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Supersymmetric non-Hermitian topological interface laser
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We investigate laser emission at the interface of the topological and trivial phases in one dimension. The
system is described by a generalized Su-Schrieffer-Heeger model with site-dependent hopping parameters
involving the interface width parameter where gain (loss) is introduced only to the A (B) sites of the bipartite
lattice. The topological interface state is described by the Jackiw-Rebbi state with a pure imaginary energy,
reflecting the non-Hermiticity of the system. It feels only the gain effect since it is strictly localized at the A sites.
The Jackiw-Rebbi state exists for any value of the interface width. We, thus, obtain a large area single-mode laser
by making the interface width wide enough. We also find a series of analytic solutions of excited states based on
supersymmetry (SUSY) quantum mechanics where the A and B sites of the bipartite lattice form SUSY partners.
Furthermore, we study the system containing loss and gain with saturation by extending the Jackiw-Rebbi mode
to a nonlinear theory.
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I. INTRODUCTION

Topological physics is one of the most exciting fields
[1,2]. The Su-Schrieffer-Heeger (SSH) model is a simplest
one-dimensional example of topological insulators [3]. The
topological phase is characterized by the emergence of zero-
energy states at the edges of a sample. A zero-energy state
emerges also at an interface between a topological phase
and a trivial phase, which is called a topological inter-
face state. Topological photonics is an ideal playground of
studying topological physics [4–21], where the system is non-
Hermitian inevitably due to the presence of loss and gain
[22,23]. The topological laser is one of the most successful
applications of topological physics [24–41].

A high-power laser with high beam quality is important for
applications. However, there is a limit of the power for a single
laser due to the damage threshold. On the other hand, a mul-
timode laser degrades the beam quality. In order to realize a
large area single-mode laser, topological lasers are promising.
There are several proposals on the single-mode laser using
photonic crystals by using double-lattice photonic-crystal res-
onators [42], the accidental Dirac point [43,44], and Kekulé
modulation [45,46] in the photonic lattice mostly over the past
few years. Especially, it has been pointed out that a topological
interface laser has enables a large area single-mode lasing by
using a smooth interface [47].

In this paper in order to study laser emission from the
interface between topological and trivial phases, we analyze
a non-Hermitian SSH model by including gain terms to the A
sites and loss terms to the B sites of a bipartite system. The
model is characterized by site-dependent hopping parameters.
The topological interface state is described by the Jackiw-
Rebbi (JR) state [48], which is a mode formed only on the A

sites. The JR state exists for any value of the interface width,
indicating that a large area single-mode laser is possible by
taking the interface width wide enough. We also find a series
of analytic solutions of excited states making supersymmetry
(SUSY) partners based on SUSY quantum mechanics where
the JR state is the ground state.

This paper is composed as follows. In Sec. II, we intro-
duce a generalized SSH model by including gain terms with
parameter γχ to the A sites and loss terms with parameter
γ to the B sites. The hopping interaction is characterized by
site-dependent hopping parameters involving a dimensionless
interface width parameter ξ .

In Sec. III, we investigate the linear model by neglecting
the saturation effect. The model is a non-Hermitian SSH
model, whose energy is complex. Provided the interface width
is sufficiently narrow (ξ → 0), the standard topological anal-
ysis is applicable, leading to the emergence of the topological
interface state according to the bulk-edge correspondence.
We examine what happens when we increase ξ . We confirm
numerically that the interface state is generated at any value of
ξ . We also apply quench dynamics to investigate the dynamics
of a topological interface laser.

In Sec. IV, by taking a continuous approximation of the
model, we obtain the JR solution describing the interface state.
It has a pure imaginary energy, reflecting the non-Hermiticity
of the system. The solution exists for any value of ξ in accord
with the numerical results derived in Sec. III. The JR mode
is strongly enhanced because it is strictly localized at the A
sites and has the largest imaginary eigenvalue. The strength of
single-mode lasing becomes stronger for larger ξ . We, thus,
obtain a large area single-mode laser with a wide interlayer
width.

