing, in the spin (electronic)
picture. This barrier does not qualitatively affect our results
but, for large U , makes the ratio of resonant and off-resonant
transmission more dramatic [12].

In the following, we focus on the continuum limit of the
system and proceed to calculate the scattering amplitudes in
the fermionic description by matching the solutions at the

FIG. 3. The probability as a function of L of a zero-energy h̄-spin
excitation impinging on an ordered spin chain of length L to be
reflected, R↑ (R↓), with the same (opposite) spin or to be transmitted
carrying positive (negative) spin, T↑ (T↓). The plots are logarithmic
on both axes and α = 1, U/J = 10, and h′/J = −0.9. The upper
panel is in the nondegenerate phase, h/J = −1.1, while the lower
panel is in the degenerate phase, h/J = −0.9.

interfaces between the leads and central region. Consider a
right-moving excitation in the left lead with energy E . In gen-
eral, this can be a superposition of a particle carrying positive
spin with wave vector k> = √

1 + (h′ + E )/J and a hole car-
rying negative spin with wave vector k< = √

1 + (h′ − E )/J .
The amplitude of the particle (hole) in the wave function is
parameterized by a↑ (a↓). Because spin along the z axis is not
conserved in the central region, the incoming excitation can
be reflected as a particle or a hole with probability R↑ or R↓,
respectively. The excitation can likewise be transmitted to the
right lead as a particle (hole) with probability T↑ (T↓).

Consider the regime near the topological phase transition,
α2 � |1 + h/J|, in which the spectrum is gapped by |h + J| at
k = 0. See Appendix A for a discussion of the spectrum. First,
this limit allows us to contrast the transport properties in the
degenerate, |h| < J , and nondegenerate, |h| > J , phases with
equal gaps. Second, zero-energy in-gap states have two decay
lengths which are well separated, 1/κ+ = 1/α 	 1/κ− =
α/(1 + h/J ), and allow us to obtain simple analytic solutions
for the transport properties when L ∼ 1/κ−.

First, we consider a zero-energy excitation with spin along
the z axis impinging on the central region, E = 0 and a↑ = 1.
When the length of the central region is short, κ+L � 1, the
transport properties of both degenerate and nondegenerate
phases are characterized by an exponential suppression of
the transmission and perfect reflection (Fig. 3). For κ+L � 1,
the two phases show a qualitative difference. In the non-
degenerate phase, the transmittance remains exponentially
suppressed and the reflection is perfect [Fig. 3 (upper panel)].
In the degenerate phase (|h| � J and, to be specific, we take
h < 0), the transmission and reflection probabilities are

T↑ = T↓ = sech2[κ−(L − L0)]/4,

R↑ = e−2κ−(L−L0 )sech2[κ−(L − L0)]/4,

R↓ = e2κ−(L−L0 )sech2[κ−(L − L0)]/4, (4)
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FIG. 4. Transmission probabilities, T↑ and T↓, and reflection
probabilities, R↑ and R↓, as a function of L of an excitation with
energy nearly at the gap edge, E = 0.999(h + J ), and positive spin,
a↑ = 1 and a↓ = 0. The plots are logarithmic on both axes and we
have taken α = 1, U/J = 10, h/J = −0.9, and h′/J = −0.9.

where the resonant length

L0 = α

1 + h/J
ln

[
1 + h′/J + (α/2 + U/J )2

α
√

1 + h′/J

]
. (5)

When 1/κ− � L < L0, the probability of transmission in-
creases exponentially as the length of the central region
increases [Eq. (4) and Fig. 3 (lower panel)]. At L = L0, the
probability to transmit a zero-energy excitation is locally
maximized and T↑ = T↓ = R↑ = R↓ = 1/4 such that the exci-
tation has equal probabilities of being reflected or transmitted
as a spin up or spin down. Because T↑ = T↓, no net spin is
transferred between the leads. Beyond L0, the transmission
is exponentially suppressed and the particle is favored to be
reflected as a hole. That is, a spin of 2h̄ is perfectly injected
into the anisotropic region. This is the spin-chain analog of
a perfect Andreev reflection in one-dimensional topological
superconductors [12].

