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We analyze a well-known experimental work [J. Crossno et al., Science 351, 1058 (2016)] which reported on
the failure of the Wiedemann-Franz law in graphene at T ∼ 10–100 K, attributing this failure to the non-Fermi
liquid nature of the Dirac fluid associated with undoped intrinsic graphene. In spite of serious theoretical
efforts, the reported observations remain unexplained. Our detailed quantitative analysis based on Fermi liquid
considerations, which apply to extrinsic doped graphene, establishes that one possible explanation for the
reported observations is the opening of a gap at the Dirac point, induced perhaps by the boron nitride substrate.
We suggest that more experiments are necessary to resolve the issue, and we believe that the experiment may not
actually have anything to do with Dirac fluid hydrodynamics but relates to finite-temperature low-density bipolar
diffusive transport by electrons and holes in the presence of short- and long-range disorder, and phonons.
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I. INTRODUCTION

Crossno et al. published a high-profile experimental paper
in 2016 [1], entitled “Observation of Dirac fluid and the break-
down of the Wiedemann-Franz law in graphene,” where they
reported a measurement of the Lorenz number L = κ/(σT ) in
graphene as a function of doping density (n) and temperature
(T ), with κ and σ being respectively the carrier (both electrons
and holes, but not phonons) thermal and electrical conductiv-
ity. It has been known for a long time [2] that ordinary metals
at room temperatures obey the universal Wiedemann-Franz
(WF) law where L = L0, essentially a constant independent
of the material and the temperature (as long as it is not very
low), where L0 is the so-called Lorenz constant, L0 = π2

3 ( kB
e )2,

with kB, e being the Boltzmann constant and electron charge
respectively [3]. The WF law is widely obeyed by metallic
Fermi liquid systems, where both energy and charge transport
are carried by the same free carriers as long as inelastic scat-
tering effects are unimportant [4–6]. In fact, many strongly
correlated systems (e.g., cuprate high-temperature supercon-
ductors), which are sometimes considered to be non-Fermi
liquids, also appear to obey the WF law. Since inelastic scat-
tering typically vanishes at zero temperature, the WF law
in all likelihood applies to all electronic systems at zero
temperature.

The remarkable aspect of Ref. [1] is that it reported a
dramatic violation of the WF law, where the measured Lorenz
ratio L/L0 shows a large peak at the graphene charge neu-
trality point (CNP) which is nonmonotonic in temperature,
manifesting a value as large as ∼20 at T ∼ 60 K, decreasing
for temperatures below and above. It is noteworthy that the
experiment found L � L0 in some region of (n, T ) since
typically electron-electron scattering predicts a suppression
of L < L0 and not an enhancement [6,7]. The totality of
the various experimental features in Ref. [1] has led to the

somewhat ill-defined claim that the observations are con-
sistent with the hydrodynamic quantum critical behavior of
non-Fermi-liquid Dirac fluids, but no explicit calculations ver-
ify such strong claims. It is well-established experimentally
and theoretically that the graphene Dirac point is an unstable
fixed point that is strongly suppressed by electron-hole pud-
dles arising from Coulomb disorder in the environment [8].
In particular, the predicted conductance quantization of the
intrinsic Dirac point has never been observed in bulk graphene
at the CNP, showing that the physics of graphene is associated
with extrinsic doped graphene with the critical Dirac point be-
ing inaccessible experimentally because of charge puddles. A
detailed phenomenological hydrodynamical theory [9] based
on the Dirac fluid idea could not explain the data of Ref. [1]
despite having six free parameters in the theory [10]. In par-
ticular, the puzzling peak in the Lorenz ratio for T ∼ 60 K
reported in Ref. [1] remains unexplained.

Given this unsatisfactory situation surrounding a high-
profile publication [1] with an important claim of the
observation of the quantum Dirac fluid, we revisit the exper-
iment using a more pedestrian approach assuming that the
observed WF law breakdown in the experiment arises from the
bipolar diffusion associated with the motion of both electrons
and holes in the system at finite temperatures. We find that
we can explain the observations of Ref. [1] qualitatively and
semiquantitatively within a bipolar diffusion Boltzmann trans-
port model including disorder and phonon scattering effects
if we assume that an energy gap has opened up at the Dirac
point due to the effect of the hexagonal boron nitride (hBN)
substrate, which is possible in principle [11–15]. Our work in-
cludes only short-range and long-range disorder, and acoustic
phonons in the theory along with the full effects of bipolar
diffusion by both electrons and holes in a gapped system.
The goal is to see the extent to which the interesting WF
law breakdown data reported in Ref. [1] can be captured in a
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theory that assumes the system to be extrinsic graphene (i.e.,
doped graphene) with the carriers scattering from disorder
and phonons as in simple metals. This is necessary given
the failure of the interacting Dirac liquid theory in explaining
the observations of Ref. [1] even using multiple independent
fitting parameters.

II. BACKGROUND

Electron-electron interaction effects in graphene are well-
understood and were calculated in depth in several earlier
references [16–19], and we first discuss its relevance to the
WF experiment of Ref. [1]. As was pointed out very early
[16], there are two qualitatively different conceptual situations
to consider: intrinsic graphene with no doping (i.e., just a hy-
pothetical pristine graphene Dirac fluid) and extrinsic doped
graphene (i.e., graphene with free carriers in the conduction
or valence band depending on whether the doping is electron-
like or holelike). Due to the invariable presence of random
charged impurities in the environment, the graphene layer
is dominated by electron and hole puddles around the CNP,
and is effectively always spatially inhomogeneously doped.
The Dirac point (and therefore, the Dirac fluid) is, there-
fore, inaccessible with the conductivity developing a plateau
around the CNP with an approximate value of 5–50e2/h,
which is strongly dependent on the sample disorder and is
larger than the predicted universal Dirac point quantum con-
ductivity ∼4e2/(πh) [8,20,21]. The approximate region of
the graphene minimum conductivity plateau in carrier density
around the CNP depends on the sample disorder in a complex
manner (because the puddle properties depend on the disorder
details), and is smaller in general for cleaner samples. In
Ref. [1], the measured minimum conductivity is ∼8–12e2/h
and the plateau size is ∼1010 cm−2, which implies low sam-
ple disorder (which is consistent of the high-mobility and
high-quality nature of the graphene on hBN samples used in
Ref. [1]). The O(1010 cm−2) puddle regime of Ref. [1] implies
an intrinsic Fermi energy of >100 K, which means that to
access the Dirac point one needs T � 100 K, where phonon
effects would become crucial. Thus the intrinsic graphene
(or equivalently, Dirac fluid) properties of the Dirac point
are not accessible. We note that Ref. [1] does not report the
observation of the graphene universal Dirac point quantum
conductivity, but nevertheless interprets the data based on the
assumption [22,23] of an intrinsic Dirac fluid hydrodynam-
ics. We believe that the absence of the universal Dirac point
conductivity in Ref. [1] implies that the system is dominated
by disorder puddles and is not in the interaction-dominated
hydrodynamic Dirac fluid regime.