2469-9950/2023/107(8)/085302(12) 085302-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3629-5643
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.085302&domain=pdf&date_stamp=2023-02-09
https://doi.org/10.1103/PhysRevB.107.085302


EZAWA, ISHIDA, OTA, AND IWAMOTO PHYSICAL REVIEW B 107, 085302 (2023)

In Secs. V and VI, we argue that sSUSY quantum mechan-
ics underlies the basic structure of the present bipartite system.
By extending SUSY quantum mechanics to non-Hermitian
systems, we find a series of analytic solutions formed either A
or B sites where the JR state is the ground state. Here, SUSY
partners are formed on the A and B sites, which we call SUSY
JR modes. Not only the topological interface state, but also the
SUSY JR modes are shown to have pure imaginary energies.
We confirm that the analytical solutions well coincide with
numerical solutions.

In Sec. VII, we include a saturation term to the gain,
which is a nonlinear term. Such a system well describes a
large area single-mode laser emission from an interface of a
topological system. We extend the JR mode to the nonlinear
regime. Excitations at B sites are induced in the JR mode by a
nonlinear effect where the wave function at B sites is fixed to
be pure imaginary. The relative phases between the saturated
wave functions at the A and B sites are fixed. Furthermore,
it is shown that bulk modes emerge in transient process but
decay eventually. Namely, the JR topological mode is solely
stimulated in stable laser emission. Since the JR mode extends
over a wide region around the interface, it gives a large area
single-mode topological laser even if the saturation term is
present.

Section VIII is devoted to the conclusion and a discus-
sion. Appendices are prepared for a review of the topological
property of the non-Hermitian SSH model and for a detailed
analysis of nonlinear JR solutions. We also derive the general-
ized SSH model we have employed from a more basic theory,
that is the rate equation.

II. MODEL

We investigate the dynamics of a laser system governed by
[26]

i
dψn

dt
=

∑
nm

Mnmψm − iγ

(
1 − χ

[1 − (−1)n]/2

1 + |ψn|2/η
)

ψn, (1)

with a site-dependent hopping matrix,

Mnm =κA,n(δ2n,2m−1 + δ2m,2n−1)

+ κB(δ2n,2m+1 + δ2m,2n+1), (2)

where ψn is the amplitudes at the site n, where n =
1–3, . . . , N in the system composed of N sites; γ represents
the loss in each resonator; γχ represents the amplitude of the
optical gain via stimulated emission induced only at the odd
site; η represents the saturation parameter [26]. All these pa-
rameters are taken positive semidefinite. The lattice structure
of the SSH model is bipartite where the odd and even sites are
called the A and B sites, respectively. The system turns out to
be a linear model in the limit η → ∞. On the other hand, γ

controls the non-Hermicity where the system is Hermitian for
γ = 0. In Eq. (1) we measure time t in units of 1/κ and the
loss parameter γ in units of κ , where κ is defined in Eq. (3)
just below. Furthermore, we set κ = 1 in numerical studies.

The hopping parameter κA,n has a site dependence, whereas
κB does not. They are given by

κA,n = κ

(
1 + λ tanh

n − nIF + 1/2

ξ

)
, κB = κ, (3)

FIG. 1. (a1) and (b1) Illustration of the interface (marked in red)
in the SSH chain for N = 10 and 9. (a1) Topological edge states
(marked in red) appear at the two edges of a topological sector. (b1)
The topological edge state is absent at the edge of a chain when N
is odd. The topological state emerges only at the interface. (a2) and
(b2) Energy spectrum (vertical axis) of the SSH model as a function
of the eigenindex (horizontal axis) for N = 100 and 99 where the
eigenindex is sorted in the increasing order of the energy. Two and
one zero-energy topological states (marked in red) emerge in the SSH
chain with N = 10 and 9. The structure of kinks at p = 16 and p =
84 is due to the difference of the bandwidth between the topological
and the trivial sectors. (a3) The spatial profile of the absolute value
of the eigenfunctions corresponding to the interface and edge states,
which are twoold degenerated. (b3) The spatial profile of the absolute
value of the interface state. We have set ξ = 1 and λ = 0.5.

where λ > 0 and ξ > 0 represent the interface modulation and
the interface width, respectively. Small (large) ξ represents a
sharp (smooth) interface. nIF is the smallest odd number larger
than or equal to N/2. Then, n − nIF + 1/2 > 0 for n � nIF,
and n − nIF + 1/2 < 0 for n < nIF. We call the site n = nIF

the interface of the chain. See Figs. 1(a1) and 1(b1) for an
illustration in the case of N = 10 and 9.