The probability for an in-gap but finite energy, E , excita-
tion to transmit through the central region is maximized at a
length smaller than L0 (Fig. 4). Furthermore, for an energy
near the gap edge, E � |h + J|, the transmission probability,
as a function of length, has the form of a Lorentzian (see
Appendix B) rather than exponential as in Eq. (4). Because the
mode interpolating between the leads is not at zero energy, the
probability of transmission for a positive spin is different than
for a negative spin, T↑ − T↓ ≈ (1 + h/J )/α2, resulting in a net
flow of spin. This restoration of long-distance transmission
of spin is the remanence of classical spin supercurrent in the
ordered quantum spin chain.

Rather than a spin polarized along the z axis, consider now
a zero-energy incoming spin excitation which is equal parts
spin up and spin down, e.g., in the sense of Eq. (3), scattering
from the central region of the chain. In the electronic picture,
this is equivalent to an incoming delocalized Majorana scat-
tering from a p-wave superconductor. At zero energy, both the
chain spectrum and the incoming excitation are particle-hole
symmetric. Consequently, the outgoing state must also be
particle-hole symmetric. Within the spin language, this im-
plies that the probability of transmission (reflection) as spin up
is equal to the probability of transmission (reflection) of spin
down, T↑ = T↓ (R↑ = R↓). Although the peak in transmission
remains at L0 and is exponentially suppressed away from that
length, the transmission strongly depends on ϕ [Eq. (3)]. Upon
passing to the continuous coordinate, �, the impinging spin

operator takes the form of Eq. (3), replacing i with �. To avoid
ambiguity in the definition of ϕ, we define the continuous
coordinate so that � = 0 corresponds to the interface between
the left and central regions. At L = L0, the transmission and
reflection as a function of ϕ are

T↑ = T↓ = [2
√

1 + h′/J cos(ϕ/2) + (α + 2U ) sin(ϕ/2)]2

2[α2 + 4αU + 4(1 + h′/J + U 2)]
,

R↑ = R↓ = [(α + 2U ) cos(ϕ/2) − 2
√

1 + h′/J sin(ϕ/2)]2

2[α2 + 4αU + 4(1 + h′/J + U 2)]
,

(6)

respectively. In particular, when ϕ = ϕ0 with

ϕ0 = −2 tan−1

[
2
√

1 + h′/J

(α + 2U/J )2)

]
+ π, (7)

the transmission is perfect, T↑ = T↓ = 1/2. Conversely,
when ϕ = ϕ0 + π , the excitation is perfectly reflected,
T↑ = T↓ = 0.

These features in the transmission can be understood by
the absence or presence and properties of the in-gap states.
When |h| > J , transmission is suppressed for all L because
there exist no in-gap states in the nondegenerate phase. In
the degenerate phase, on the other hand, there exist in-gap
evanescent end states which enhance transport. When L �
L0, the states do not overlap and there is no coherent trans-
mission of the signal between the leads. When L < L0, the
end modes overlap and hybridize away from zero energy,
thereby facilitating in-gap, finite-energy transport. Precisely
at L = L0, the end modes overlap but are stabilized at zero
energy because they leak into the leads. Moreover, because the
central region breaks gauge invariance when α �= 0, the trans-
mission of an incoming Majorana [Eq. (3)] will depend on the
phase difference between the particle and hole components.
The resonance in transmission occurs when this phase for the
incoming excitation matches the phase of the Majorana at the
interface of the gapless and gapped regions.

Correspondingly, within the spin chain picture, the trans-
mission and reflection can be viewed as domain-wall trans-
port, e.g., in the sense of Eq. (3). For a sufficiently long
central region, L � L0, the incoming domain wall in the lead
interacts with the domain wall localized at the interface and is
reflected with opposite spin; remarkably, the presence of this
localized domain wall serves as a perfect spin sink, indepen-
dent of the effective barrier between the lead and the central
region. At L = L0, the domain walls are extended throughout
the chain and support transport between the left and right
regions. The spin analog of broken gauge invariance is an easy
axis in the central region of our spin chain, e.g., the x axis in
our system [Eq. (1)]. Although the orientation of the spin at
the center of a domain wall can rotate in the gapless region,
in the sense of Eq. (3), our results imply that the transmission
through the central region depends on matching the easy axis
and the domain-wall direction at the interface. In particular,
when the spin configurations of the incoming domain wall
and localized domain wall match, in the sense of ϕ = ϕ0, we
obtain a perfect conductance of these states through the central
region and no signal at the right lead when their alignment
is antiparallel, ϕ = ϕ0 + π . Partial transmission can occur
when, for instance, an equal parts superposition of two domain
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walls with ϕ differing by π scatter from the central region. In
particular, this is nicely illustrated when the central spin of the
domain wall is collinear with the z axis [Eq. (4)], which can
be written as a superposition of two domain walls, differing in
relative phase by ±π , with ϕ differing by π .