To investigate further the possible role of electron-electron
interactions, we use Ref. [17] to calculate the electron-
electron scattering rate in graphene, comparing it with the
electron-impurity scattering rate and obtaining the Lorenz
ratio assuming extrinsic graphene (i.e., just electrons) by
following [6]. The results for different puddle disorders are
shown in Fig. 1. The most important aspect of this analysis
for our purpose is that the parameter ζ = τee/τimp which mea-
sures the ratio of the momentum-conserving electron-electron
scattering to the momentum-nonconserving electron-impurity
scattering exceeds unity only at a relatively high temperature

FIG. 1. Shows the calculated dimensionless Poiseuille parameter
ζ = τee/τimp (inset) as well as the corresponding Lorenz ratio (main
figure) for different puddle parameter values (s) at a fixed carrier
density of 1010 cm−2 as a function of temperature for extrinsic
graphene following Refs. [6,17]. The point to note is the monotonic
suppression of L/L0 with increasing T in the regime where phonons
must be accounted for.

(T > 60 K) even in very clean graphene, thus implying that
any graphene hydrodynamic effects would not show up for
low T . Note that phonons are not included in Fig. 1 results.
At such high temperatures, electron-phonon interactions can-
not be neglected, and thus it is unlikely that pristine Dirac
fluid effects of intrinsic graphene (where electron-electron
interactions dominate over electron-impurity and electron-
phonon interactions) can decisively manifest in monolayer
graphene (just as this does not happen in simple normal met-
als). This becomes clear once we consider that the effective
Tph (which is roughly TBG/5 with TBG ∼ n1/2 being the Bloch-
Grüneisen temperature), where phonon scattering becomes
significant, is of O(10 K) at low carrier densities of rele-
vance in Ref. [1] [20]. Basically, there is no effective window
in the temperature-density-disorder-phonon parameter space
where the Dirac-point-tuned intrinsic graphene non-Fermi liq-
uid physics can dominate in controlling the Lorenz ratio of
monolayer graphene [24].

One way of seeing this is that the inequality Tph � T �
TF � Tpuddle (the energy scale of puddles), which is necessary
for intrinsic graphene, is not easy to satisfy, due to the fact that
cs, the speed of sound in graphene, is much smaller than vF .
It is therefore incorrect to assume that a particular graphene
sample is in the hydrodynamical Dirac fluid regime a priori
since the necessary conditions are highly restrictive both on
the low- and high-temperature sides. This may be the reason
why the theory of Ref. [9] is unable to explain the Crossno
experiment in spite of having multiple adjustable parameters.
In addition, interaction effects tend to suppress (as in Fig. 1
where L/L0 < 1 for higher T where interaction dominates)
the Lorenz ratio (i.e., L < L0) in single-component extrinsic
systems [6,7], whereas the Crossno experiment reports a large
enhancement (L/L0 ∼ 20) at higher T ∼ 60 K. This is unex-
pected and is an additional mystery. In fact, measurements on
extrinsic doped graphene show good agreement between the
experimental data and the WF law, which is expected based on
the dominance of impurity and phonon scattering in graphene
essentially at all temperatures [25].
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Given this background, we develop a Boltzmann-equation-
based kinetic theory for the WF law in graphene, including
short-range disorder, long-range disorder, and phonon. It
is well-known that long- (short-) range disorder dominates
graphene transport properties at low (high) carrier densi-
ties, and phonons become relevant at higher temperatures
[8,20,26,27]. The crucial feature of the theory is that we
include the bipolar diffusion effect quantitatively and non-
perturbatively, treating both electrons and holes on an equal
footing, leading to the enhancement of the Lorenz number
as observed experimentally. Our theory can account for most
features of the observations (except of the very large peak in
L/L0 ∼ 20) of Crossno et al. [1], and therefore, we generalize
the theory to the existence of a gap opening up at the Dirac
point by virtue of the hBN substrate [11–15]. It is well-known
that hBN could induce a gap in graphene, and the size of
the energy gap depends on the details of how the layers are
oriented and other configurational details. Using this gap as
an additional parameter, we are able to qualitatively explain
the Crossno observation of a peak in L/L0 at T ∼ 60 K. Of
course, whether the sample used in Ref. [1] has an energy gap
is unknown and unknowable, and our inclusion of an energy
gap in the theory should be considered as a model assumption
which is certainly a possibility, but by no means a certainty.
Future experiments should check our predictions by ensuring
a gap at the Dirac point.

In the next two sections, we present our theory (Sec. III)
and results (Sec. IV), and we conclude in Sec. V with a
summary of our results and a discussion of open questions.
Appendices A–B provide additional results for different band
structures for comparison, and Appendix C provides the mi-
croscopic calculation results for completeness. We mention
that by the very nature of our theoretical work, we provide
extensive calculated results for the Lorenz ratio L/L0 as a
function of temperature, carrier density, energy gap, and scat-
tering mechanisms with the totality of our results providing
a context for understanding the intriguing experimental data
presented in Ref. [1].

III. THEORY

We first divide our system into the conduction band (la-
beled with +) and the valance band (labeled with −), then
calculate the electrical and thermal conductivity separately
using the Boltzmann transport theory, and then combine them
with the bipolar diffusion effect included. The value of L/L0

is then obtained as a function of density and temperature for
various scattering mechanisms.