The explicit equations for a finite chain with length N
follow from Eq. (1) as

i
dψ2n−1

dt
= κBψ2n−2 + κA,nψ2n

− iγ

(
1 − χ

1 + |ψ2n−1|2/η
)

ψ2n−1, (4)

i
dψ2n

dt
= κBψ2n+1 + κA,nψ2n−1 − iγψ2n. (5)

We solve this set of equations together with the initial
condition,

ψn(t = 0) = δn,nIF . (6)

This is quench dynamics starting from the interface site by
giving an input to it initially. The initial input triggers the gain
effect in Eq. (4) because nIF is an odd number.
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A comment is in order. When we scale the amplitude as
ψn(t ) = √

ηψ ′
n(t ), the parameter η disappears from the equa-

tions of motion (4) and (5). It appears in the initial condition
(6) instead. However, we use the amplitude ψn(t ) in what fol-
lows since it is convenient to use η to control the nonlinearity
of the model.

III. LINEAR THEORY

We start with the linear model (η → ∞). Then, Eq. (1) is
reduced to

i
dψn

dt
=

∑
nm

Mnmψm − iγ {1 − χ [1 − (−1)n]/2}ψn, (7)

or

i
dψn

dt
=

∑
m

M̃nmψm, (8)

where

M̃nm = Mnm − iγ

(
1 − χ

2

)
δnm, (9)

with

Mnm = Mnm − iγχ
(−1)n

2
δnm. (10)

Hereafter, we use M̃nm for the study of dynamics and Mnm for
the analytical study of the system. Since M̃nm and Mnm are
different only by a c-number term, they describe an identical
non-Hermitian SSH model with gain and loss where hopping
parameters have a site dependence as described by Eq. (3).

A. Topological edge and interface states

1. SSH model

We analyze the SSH model Mnm in the case of a sharp
interface (ξ → 0). Then, Eq. (3) amounts to

κA,n = κ (1 + λ) for n � nIF,

κA,n = κ (1 − λ) for n < nIF. (11)

The hopping amplitudes are constant κA,n = κ (1 + λ) for the
segments with n � nIF, whereas they are constant κA,n =
κ (1 − λ) for the segments with n < nIF, separately. Note that
κB = κ . The hopping matrix Mnm defines the SSH model in
each segment.

The SSH model with constant hopping amplitudes κA and
κB has a topological phase for κA < κB and the trivial phase
for κA > κB. The topological phase is characterized by the
emergence of zero-energy states at the both edges of a finite
chain as demonstrated numerically in Fig. 1(a2) for N = 100.
This is the standard bulk-edge correspondence. It is illustrated
in Fig. 1(a1) for N = 10. See Appendix A for details.

There is an intriguing phenomenon in the SSH model with
respect to the even-odd effect of the number of the sites within
the chain [38,47]. We may remove the edge site at n = N
from an SSH chain with even N to obtain an SSH chain with
odd total number N − 1. See an illustration in Figs. 1(a1)
and 1(b1) where two chains with N = 10 and 9 are shown.
We demonstrate numerically that there is only one zero-mode
state in the odd chain with N = 99 in Fig. 1(b2), which is