IV. DISCUSSION

We studied the low-energy transport through a quantum
spin chain with an anisotropic planar exchange. We found
that the most interesting features take place in the degenerate
phase (|h| < J), which supports collective winding transport
in the semiclassical spin perspective [4,7]. In the fermionic
representation, this is the regime in which Majorana zero
modes appear in long, isolated p-wave superconductors. We
see that as a result, the most dramatic transport phenomena
occur in this phase. In particular, fixing the transverse mag-
netic field, there is a length scale L0, which describes the
onset of hybridization of the Majoranas in the presence of
spin reservoirs. When L � L0, the low-energy transmission
is exponentially suppressed due to the spectral gap. When the
length of the central region is reduced towards L0, the trans-
mission kicks in exponentially at zero energy, where there
is an equal transmission for both spin orientations along the
z axis. Consequently, although there is no net spin flux, we
expect a strong spin-current noise response at precisely this
length. For L < L0, the resonance in transmission moves to a
finite energy, which supports net long-range spin transport and
reflects the partial restoration of spin superfluidity [20]. The
associated spin transport, or spin-current noise when L = L0,
may be measured by utilizing the spin Hall effect for spin-
to-charge conversion [21]. Moreover, the localized domain
walls that are responsible for the underlying signal propaga-
tion could be imaged in real space, e.g., by a spin-polarized
scanning tunneling microscopy or nitrogen-vacancy quantum
sensors, although a detailed investigation of the key signa-
tures associated with nonlocal spin transport is beyond our
scope here.

In order to consider the effects of a disorder, suppose that
the chain is made up of several segments, each with a ran-
dom in-plane anisotropy. Adjacent regions whose anisotropies
differ by an angle φ are connected by superconducting weak
links as in a Kitaev chain [16]. Such a topological Josephson
junction can support in-gap evanescent states whose energy
is proportional to sin φ, where φ corresponds to half of the
difference in the condensate phase across the junction. Hy-
bridization of these localized states can form an in-gap band
capable of supporting spin excitations [22]. In other words,
disorder in the spin chain can globally smear the in-plane
anisotropy on average, thereby restoring low-energy ballistic
spin transport.

Throughout this manuscript, we have neglected additional
out-of-plane exchange interactions, i.e., along the z axis in
addition to exchange in the xy plane, between neighboring
sites. It is known that such an antiferromagnetic exchange,
corresponding to a repulsive interaction in the fermionic pic-
ture, can modify the order [23] and destroy the end states
[24] for a sufficiently strong interaction. As a result, perfect
Andreev reflection is destroyed and excitations are normally
reflected at the interface with the anisotropic region even when

the magnetic field is smaller than the exchange [25]. Upon
the inclusion of an out-of-plane ferromagnetic exchange inter-
action, on the other hand, which corresponds to an attractive
interaction in the fermionic picture, perfect spin injection into
the anisotropic region remains even for a strong out-of-plane
exchange and can persist for large applied magnetic fields
[25]. In future work, it may be interesting to investigate the
length dependence of the associated spin transport [26].
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APPENDIX A: KITAEV HAMILTONIAN

The Kitaev Hamiltonian, given by Eq. (2) in the main
text, can be Fourier transformed to momentum space taking
the form H = 1

2

∑
k C†

kHCk , where the sum is over k in the
Brillouin zone and

H = −(J cos k + h)ηz − (αJ sin k)ηy , C†
k = [c†

k , c−k].

(A1)

Here, η j are the Pauli matrices acting in Nambu space. In the
following, we are interested in long wavelengths as compared
to the lattice spacing, which is valid when |h| is comparable
to J , so that the low-energy Hamiltonian is

H = J[k2 − (1 + h/J )]ηz − kαJηy, (A2)

where we henceforth take h < 0. When α = 0, the energies
are ±J[k2 − (1 + h/J )] for the respective eigenvectors ϕ+ =
(1, 0) and ϕ− = (0, 1). The spectrum has two Fermi points,
±k ± √

1 + h/J [Fig. 5 (inset)]. If |h| > J|, the spectrum has
a gap of |h + J| at k = 0. When α �= 0, the eigenvalues and
eigenvectors are given by