In the ideal situation, the system is gapless, with the energy
dispersion ε±(p) = ±vF |p|, where vF ∼ 1 × 106 m/s is the
Fermi velocity of graphene [20]. However, we also consider
the situation in which a gap opens up at the Dirac point. Since
the exact dispersion near the gap is unknown, we consider the
simplest model:

ε+(p) = +vF |p|,
ε−(p) = −vF |p| − �, (1)

where � is the size of the gap. We show in Appendix A
that parabolic dispersion near the gap shows similar results,

establishing the universality of the simple model. We include
both spin and valley degeneracies [20] for the density of
states:

D+(ε) = 2ε

π h̄2v2
F

for ε > 0,

D−(ε) = 2(−� − ε)

π h̄2v2
F

for ε < −�. (2)

When there is an applied electrochemical force (E) and
temperature gradient (∇T ) in the linear response regime, the
electrical and thermal current can be written as(

J±
e

J±
q

)
=

(
L±

EE L±
ET

L±
T E L±

T T

)(
E

∇T

)
. (3)

We use the extensively used Boltzmann-equation-based ap-
proach with the relaxation time approximation formulated in
Ref. [5], in which the transport coefficients are given by the
formulas:

L±
EE = e2

∫
dε

(
−∂ f0

∂ε

)
D±(ε)v2

±(ε)τ±
σ (ε),

L±
ET = e

T

∫
dε

(
−∂ f0

∂ε

)
(ε − μ)D±(ε)v2

±(ε)τ±
κ (ε),

L±
T E = − e

∫
dε

(
−∂ f0

∂ε

)
(ε − μ)D±(ε)v2

±(ε)τ±
σ (ε),

L±
T T = − 1

T

∫
dε

(
−∂ f0

∂ε

)
(ε − μ)2D±(ε)v2

±(ε)τ±
κ (ε). (4)

Here e is the electron charge, T is the temperature, f0 =
(1 + exp( ε−μ

kBT ))−1 is the equilibrium Fermi distribution func-
tion, v±(ε) = ∂ε±/∂ p (= vF for our model here), τ±

σ,κ are the
electrical and thermal relaxation time, and the integrations are
over the entire energy region of the corresponding band. The
chemical potential μ is obtained self-consistently from the
carrier density

n =
∫ ∞

0
dεD+(ε) f0(ε) −

∫ −�

−∞
dεD−(ε)(1 − f0(ε)). (5)

In order to describe our system with dimensionless parame-
ters, sometimes the Fermi temperature TF is used instead of n:

n =
∫ kBTF

0
dεD+(ε), assuming n > 0. (6)

For graphene, the relationship between these two parameters
is TF = (h̄vF /kB)(πn)1/2 ∼ 135(n/(1010 cm−2))1/2 K.

The relaxation times depend on the details of the scat-
tering mechanisms, and τ±

σ (the electrical relaxation time)
may or may not equals τ±

κ (the thermal relaxation time). By
particle-hole symmetry, we can relate the relaxation times for
the two bands as τ+

σ,κ (ε) = τ−
σ,κ (−� − ε) ≡ τσ,κ (ε) for ε � 0.

In addition, we will mainly consider τσ (ε) = τκ (ε) ≡ τ (ε).
Typically, for a single scattering mechanism, we can approx-
imate τ (ε) ∼ τ0ε

j [28], where j is the scattering exponent
for that mechanism, and τ0 may depend on T as well as
n (but not on ε). When several mechanisms are combined,
the total scattering rate 1/τ equals the sum of the individual
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ones. We will consider both pure as well as combined scat-
tering mechanisms in this paper. In Appendix C, we derive
τσ,κ directly from the Boltzmann transport theory, explicitly
verifying that this scattering exponent model is a reasonable
qualitative approximation for all the microscopic scattering
mechanisms of our interest.

After obtaining the transport coefficients, the electrical
conductivity σ± = L±

EE , thermal conductivity κ± = −L±
T T +

L±
T E L±

ET /L±
EE , and thermopower S± = L±

ET /L±
EE can be calu-

lated. The conductivities of the total system are

σ = σ+ + σ−,

κ = κ+ + κ− + σ+σ−
σ+ + σ−

T (S+ − S−)2. (7)

The third term of κ is the bipolar diffusion effect [29], which
is crucial in our theory. For comparison, we also do some
of the calculations without bipolar diffusion by dropping this
term. Finally, we obtain L = κ/(σT ). Note that the presence
of bipolar diffusion, i.e., both electrons/holes participating in
transport, enhances L/L0 above unity in principle.

For notational brevity, we will directly use the Kelvin
for the unit of energy (i.e., setting kB = 1) in the following
sections.

IV. RESULTS

Based on the theory of Sec. III and the motivation of
understanding the reported experimental results [1] on L/L0

as a function of density and temperature, we present a detailed
set of results below. (Additional results are provided in the
Appendices.) Our goal is to understand the large reported
value of L/L0 and its nonmonotonic CNP peak at a finite
temperature. We therefore only show our calculated L/L0 for
various situations and parameters, both for linearly dispersing
graphene systems as well as (in a few cases) for parabolically
dispersing systems (imitating bilayer graphene) for the sake
of comparison. We consider both gapless systems as well as
systems with gaps.

Since we consider several different scattering mechanisms
which affect the WF law quite differently, first we depict
results for individual scattering processes separately, and then
combine them with varying relative scattering strengths to
obtain the various predicted WF law breakdown possibilities
in graphene, since the real system is typically affected by
several distinct scattering mechanisms

A. Gapless systems with single scattering mechanism

In Fig. 2, we show the results for our calculated L/L0 in
graphene (using the theory in Sec. III with � = 0) for differ-
ent scattering strengths τ (ε) = τ0ε

j , where j, the scattering
exponent, characterizes the scattering mechanism. The details
of j would depend on the actual microscopic scattering mech-
anism (e.g., Appendix C), and in principle, j could vary even
for the same physical scattering mechanism depending on the
energy. The calculated L/L0 depends on T and TF , where the
Fermi temperature TF depends on the carrier density through
TF = (h̄vF /kB)(πn)1/2 ∼ 135(n/(1010 cm−2))1/2 K. The car-
rier density n defining TF is the actual doping density or
the residual puddle density defining the CNP (approximately
of the order of the density regime defining the conductivity

FIG. 2. Shows the calculated L/L0 for (a) fixed n as a function
of T and for (b) fixed T = 60 K as a function of n in the gapless
linear dispersion model for a scattering rate τ (ε) = τ0ε

j . The inset
shows the value of L/L0 at n = 0, which equals the saturated high-T
nondegenerate (T � TF ) value, as a function of j. Solid (dotted)
curves are calculated with BD included (excluded). Note that BD
is effective only for T � TF , where the high-temperature system
behaves as an intrinsic Dirac liquid with both electrons and holes
contributing to transport.

minimum plateau regime around CNP, which varies between
108–1011 cm−2 in graphene depending on the sample quality)
[8,30–32]. We show results with and without bipolar diffusion
to emphasize the role of the Dirac point where of course
the bipolar diffusion would become singular at the putative
critical point (had there been no puddles at all). We ignore all
quantum critical and hydrodynamical effects arguing them to
be unimportant in real graphene samples which are always
dominated by puddles suppressing the Dirac point. Obvi-
ously, the effect of bipolar diffusion is suppressed (enhanced)
at higher (lower) carrier density n (with TF ∼ n1/2), as the
chemical potential moves away from the Dirac point. Bipo-
lar diffusion is also suppressed (enhanced) at lower (higher)
temperatures for a fixed carrier density.