FIG. 2. (a) Energy spectrum in the (γχ, Re[Ẽ ], Im[Ẽ ]) space
for ξ = 10, where γχ stands for the gain (0 < γχ < 1.5). (b1),
(c1), and (d1) Energy spectrum in the (γχ, Re[Ẽ ]) plane for ξ =
1, 10, 100. (b2), (c2), and (d2) Energy spectrum in the (γχ, Im[Ẽ ])
plane for ξ = 1, 10, 100 by fixing γ = 0.1. The red line represents
the topological interface state, whose energy is pure imaginary. The
width of the line is proportional to the local density of states. The
interface state is well separated from (almost touched to) the bulk
spectrum for ξ = 1, 10 (ξ = 100). We have set γ = 0.1 and λ = 0.5.
We have used the chain with N = 99.

the topological interface state illustrated in Fig. 1(a2). This is
also a bulk-edge correspondence. Recall that the topological
number is defined for the unit cell of the bulk.

We have displayed the eigenfunctions in Figs. 1(a3) and
1(b3) for the case of N = 100 and N = 10 where they are
found to be quite broad.

In the rest of this paper, we focus on the topological in-
terface state by taking an SSH chain with odd N . Strictly
speaking, the topological numbers are well defined only in the
limit ξ → 0. However, we are actually interested in systems
having a very smooth interface (ξ ≈ N) to create a high-power
laser. We investigate how the topological interface state be-
haves as a function of ξ . We demonstrate numerically that it
persists even for ξ ≈ N . This is because the interface state
is actually the JR state associated with a smooth interface
for any value of ξ , whose stability is guaranteed as far as
the hopping modulation forms a domain wall structure as we
argue in Sec. VI.

2. Non-Hermitian SSH model

We investigate the system M̃nm with a finite loss (γ �= 0)
and gain (γχ �= 0). Diagonalizing the hopping matrix M̃nm in
Eq. (9) numerically, we obtain the energy spectrum Ẽ as a
function of χ whereas setting γ = 0.1. We show the results
in the (χ, Re[Ẽ ], Im[Ẽ ]) space for ξ = 10 in Fig. 2(a). See
also Figs. 2(c1) and 2(c2) for its cross section at Im[Ẽ ] = −γ

and Re[Ẽ ] = 0, respectively. It means that the systems is lossy
for χ = 0. We clearly observe a straight line passing through
the point (0, 0,−γ ) in the (χ, Re[Ẽ ], Im[Ẽ ]) space, which
represents the energy of the topological interface state we have
just discussed.
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FIG. 3. (a1), (b1), and (c1) Real part of energy Ep and (a2), (b2),
and (c2) the component |cp| as functions of the eigenindex p. A
red large disk indicates the topological interface state. On the other
hand, cyan small disks indicate the bulk states. The size of a disk
is proportional to the local density of states. It becomes smaller for
larger ξ because the interface mode becomes broader. The horizontal
axis is the eigenindex. (a1) and (a2) ξ = 1; (b1) and (b2) ξ = 10;
(c1) and (c2) ξ = 100. We have set N = 399, nIF = 199, and γ = 0.

Similarly, we show the energy spectrum for ξ = 1 and
100 in Figs. 2(b1), 2(b2), 2(d1), and 2(d2). We also find
a straight line passing through the point (0, 0,−γ ) in the
(χ, Re[Ẽ ], Im[Ẽ ]) space.

The energy of the topological interface state is well fitted
for any system parameters by the formula,

E IF = iγ̄ with γ̄ = γχ/2. (12)

The eigenvalue (12) and the associated eigenfunction are de-
rived as a JR solution later in Sec. IV: See Eq. (30).

Furthermore, we observe a band-edge mode [47] between
the interface mode and the bulk spectrum for ξ = 10. In the
case of ξ = 100, in addition to the band-edge mode, there are
many modes with almost equal spacing and characterized by
their pure imaginary energies. We call them SUSY JR modes
with respect to which we discuss based on the SUSY quantum
mechanics in Sec. VI: See the energy spectrum in Eq. (57).