E±/J = ±
√

[k2 − (1 + h/J )]2 + α2k2,

φ±
k =

[
k2 − (1 + h/J ) + E±/J

−iαk
, 1

]
, (A3)

respectively.
For finite α, the spectrum E± has a gap which closes

at k = 0 when |h| = J , signaling a phase transition with
|h| < J (|h| > J) supporting a degenerate (nondegenerate)
ground state. There are two qualitatively different regimes
of the spectrum: (1) when 2α2 > |1 + h/J| [Fig. 5 (black
solid and red dashed curve)] and (2) when 2α2 < (1 + h/J )
[Fig. 5 (green dotted curve)]. In the first case, there is one
minimum in the spectrum at k = 0 with gap |h + J|. Near
the phase transition when the energy is within the gap,
αJ � |h + J| > E , all the wave vectors are purely imaginary,
given by ±iα and ±i

√
(h + J )2 − E2/αJ , i.e., there are no

propagating solutions. When the energy is above the gap
but still near the bottom of the band (αJ � E > |h + J|),
there are two propagating solutions, ±

√
E2 − (h + J )2/αJ ,

and two totally imaginary wave vectors, ±iα. In the
second case, there are two minima in the spectrum which
are symmetric about k = 0 where there is a local maxi-
mum. Deep within the degenerate regime, (1 + h/J ) � α2,
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αkF J

kF kF
k

E
/
J

E
/
J

k

FIG. 5. The positive energy spectrum of the spin chain sys-
tem with periodic boundary conditions in three regimes: (1) 2α2 >

|1 + h/J| and |h| < J (black solid curve), (2) 2α2 > |1 + h/J| and
|h| > J (red dashed curve), and (3) 2α2 < 1 + h/J (green dotted
curve). Inset: The positive energy spectrum when α = 0 and |h| <

J . The excitations for k < |kF |(k > |kF |) correspond to particles
(holes).

the minima are at ±kF with gap αkF J . When the energy
is within the gap, E < αkF J , the four wave vectors are
kF ± i

√
α2 − E2/J (h + J ) and −kF ± i

√
α2 − E2/J (h + J );

they oscillate with wave vector kF and decay or grow ex-
ponentially according to their depth within the gap. Above
the gap with E <

√
(h + J )2 + J (h + J )α2, there are four

propagating states with kF ±
√

E2/J (h + J ) − α2 and −kF ±√
E2/J (h + J ) − α2, i.e., two solutions around each Fermi

point. When E >
√

(h + J )2 + J (h + J )α2, there are two

purely imaginary and two purely real solutions symmetric
about k = 0.

In the gapped system, we expect the zero-energy states
to be evanescent and consider the chain to be semi-infinite,
passing to the continuum limit, with � � 0 being the coordi-
nate along the chain. Near the phase transition, |h| ≈ J , the
wave vectors corresponding to solutions vanishing as � →
∞ are k± = −iκ± with κ+ = α and κ− = |1 + h/J|/α. The
eigenvectors of these solutions are φκ+ = [1, 1] and φκ− =
[sgn(1 + h/J ), 1]. Because the zero-energy wave function can
only be made to vanish at � = 0 if the eigenvectors are par-
allel, such evanescent states are only present when |h| < J .
Furthermore, because the particle and hole components are
of equal weight, such a solution corresponds to a Majorana
bound state up to an overall phase. As a general excitation can
be written as �k = φk · Ck = ∫

d�φk · C�e−ik�, where C†
� =

[c†
�, c�], the Majorana zero mode is

�M =
∫

d�(c� + c†
� )(e−κ+� − e−κ−�). (A4)

APPENDIX B: TRANSPORT COEFFICIENTS

In general, the solutions for the transport coefficients are
rather complicated. However, when |1 + h/J| 	 1, the sepa-
ration in length scales allows us to obtain a simplified formula
for these coefficients in two regimes: κ−L 	 1 and κ+L � 1.
Because we are interested in the long length behavior in the
degenerate phase, we focus on the regime when L � κ+ and
|h| < J .