The salient features of our results presented in Fig. 2 are
(1) With BD, L/L0 always peaks at the CNP for all scattering
models and for all T (in agreement with Ref. [1]), but not
necessarily so without BD; (2) the peak value of L/L0 (nom-
inally at the CNP) increases with increasing j; (3) for j � 0
with BD, L/L0 increases with T at higher T (>0.5TF ) after
occasional nonmonotonicity at low T ; (4) at high T (> TF ),
L/L0 saturates to a j-dependent constant; (5) for T = 0, L/L0

always approaches unity, obeying the WF law precisely; (6)
for j � 0 with BD, as n increases (i.e., increasing TF ), L/L0
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decreases monotonically from its n = 0 peak value, approach-
ing unity at large n (where T � TF applies).

These features are all physically sensible in a gapless sys-
tem with both electrons and holes. At any finite T , the BD
effect is the strongest at n = 0, thus strongly enhancing L/L0

at the CNP, and increasing T enhances this effect monotoni-
cally, thus enhancing L/L0. At T = 0, the system must obey
L/L0 = 1 (i.e., the WF law) at any finite n (which is always
ensured by the existence of puddles). Therefore, as long as
the limit T = 0 is taken before the limit n = 0, the WF law
must always be obeyed in our model. At high T , T/TF � 1,
the system becomes nondegenerate, leading to a modified
scattering-dependent WF law, with a universal L/L0, which
now depends on the scattering exponent j. These values of
saturated L/L0 are shown in the inset of Fig. 2(b) as a function
of j. In particular, the value of L/L0 ∼ 2.4 for j = 0 and ∼4.2
for j = 1 has been discussed in Ref. [33].

We note that the results of Fig. 2 are generic to all
gapless systems with there being nothing special about lin-
early dispersing Dirac fluids. For example, we show the
corresponding results for the gapless parabolic dispersion in
Appendix A, and the results for the linear and the parabolic
cases are qualitatively identical. This is expected because the
key physics is gaplessness and the existence of both electrons
and holes, with the nature of the energy dispersion itself
being just a minor quantitative detail. We thus expect mono-
layer and bilayer graphene to manifest similar qualitative WF
behavior.

The same is, however, not true if the system is strictly a
unipolar one-component (i.e., single-band) system with just
electrons (or just holes). This is understandable since such
a single-band system does not have any bipolar diffusion.
We depict the results for a single linearly dispersing band in
Appendix B, and it is clear that these results are qualitatively
similar to the results without BD in Fig. 2 (dotted curves).
The peak in L/L0 at the CNP is thus a direct effect of bipolar
diffusion and does not manifest when bipolar diffusion is
neglected.

Our results presented so far can explain only a part of
the data of Ref. [1]: we cannot explain the important ex-
perimental observation of a temperature-nonmonotonic CNP
peak in L/L0 which maximizes at a large value (∼20) at a
finite T ∼ 60 K. Although L/L0 can be large (>20) in the
nondegenerate high-T regime for large j in the gapless BD
theory (Fig. 2), they never manifest the nonmonotonicity in T .
Combining different mechanisms in a temperature-dependent
way does produce some nonmonotonicity. However, to pro-
duce the large, sharp peak at finite T , we need to fine-tune
the theory so that the scattering is dominated by some large- j
mechanisms for small T , then suddenly changes to be domi-
nated by small- j mechanisms around T ∼ 70–90 K, which is
unlikely to be happening in the experiment. (We mention that
such a possibility of some new scattering mechanism to have a
sudden onset is a possibility that cannot be ruled out no matter
how unlikely it is, but we do not consider such an unlikely
scenario to be a generic explanation for the observations in
Ref. [1].) Therefore we conclude that the results of Ref. [1]
cannot be well-explained by the gapless model even after
the full inclusion of bipolar diffusion and multiple scattering
processes.

B. Gapped systems with single scattering mechanism

We now consider, purely phenomenologically, whether the
existence of an energy gap at the Dirac point for the two-band
system can better explain the experiment [1]. We note that the
symmetry protecting the gaplessness of the graphene Dirac
point may be broken by the hBN substrate [11–15]. Thus the
emergence of a Dirac point energy gap for graphene on hBN
substrates is a feasible idea although we are by no means
claiming that this is what happened in Ref. [1]. Our interest
is to investigate how an energy gap affects the WF law and the
value of L/L0 in graphene. Our results can be tested in future
experiments by deliberately inducing a Dirac point gap.

Introducing a gap � at the Dirac point, we recalculate
L/L0 for different values of � as a function of T and n. In
Fig. 3, we show the results for three representative values of
�, as a comparison to the � = 0 case in Fig. 2. It is clear
that finite � tends to produce a maximum in L/L0 at a finite
value of T (for fixed n or TF ), which can be very large for
� � TF , but the peak in L/L0 as a function of density still
remains at the CNP (n ∼ 0). This is qualitatively consistent
with the experimental finding in Ref. [1] that the peak in L/L0

happens at a finite T in contrast to the mostly monotonic T
dependence of L/L0 for � = 0 [Fig. 2(a)]. This peak value
(now at a finite T/TF ) grows with increasing scattering ex-
ponent j in a qualitatively similar manner as for � = 0. We
emphasize that this nonmonotonicity in temperature occurs
only in the bipolar diffusion theory (and not if only electrons
or only holes are considered), showing the key role of both
electrons and holes in creating this finite-temperature peak in
L/L0 for finite �. We also emphasize that the peak is strongly
pronounced for large � and the maximum value of L/L0 can
be large, consistent with Ref. [1], even for small j. We note
that very similar behavior occurs also for gapped electron-hole
two-band parabolic systems, and the corresponding results are
shown in Appendix A.