B. Dynamics

The quench dynamics is a powerful tool to distinguish
topological phase even for nonlinear systems [49–52]. Before
analyzing the dynamics of the system, it is convenient to study
the eigenvalues and the eigenfunctions of the hopping matrix
M̃nm given by Eq. (9). We diagonalize it as

M̃φp = Ẽpφp, (13)

where an integer p labels the eigenindex, 1 � p � N , and
φp is the eigenfunction. We show the eigenvalues Ẽp in
Figs. 3(a1)–3(c1). Let the wave function of the topological
interface state be φIF. Its eigenvalue is

ẼIF = E IF − iγ
(

1 − χ

2

)
δnm = iγ (χ − 1), (14)

with the use of Eqs. (9) and (12).
Decoupled equations follow from Eq. (8) for the eigen-

functions,

i
dφp

dt
= Ẽpφp, (15)

FIG. 4. (a1)–(c1), (a2)–(c2), and (a3)–(c3) Time evolution of
the spatial profile for the time interval 0 < t < 100 and (a4)–(c4)
that of the amplitude |ψIF| at the interface for the time-interval
0 < t < 100 for various penetration depth (ξ = 2, ξ = 20, ξ =
200). (a1)–(c1) Hermitian model (γ = 0). (b1)–(b3) Linear non-
Hermitian model (γ = 0.1, χ = 2, η = ∞). (c1)–(c3) Nonlinear
non-Hermitian model (γ = 0.1, χ = 2, η = 10). We have set N =
399, where nIF = 199.

whose solutions are given by

φp(t ) = exp[−it Ẽp]φp. (16)

In particular, for the topological interface state, we have

φIF(t ) = exp[γ (χ − 1)t]φIF, (17)

with the use of Eq. (14). It has no dynamics for γ = 0 or
χ = 1. On the other hand, it grows exponentially for χ > 1.

The initial state (6) is expanded in terms of the eigenfunc-
tions as

ψn(t = 0) = δn,nIF =
∑

p

cpφp. (18)

We show the coefficient |cp| in Figs. 3(a2)–3(c2), which is
determined by

cp =
∑

n

δn,nIFφp. (19)

It is the overlap between the initial state (6) and the eigenstate
φp. Such an overlap for the topological interface φIF is |cIF|,
which is found large for ξ = 1 but small for ξ = 100 in
Fig. 3. This is because the topological interface state is strictly
localized at the interface for small ξ but broad for large ξ .

We now investigate the quench dynamics of the system by
imposing the initial condition (6).

First, we neglect the loss and gain terms by setting γ = 0.
We numerically solve a set of differential equations (4) and
(5), whose results are shown in Figs. 4(a1)–4(a3). The input
given initially at the site n = nIF spreads over the chain, but

085302-4



SUPERSYMMETRIC NON-HERMITIAN TOPOLOGICAL … PHYSICAL REVIEW B 107, 085302 (2023)

the component |cIF| remains as it is because φIF(t ) = φIF in
Eq. (17) for γ = 0. There is a peak at the interface for ξ = 2 as
in Fig. 4(a1) but the peak is tiny for ξ = 200 as in Fig. 4(a3).

Second, we include the linear loss and gain terms (γχ �=
0), whose results are shown in Figs. 4(b1)–4(b3). The topolog-
ical interface state has a maximum value at the site with gain.
As a result, the state exponentially evolves and becomes infi-
nite. However, this is not physical. Indeed, there is a saturation
of the gain in actual experiments, about which we discuss in
Sec. VII. It is a saturation effect (η < ∞). Here, we present
the results in Figs. 4(c1)–4(c3) by choosing η = 10.

We show the time evolution of the amplitude |ψnIF | in
Figs. 4(a4)–4(c4). It becomes stationary after a certain time
in the absence of the loss and gain terms (γ = 0) as shown in
Fig. 4(a4). On the other hand, the amplitude exponentially be-
comes large once the loss and gain terms are present (γχ �= 0)
as shown in Fig. 4(b4). It becomes stationary by the saturation
term (η < ∞) as in Fig. 4(c4), about which we discuss in
Sec. VII.

IV. JACKIW-REBBI SOLUTION IN THE
NON-HERMITIAN MODEL

Supersymmetric quantum mechanics is a method to obtain
an analytic solution originally proposed by Witten [53]. See
also Refs. [54–56] for reviews. It has also been applied to laser
systems [57–62].