When the incoming excitation is at zero energy, E = 0, and
polarized along z the transport coefficients are

t↑ = 4iαkF e(−ikF −κ− )L [(α + 2U/J )2 + (2kF )2]a↓ − (α + 2ikF + 2U/J )2a↑
[(α + 2U/J )2 + (2kF )2]2e−2κ−L + (4αkF )2

,

t↓ = 4iαkF e(ikF −κ− )L (α − 2ikF + 2U/J )2a↓ − [(α + 2U/J )2 + (2kF )2]a↑
[(α + 2U/J )2 + (2kF )2]2e−2κ−L + (4αkF )2

,

r↑ = − [(α − 2ikF + 2U/J )(α + 2ikF + 2U/J )3]a↑e−2κ−L + (4αkF )2a↓
[(α + 2U/J )2 + (2kF )2]2e−2κ−L + (4αkF )2

,

r↓ = − [(α − 2ikF + 2U/J )(α + 2ikF + 2U/J )3]a↓e−2κ−L + (4αkF )2a↑
[(α + 2U/J )2 + (2kF )2]2e−2κ−L + (4αkF )2

, (B1)

where we have redefined kF = √
1 + h′/J to be the Fermi points in the leads.

The complex conjugate square of these quantities are the transport probabilities in the main text: R↑ = |r↑|2, R↓ = |r↓|2,
T↑ = |t↑|2, and T↓ = |t↓|2. One can show that the denominator of the transmission is minimized for the resonant length, L0

[Eq. (5) in the main text], which is independent of the polarization of the incoming excitation.
When the magnitudes of the incoming spin-up and -down excitation are equal but differ in a phase ϕ [Eq. (3)],

|t↑| = |t↓| =
√

24αkF

√
(α + 2U/J )2 + (2kF )2[2kF cos(ϕ/2) + (α + 2U/J ) sin(ϕ/2)]eκ−L

[(α + 2U/J )2 + (2kF )2]2 + (4αkF )2e2κ−L
. (B2)

One can show that the transmission is maximized when

eiϕ = −α − 2ikF + 2U/J

α + 2ikF + 2U/J
, (B3)

which is equivalent to Eq. (7) in the main text. Using the condition α2 � |1 + h/J|, when U = 0 ( U/J � α), we find ϕ ≈ 0
(ϕ ≈ π ).
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We now consider the transmission coefficients of an excitation with positive energy within the gap, 0 < E < h + J , and
polarized along z scattering off the central region. As the energy approaches the band gap, E → h + J , the transport coefficients
are

t↑ = e−ikF L w↑
u + vL

, t↓ = e−ikF L w↓
u + vL

,

w↑ = 4αkF J3[−iαJ (a↑ − a↓) + 2kF J (a↑ + a↓) − 2iU (a↑ − a↓)][α3J2 + 2α2J (ikF J + U ) + 4(h + J )(ikF J + U )],

w↓ = 4α2kF J3[−iαJ (a↑ − a↓) + 2kF J (a↑ + a↓) − 2iU (a↑ − a↓)][α2J2 − 2J (h + J ) + 2αJ (−ikF J + U )],

u = {α2J2 + 4αJ (ikF J + U ) + 4[(kF J )2 + U 2]}
× {α4J4 + 4α3J3(−ikF J + U ) + 8J (h + J )[(kF J )2 + U 2] + α2J2[4(kF J )2 − 2J (h + J ) + 4U 2]},

v = −αJ (h + J ){α2J2 + 4αJ (ikF J + U ) + 4[(kF J )2 + U 2]}2. (B4)

Note that to obtain these expressions, we have assumed that the energy of the excitation is much smaller than h′ + J .
At the band edge, |t↑|2 and |t↓|2 are Lorentzian functions of L whose prefactor, center, and width are complicated functions

of the system parameters. To further simplify the expressions, consider the case of when the excitation in the left lead carries h̄
spin, a↑ = 1 and a↓ = 0. When U � |h|, J and making use of the limit α � (1 + h/J ), we find

|t↑|2 = [α2J + 2(h + J )]2

4[α2J + (h + J )]2 + [ (h+J )U 2

kF J2

]2[
L − α2J+2(h+J )

α(h+J )

]2 ,

|t↓|2 = α4J2

4[α2J + (h + J )]2 + [ (h+J )U 2

kF J2

]2[
L − α2J+2(h+J )

α(h+J )

]2 . (B5)

When L = [α2J + 2(h + J )]/α(h + J ), the transmission probabilities are maximized. Likewise, the net spin current,
|t↑|2 − |t↓|2, is maximized to be (1 + h/J )/[α2 + (1 + h/J )] ≈ (1 + h/J )/α2. We plot the probabilities for reflection and
transmission in Fig. 4. Notice that the excitation is normally reflected for nearly all values of L, except a small range in which
the tunneling is peaked.
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