C. Multiple scattering mechanisms

Having found empirically a phenomenological resolution
of the peculiar unexplained features of the Crossno WF break-
down behavior (i.e., large L/L0 along with the peak at finite
T ), we now proceed to produce a theoretical “phase diagram”
for L/L0 in the relevant parameter space with multiple scat-
tering mechanisms combined. The likely generic scenario in
experimental samples is the presence of multiple scattering
mechanisms with varying strengths as functions of tempera-
ture, density, and energy gap. In doing so, however, we run
into the problem of a huge over-abundance of our results
with far too many theoretical parameters: T , n, �, and the
parameter τ0 for each scattering exponent j. Obviously, even
if we produce such many-parameter phase diagrams, they will
be useless to convey any real understanding, so we must make
a choice. This is particularly true since all the operational scat-
tering mechanisms (and their quantitative details) in graphene
layers used in Ref. [1] may not necessarily be known, and as
is obvious from the results presented so far, the behavior of
the WF breakdown associated with the dependence of L/L0

on n and T depends on the scattering mechanism (in addition
to �, T , n) through the scattering exponent j. If several
different scattering mechanisms are involved, L/L0 will be a
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FIG. 3. Shows the calculated L/L0 for a fixed n as a function of T (top row) and for fixed T = 60 K as a function of n (bottom row) in
the gapped linear dispersion model with various values of the gap �, with (solid) and without (dotted) BD. These are to be compared with the
� = 0 results in Fig. 2.

complex combination of all possible scattering mechanisms
with possible temperature and density dependence of τ0 for
each j. To move forward, we must make some decisions on
the relevant scattering mechanisms and their relative strengths
in graphene.

From transport measurements [27,34,35], it is known that
the dominant transport mechanisms in graphene are short-
range and long-range disorder scattering and acoustic phonon
scattering. To keep things under control, we consider only
these three scattering mechanisms phenomenologically from
now on. Fortunately, the nature of these scattering mecha-
nisms is well-understood from prior work [36,37], and can be
represented as

τ (ε) = τ0

Aε + BT ε + C
ε

. (8)

Here A, B, C are parameters representing respectively the
strengths of short-range disorder, acoustic phonon scattering,
and long-range Coulomb disorder scattering. (Note that the
A or the B term, being proportional to energy, can also be
thought to represent the electron-electron scattering in intrin-
sic graphene, but we do not believe it to be useful to pursue
this direction as electron-electron scattering is likely to be
unimportant for graphene transport experiments leading to
the WF law or its failure.) The relative values of A, B, C
are strongly sample-dependent and unknown in general, and
we are not interested in any detailed quantitative modeling
anyway. Our goal is a minimal theory that is qualitatively
consistent with the experiment of Ref. [1]. Therefore we focus
on producing L/L0 phase diagrams in T -n space by varying
�, A, B, C to check whether the findings of Ref. [1] can be
explained qualitatively. Note that the Lorenz number of the
model reduces to the j = −1 case if C = 0, and the j = 1

case if A = B = 0. Also note that only the relative strengths
of A, B, and C affect L/L0, so we will express the results as
functions of the parameters A/C and B/C for C �= 0.

In Fig. 4, we provide a series of calculated false color
“phase diagrams” for L/L0 by varying A, B, C using T/�

and TF /� as the dimensionless temperature and density, re-
spectively (TF ∼ n0.5). First, we show in Figs. 4(a) and 4(b)
two phase diagrams for pure j = −1 (C = 0, at least one of
A, B �= 0) and pure j = 1 (A = B = 0, C �= 0), respectively.
One may think of these two results as representing the sit-
uation dominated by either short-range disorder or phonon,
and the situation dominated by long-range Coulomb disorder,
respectively. Next, we show four representative combinations
of A, B, C in Figs. 4(c)–4(f). It is apparent that the presence
of a gap leads to a maximum in L/L0 at finite T ∼ 0.1� for
TF � 0.1�, and the peak value of L/L0 can be very large.
This is consistent with Ref. [1]. Although varying A, B, and
C changes some quantitative details (especially the size and
shape of the peak), the qualitative behavior is essentially the
same. On the other hand, we show in Figs. 4(g) and 4(h)
two combinations of A, B, C for the � = 0 case. Although
there is nonmonotonicity of L/L0 in T for some TF , the peak
value is always small (L/L0 < 4.2), showing that the gap
� is the key for having the large peak with L/L0 > 10 in
Ref. [1].

Finally, in Fig. 5, we present some line plots for L/L0 as
functions of T (for fixed n) and n (for fixed T ) for both gapless
and gapped systems, with specific choices for A, B, C, show-
ing that our gapped results indeed agree qualitatively with the
results of Ref. [1], but not our gapless result. Although the
quantitative details depend on all the parameter details (i.e.,
A, B, C, �, the definition of CNP as constrained by puddles),
these details are unknown in the experiments, and it makes
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FIG. 4. False color “phase diagrams” for L/L0 as a function of temperature and density (TF ∼ n0.5) with various combinations of
parameters. (a) Gapped system with pure j = −1 scattering (C = 0). (b) Gapped system with pure j = 1 scattering (A = B = 0). [(c)–(f)]
Gapped systems with combined scattering mechanisms, with parameters (�2A/C,�3B/C) = (103, 103), (10, 103), (0.1, 10−3), (10−3, 10−3),
respectively. [(g) and (h)] Gapless systems with combined scattering mechanisms, with parameters (T0)2A/C = 10 and 0.1, respectively, where
T0 = (C/B)1/3 is a reference temperature scale (the scale at which phonon dominates over long-range disorder). Note that the gap is the key to
having the large peak of L/L0 in T , which does not happen for the gapless case.

little sense for us to adjust parameters to obtain fine-tuned fits
to Ref. [1], which would be misleading. In fact, whether the
experimental samples indeed have an energy gap is unknown,
and there may be some other scattering mechanisms contribut-
ing to L/L0 as well, such as the phonons in the substrate [38].
We emphasize that our key finding is that without an energy
gap, no plausible explanation for the temperature-dependent
nonmonotonicity in the reported L/L0 exists in the theory, and
the competing alternate theory of Ref. [9] has no explanation
whatsoever for the finite temperature peak in L/L0 [10]. We
note that the functional dependence of the results on A, B,C,

� as well as T and n is quite complex, and no simple summary
of the theoretical results is possible except to emphasize that
for finite �, it is possible to find regimes of n and T where our
theory qualitatively accounts for the breakdown of the WF law
reported in Ref. [1]. Only future experiments, perhaps using
deliberately gapped graphene samples, can decisively settle
the applicability of our theory to the resolution of the puzzle
posed by the data of Ref. [1].