We continue to study the linear model but based on the
parity-time- (PT-)symmetric non-Hermitian SSH model Mnm

from now. The two matrices M̃nm and Mnm are different only
by a c number as in Eq. (10). Hence, the eigenfunctions are
identical with the eigenvalues different only by this c number.

We diagonalize the matrix Mnm by employing an approx-
imation similar to the one made by Jackiw and Rebbi. The
hopping amplitude (3) becomes constant as in Eq. (11) far
away from the interface. Then, the hopping matrix Mnm can
be presented in the momentum space as

H ≡
(

iγ̄ κA + κBe−iak

κA + κBeiak −iγ̄

)
. (20)

The energy spectrum reads

E (k) = ±
√

κ2
A + κ2

B + 2κAκB cos ak − γ̄ 2, (21)

which has a Dirac-like dispersion in the vicinity of the
momentum k = π/a . Assuming a sufficiently smooth con-
figuration in the vicinity of k = π/a, we expand it as

H =
(

iγ̄ �0 + iκk′

�0 − iκk′ −iγ̄

)
, (22)

with

�0 = κA − κB, k′ = k − π. (23)

We bring back this Hamiltonian to the continuous coordinate
space as

H =
(

iγ̄ �(x) − κ∂x

�(x) + κ∂x −iγ̄

)
=

(
iγ̄ A†

A −iγ̄

)
, (24)

with

A ≡ �(x) + κ∂x, A† ≡ �(x) − κ∂x, (25)

and

�(x) = κλ tanh
x − xIF

aξ
, (26)

where we have recovered the site-dependent hopping ampli-
tude from Eq. (3).

The eigenequation of the Hamiltonian for the p-th eigenin-
dex (24) reads

H

(
�A

p (x)

�B
p (x)

)
= E p

(
�A

p (x)

�B
p (x)

)
, (27)

with (24), where we have defined the wave functions with
the eigenvalue E p at the A and B sites as �A(x) and �B(x),
respectively.

We derive the eigenfunction representing the topological
interface state. Its eigenenergy ẼIF is given by Eq. (12) in
the M̃nm basis, which reads E IF = iγ̄ in the H basis. Hence,
Eq. (27) yields

H

(
�A

0 (x)

�B
0 (x)

)
= iγ̄

(
�A

0 (x)

�B
0 (x)

)
, (28)

with E0 = E IF = iγ̄ and (24) for H . It is easy to obtain one
solution by setting �B

0 (x) = 0. The equation for �A(x) reads

A�A
0 (x) = [�(x) + κ∂x]�A

0 (x) = 0, (29)

for which the JR solution follows:

�A
0 (x) = c exp

[
− 1

κ

∫ x

�(x′)dx′
]
, (30)

�B
0 (x) = 0, (31)

with c is a normalization constant. This is a non-Hermitian
generalization of the JR mode with a pure imaginary eigen-
value. It is the unique solution because there is no degeneracy
in the topological interface state.

The solution (30) is a simple functional of the hopping
function �(x) given by Eq. (26). There are several key fea-
tures. (1) The solution exists for any value of the interface
width parameter ξ . (2) We may use it for a sample with an
arbitrary size. (3) The solution does not depend on the precise
form of the hopping function �(x). The crucial requisite is
that the sign of the hopping function (26) has opposite signs
between the right- and the left-hand sides of the chain, i.e.,

�(x) > 0 for x > xIF and �(x) < 0 for x < xIF. (32)

Then, a domain-wall-type solution is necessarily generated
around x = xIF. This is the JR solution. Its stability is assured
as far as the condition (32) is satisfied.