We have also carried out microscopic model calculations
with phonon and short-range disorder scattering just to estab-
lish that our phenomenological model using a parametrized

FIG. 5. Shows the calculated L/L0 for fixed n as a function of T (top row) and for fixed T as a function of n (bottom row) with various
values of � with combined scattering mechanisms. The parameters are A/C = 2.78 × 10−5 K−2, B/C = 4.63 × 10−6 K−3 for the � = 0 and
60 K figures; and A/C = 2.78 × 10−9 K−2, B/C = 4.63 × 10−12 K−3 for the � = 600 K figures. Note that only the results with finite gaps
show qualitative agreement with the observation of Ref. [1].
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τ (ε) is a sensible approach, which is of course expected.
These results are presented in Appendix C.

V. CONCLUSION

We develop a phenomenological theory for the WF behav-
ior of graphene layers motivated by the puzzling experimental
observations reported in Ref. [1]. Using a phenomenological
scattering model with multiple scattering mechanisms (e.g.,
short-range disorder, long-range disorder, acoustic phonons),
we calculate L/L0 as a function of density and temperature
in wide parameter regimes, concluding that one simple way
to understand the puzzling data of Ref. [1] is to incorporate
a Dirac point energy gap in the theory. We speculate that
such an energy gap might have been unintentionally induced
by the boron nitride substrate. We cannot find any sharp
finite-temperature peak in L/L0, as reported in Ref. [1] un-
less we assume the existence of an energy gap. The gapless
system manifests monotonic WF behavior in our theory with
L/L0 at the CNP increasing with temperature, eventually sat-
urating at some model-dependent value L/L0 > 1, whereas
Ref. [1] manifests a clear temperature-dependent nonmono-
tonicity with L/L0 at the CNP showing a peak for T ∼ 60 K.
We can also explain the large observed value of L/L0 in the
experiment in the presence of the energy gap and scattering
by disorder and phonons. We emphasize that we are agnostic
about the existence or not of an energy gap in the samples of
Ref. [1], but it is known that the substrate hBN can indeed
open a gap of the order of 10–100 meV in graphene under
some situations. If such a gap exists, we find that L/L0 can
manifest a peak at the CNP for temperatures of the order
of 10% of the gap, and the peak value could be 10–40 as
observed experimentally.

We mention that the measured conductivity in Ref. [1] is
large, indicating the high quality of the graphene samples.
It is well-known that the main resistive scattering mecha-
nisms in graphene are impurity scattering and acoustic phonon
scattering although both are weak in the high-quality sam-
ples used in Refs. [1,20]. We emphasize, however, that a
T 2 temperature dependence in the measured resistivity was
not reported in Ref. [1] or in any other graphene trans-
port measurements, implying the absence of any observable
electron-electron scattering in transport. Phonon scattering
is weak, but is generally the leading temperature-dependent
scattering mechanism as it produces a linear-in-temperature
increasing resistivity [20,35,36]. We emphasize, however, that
the scale of phonon scattering here is determined by the ef-
fective Bloch-Grüneisen temperature, TBG = 2cskF , where cs

and kF are the phonon velocity and the Fermi wave number,
respectively (Appendix C), and not by the Debye tempera-
ture TD, as discussed in details in Refs. [35,36]. The reason
is that transport is determined mainly by 2kF scatterings of
electrons across the Fermi surface, which is dominated by
2kF phonons with energies corresponding to TBG. It is only
when TBG exceeds TD, as in normal metals, is the phonon
scattering cutoff determined by TD. In low-density materials
such as graphene, TD ∼ 103 K and TBG ∼ 10–100 K, and thus,
phonon scattering can be appreciable already at 10–50 K.
Typically, the phonon equipartition regime applies for T >

TBG/5, and therefore, phonon scattering is an important source

of the temperature-dependent resistivity in graphene for T >

TBG/5, which is the main regime of interest in the exper-
iments of Ref. [1]. This is consistent with the measured
temperature-dependent resistivity presented in Ref. [1]. This
is why phonon scattering must be included in the theory of the
WF law in graphene as we do in the current work, and the very
high Debye temperature ∼103 K of graphene is irrelevant.

It may be useful to point out that graphene on hBN is a very
weakly interacting system with the effective electron-electron
interaction strength associated with Coulomb coupling being
only 0.4 (this is the so-called graphene fine-structure constant
or the dimensionless Wigner-Seitz parameter [20]) by virtue
of the large lattice dielectric constant of boron nitride. Thus
electron-electron interaction in extrinsic graphene is negli-
gible [19]. Compared with regular normal metals (e.g., Al),
where the dimensionless Coulomb coupling is ∼6, graphene
interaction effects are tiny. Given that electron-electron in-
teraction effects hardly show up in the WF behavior of any
normal metals, it may be a challenge to ever see interaction or
hydrodynamical effects in bulk graphene. The only hope is to
somehow access the graphene Dirac point, i.e., study intrinsic
graphene, but this would require an extreme fine-tuning in
density and temperature and disorder so that the temperature is
high enough to overcome the impurity scattering and puddle
effects, but low enough to avoid phonon scattering. Such a
regime is difficult to find and would be very small in the pa-
rameter space, particularly since phonons become important
at low temperatures for low carrier densities.

Our theory by no means explains all quantitative aspects
of the data in Ref. [1], but we do explain the most puz-
zling qualitative features arising from bipolar diffusion in
a gapped system. For example, Ref. [1] seems to indicate
a stronger decrease of L/L0 with increasing carrier density
away from the CNP than our theory gives, which may be a
possible signature of hydrodynamic interaction effects which
tend to suppress L/L0 [6,7], but it is difficult to conclude any-
thing decisively without more extensive data on many more
samples [39].

More experimental work is necessary to settle whether a
gap exists or not, and whether our theory is the qualitative
explanation for the observations in Refs. [1,39]. Experiments
that induce a gap deliberately and measure how the behavior
of L/L0 depends on the gap can help considerably in this
respect and validate our theoretical predictions. In addition,
our work shows that both linear and parabolic systems be-
have similarly, and therefore monolayer graphene and bilayer
graphene should reflect a qualitatively similar Wiedemann-
Franz behavior in similar parameter regimes, so our work also
gives a future direction for experimental work on verifying
such WF law behavior for bilayer graphene.

We emphasize that our theory makes clear predictions for
future experimental work: Open a gap in graphene by aligning
the hBN substrate appropriately, and the effective L/L0 will
be enhanced as predicted in our theory. Our predicted WF
behavior in graphene should be tested in future experiments.

There are many open questions that should be studied in
future works. We are, however, unsure that these questions
should be explored before the experimental situation clari-
fies [39]. The most important shortcoming of our theory is
the neglect of electron-electron interactions arguing that the
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system is unlikely to be in the hydrodynamical regime
since the electron-impurity and/or electron-phonon scatter-
ings likely dominate over the electron-electron scattering in
experimental graphene samples with the Dirac point criticality
inaccessible experimentally. We also hypothesize, based on
our microscopic calculations of the electron-electron scatter-
ing, that Ref. [1] is most likely not in the hydrodynamical
regime. This, however, requires further study, perhaps by gen-
eralizing the detailed hydrodynamical theory of Ref. [7] to
the electron-hole two-component situation. The main problem
is that electron-electron scattering by itself always suppresses
the L/L0 ratio in metallic Fermi liquids [6,7], and therefore, it
is unclear how the puzzling enhancement of L/L0 in Ref. [1]
can be explained by interactions. In addition, electron-electron
interactions would increase monotonically as a function of
temperature [17] and it is a challenge to find a temperature-
nonmonotonicity caused by electron-electron interactions, as
indeed Ref. [9], using a phenomenological hydrodynamical
theory with adjustable parameters, only found increasing L/L0

with increasing temperature. We believe that the main physics
observed in Ref. [1] is the physics of bipolar diffusion, and if
the system is gapless, the maximum L/L0 should be <5.
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APPENDIX A: PARABOLIC DISPERSION

Here we modify Eq. (1) to parabolic dispersion

ε+(p) = + |p|2
2m

,

ε−(p) = − |p|2
2m

− �, (A1)

where � is the size of the gap and m is the effective mass. For
better comparison with the linear dispersion case in the main
text, we consider the same spin and valley degeneracy as in
graphene, so that the density of state is D±(ε) = 2m/(π h̄2),
and we choose m = 60 KkB/v2

F , where vF is the Fermi veloc-
ity of graphene.

Figures 6 and 7 show the calculated L/L0 with � = 0
and � > 0, respectively, for τ (ε) = τ0ε

j . Note the qualitative
similarity with the corresponding linear dispersion results:
Figs. 2 and 3 in the main text. This shows that only the
gaplessness, rather than the exact dispersion near the Dirac
point, affects the qualitative results. This validates our simple
choice of the band structure near the gap opening, intended to
model the unknown band structure induced by the hBN sub-
strate. In addition, since the low-energy band structure of
bilayer graphene can be modeled by gapless parabolic bands
[20], we expect that similar behavior of L/L0 discussed in the
main text also exists in bilayer graphene.

APPENDIX B: SINGLE LINEAR BAND

To address the key importance of bipolar diffusion by both
electrons and holes, we arbitrarily consider the hypothetical

FIG. 6. Shows the calculated L/L0 for (a) fixed n as a function
of T and for (b) fixed T = 60 K as a function of n in the gapless
parabolic dispersion model for a scattering rate τ (ε) = τ0ε

j , with
(solid) and without (dotted) BD. These are to be compared with the
linear dispersion result in Fig. 2. The qualitative similarity shows that
the exact band structure is not important.

single-band case. Here we set ε+(p) = +vF |p| without the ε−
band in Eq. (1). This can be considered as just calculating
L+ = κ+/(σ+T ) in Sec. III with the second term in Eq. (5)
dropped, or can be equivalently considered as taking � → ∞
in the main text. Note that as � becomes larger, the effective
region of BD shrinks towards smaller n. And finally, as we
take the limit � → ∞, the BD becomes effective only at
n = 0, which is meaningless since there is no carrier in the
system at that point. Therefore, for either approach, there is
no BD here.

Figure 8 shows the calculated L/L0 for τ (ε) = τ0ε
j . Note

the lack of large enhancement of L/L0, and the qualitative
similarity with the no-BD result (dotted curves) of Figs. 2
and 3 in the main text. (The different behavior near n = 0
can be explained by the difference in the consistency con-
dition determining the chemical potential.) This shows that
having both the conduction and the valance band, and hence
the BD, is essential in producing the large enhancement of
L/L0 described in the main text. This enhancement is what
distinguishes graphene from regular metals.

APPENDIX C: MICROSCOPIC CALCULATIONS

In this Appendix, we calculate the electrical (τσ ) and
thermal (τκ ) relaxation times for the band structure of
Eq. (1) directly from the Boltzmann equation formalism
with the relaxation time approximation, without using the
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FIG. 7. Shows the calculated L/L0 for a fixed n as a function of T (top row) and for fixed T = 60 K as a function of n (bottom row) in the
gapped parabolic dispersion model with various values of the gap �, with (solid) and without (dotted) BD. These are to be compared with the
linear dispersion result in Fig. 3. The qualitative similarity shows that the exact band structure is not important.

FIG. 8. Shows the calculated L/L0 for (a) fixed n as a function of
T and for (b) fixed T = 60 K as a function of n in the single linear
band model for a scattering rate τ (ε) = τ0ε

j . Note that there is no
large enhancement in L/L0, and the result is qualitatively similar to
the no-BD result (dotted curves) of Figs. 2 and 3.

phenomenological model for the relaxation time as in the
main text, and obtain results of L/L0 from these calculated
relaxation times. Since we split the system into the conduction
band and the valance band, we only consider the conduction
band for the equations below. The equations for the valance
band are obtained by particle-hole symmetry.

We follow the approach of Ref. [5], starting from the Boltz-
mann equation

∂ f

∂t
+ ṙ · ∂ f

∂r
+ k̇ · ∂ f

∂k
= I{ f }, (C1)

where f (r, k, t ) is the distribution of electron wave packets at
position r, momentum k (we set h̄ = kB = 1 for brevity), and
time t ; The semiclassical equations of motion are

ṙ = vF k̂ − πeE × ẑ δ2(k), (C2)

k̇ = − eE, (C3)

where E is the applied electric field. The second term of
Eq. (C2) comes from the Berry curvature at the Dirac point
[40], which we will neglect because it has no effect on the
longitudinal conductivity in the linear response regime. The
collision integral I is given by

I{ f }(k) = −
∫

d2k′

(2π )2

[
S(k, k′) f (k)(1 − f (k′))

+ S(k′, k) f (k′)(1 − f (k))
]
, (C4)

where S(k, k′) is the differential scattering rate from the state
with momentum k to k′.
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FIG. 9. Shows the calculated L/L0 for fixed n as a function of T
for the microscopic models of linear dispersion systems, with (solid)
and without (dotted) BD. (a) Gapped model with phonon scatter-
ing only. (b) Gapped model with phonon and short-range impurity.
(c) Gapless model with phonon scattering only. (d) Gapless model
with phonon and short-range impurity. We choose � = 600 K for the
gapped models and nimpu2

0 = 4000 KD2/ρ for the impurity model.
The result is consistent with the phenomenological model in the main
text.

By assuming f = f0 + δ f for a small perturbation δ f near
the local equilibrium f0, the Boltzmann equation can be lin-
earized as

∂δ f

∂t
− ṙ ·

(
eE + ε − μ

T
∇T

)
∂ f0

∂ε
= I{ f0 + δ f }. (C5)

Using the relaxation time ansatz for steady-state solutions of
δ f (as in Ref. [5]):

δ f = ṙ ·
(

τσ eE + τκ

ε − μ

T
∇T

)
∂ f0

∂ε
, (C6)

where E = E + ∇μ/e, we arrive at the following equa-
tions for the relaxation times

1 =
∫

d2k′

(2π )2
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

(τσ (ε) − τσ (ε′) cos θ ),

1=
∫

d2k′

(2π )2
S(k, k′)

1− f0(ε′)
1− f0(ε)

(
τκ (ε)−τκ (ε′)

ε′−μ

ε−μ
cos θ

)
.

(C7)

Here, S(k, k′) is assumed to depend only on k, k′, and θ , the
angle between k and k′.

In general, Eq. (C7) cannot be solved exactly. As a rea-
sonable approximation, the relaxation time approximation
considered in Ref. [5] is used, which assumes that τσ,κ (ε) ≈
τσ,κ (ε′). With such an approximation, we have

1

τσ (ε)
=

∫
d2k′

(2π )2
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

(1 − cos θ ),

1

τκ (ε)
=

∫
d2k′

(2π )2
S(k, k′)

1 − f0(ε′)
1 − f0(ε)

(
1 − ε′ − μ

ε − μ
cos θ

)
.

(C8)

For simplicity, we only consider short-range impurity and
phonon scattering here in this microscopic calculation. Once
the scattering rates S(k, k′) are obtained from the appropriate
underlying Hamiltonians, it is straightforward to calculate the
relaxation times. Note that a similar microscopic calculation
for the electrical conductivity has been done and discussed in
detail in Ref. [41].

1. Short-range impurity

We assume impurity scattering by short-range delta func-
tion potential

Vimp(r) = u0 δ(r), (C9)

where u0 is the strength of the potential. In addition, we as-
sume that the impurities are distributed randomly with number
density nimp. Then Fermi’s golden rule leads to the scattering
rate:

S(k, k′) = 2πnimp u2
0 δ(ε − ε′) cos2 θ

2
. (C10)

Plugging into Eq. (C7), the relaxation time can be solved
exactly:

1

τσ (ε)
= 1

τκ (ε)
= nimpu2

0

4v2
F

ε, (C11)

which has the form of the A term in the phenomenological
model as considered in the main text.

2. Phonon

We consider the deformation potential model for the inter-
action of electrons and acoustic phonons

He-ph = 1√
V

∑
k,k′,q

√
D2

2ρωq
q(aq + a†

−q)c†
kck′δk−k′−q,0,

(C12)

where V is the area of the system, D is the deformation
potential strength, ρ is the ion density, ωq = csq is the phonon
energy, a† and c† are the creation operators for phonons and
electrons, respectively. The phonons are assumed to be al-
ways in thermal equilibrium, with occupation number Nq =
1/(exp(ωq/T ) − 1). We ignore the cutoff from the Debye
temperature, since it is much higher than the temperature of
interest, and we ignore phonon drag. In addition, since the
speed of sound cs ∼ 20 km/s in graphene [20,36] is much
smaller than vF , we only do the calculations to the leading
order in cs/vF , i.e., we assume the Migdal theorem, which is
valid in graphene [42].

By Fermi’s golden rule, the scattering rate is obtained

S(k, k′) = πD2q2

ρ ωq
[Nqδ(ε − ε′ + ωq)

+ (Nq + 1)δ(ε − ε′ − ωq)] cos2 θ

2
, (C13)

where q = k − k′.
In this case, Eq. (C7) cannot be solved exactly and we must

apply the relaxation time approximation, i.e., using Eq. (C8).
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After some algebra, the result is

1

τσ (ε)
= 2D2

πρvF cs
k2 1

z3
0

∫ z0

−z0

dz√
z2

0 − z2

eη + 1

eη+z + 1

z

1 − e−z

(
1 −

(
z

z0

)2
)

(2z2), (C14)

1

τκ (ε)
= 2D2

πρvF cs
k2 1

z3
0

∫ z0

−z0

dz√
z2

0 − z2

eη + 1

eη+z + 1

z

1 − e−z

(
1 −

(
z

z0

)2
)(

z2
0 − η + z

η

(
z2

0 − 2z2
))

, (C15)

where z0 = 2kcs
T , z = z0 sin θ

2 , and η = ε−μ

T .
Note that in the phonon equipartition regime (T � 2cskF = 2 cs

vF
TF ), only the leading order of z0 and z is important, so both

integrals reduce to ∫ z0

−z0

dz√
z2

0 − z2

(
1 −

(
z

z0

)2
)

(2z2) ∼ z2
0. (C16)

Therefore, in this regime, we have 1/τσ = 1/τκ ∼ k2/z0 ∼
εT , which has the form of the B term in the phenomenological
model as considered in the main text.

3. Results

With the relaxation times obtained above, we use the same
procedure of Sec. III to calculate L/L0. The results are shown
in Fig. 9, which is consistent with the phenomenological
model considered in the main text. The only qualitative differ-
ence from the j = −1 model is the suppression of L/L0 at low

temperature when the impurity scattering is not too strong,
where the scattering is dominated by phonons in the Bloch-
Grüneisen regime (the full details of L/L0 in this regime have
been discussed in Ref. [5] for a single parabolic band, and
the situation for extrinsic graphene is essentially the same
as the holes and the linearity of the band play no roles at
low temperature). Since the large enhancement of L/L0 in the
gapped system occurs at a much higher temperature, this has
no effect on the results in the main text. Again, it is obvious
that the gap is the key to the large nonmonotonic peak of L/L0

at finite temperature.
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