The JR mode has the largest imaginary eigenvalue as in
Fig. 2(b2). It is understood as follows. As we will soon see,
the JR mode has amplitude only at the A sites to which the
gain is introduced. On the other hand, the other modes have
amplitudes both at A and B sites. Namely, the JR mode feels
only the gain effect but the other modes feel boss gain and loss
effects. Hence, the JR mode has the largest positive imaginary
energy, which means that it feels the largest gain effect.
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FIG. 5. Illustration of the energy levels and the SUSY quantum
mechanics. Wave functions are shown in the case of hA

n = hB
n for the

Hermitian system.

V. SUSY QUANTUM MECHANICS

When an operator A is given, we may define the super-
charges Q, Q† and the Hamiltonian Ĥ by [53–56]

Q ≡
(

0 0
A 0

)
, Q† ≡

(
0 A†

0 0

)
, (33)

Ĥ = {Q, Q†} =
(

A†A 0
0 AA†

)
. (34)

The superalgebra follows:

{Q, Q} = {Q†, Q†} = [Ĥ , Q] = [Ĥ , Q†] = 0. (35)

A representation of the algebra is constructed as follows:
We define the operators

HA ≡ A†A, HB ≡ AA†. (36)

The eigenvalue equations are

HAφA
p = EA

p φA
p , HBφB

p = EB
p φB

p . (37)

Using these we obtain

HB
(
AφA

p

) = AA†AφA
p = EA

p

(
AφA

p

)
, (38)

HA
(
A†φB

p

) = A†AA†φB
p = EB

p

(
A†φB

p

)
, (39)

and, hence, AφA
q is an eigenstate of HB with the eigenvalue EA

q .
If we assume EA

0 = 0 and EB
0 �= 0, we may choose q = p + 1.

Then, φB
p (x) ∝ AφA

p+1(x) and φA
p+1(x) ∝ A†φB

p (x) so that

EB
p = EA

p+1, EA
0 = 0. (40)

The wave functions give a representation of the SUSY algebra
as illustrated in Fig. 5.

We now show that the present model presents a non-
Hermitian representation of the SUSY algebra. We may use
Eq. (25) for A and A†. For the Hamiltonian (24) we find

H
2 =

(−γ̄ 2 + A†A 0
0 −γ̄ 2 + AA†

)
. (41)

On the other hand, from

H
2

(
�A

p (x)

�B
p (x)

)
= E

2
n

(
�A

p (x)

�B
p (x)

)
, (42)

we find a set of decoupled equations,

HA�A
p (x) = (

E
2
p + γ̄ 2

)
�A

p (x), (43)

HB�B
p (x) = (

E
2
p + γ̄ 2

)
�B

p (x). (44)

When we set

φA
p = �A

p (x), φB
p−1 = �B

p (x), (45)

EB
p−1 = EA

p = E
2
p + γ̄ 2, (46)

Eq. (37) is satisfied. Hence, the SUSY algebra is satisfied. The
SUSY partners are the wave functions on the A and B sites.

VI. EXPLICIT SOLUTIONS OF THE
NON-HERMITIAN SSH MODEL

We next seek the explicit solutions of the non-Hermitian
model (27). This can be performed by simplifying the function
(26). When ξ is large, we can approximate the gap function by
a linear function as

�(x) = (κλ/ξ )x, (47)

where we set x = 0 at the interface. The Hamiltonian is given
by

H =
(

iγ̄ A†

A −iγ̄

)
, (48)

or

H̃ =
(

iγχ − iγ A†

A −iγ

)
, (49)

where

A ≡ (κλ/ξ )x + κ∂x, A† ≡ (κλ/ξ )x − κ∂x. (50)

The commutator of the SUSY operators is calculated as

[A, A†] = α, with α ≡ 2κ2λ/ξ. (51)

The standard commutation relation of the annihilation and
creation operators follows:

[b, b†] = 1, (52)

in terms of the scaled operators b and b† defined by

A ≡ √
αb, A† ≡ √

αb†. (53)

Equations (43) and (44) are rewritten as

αb†b�A
p = (

E
2
p + γ̄ 2

)
�A

p ,

α(1 + b†b)�B
p = (

E
2
p + γ̄ 2

)
�B

p . (54)

These are solved as

�A
p (x) = hA

p〈x|p〉, �B
p (x) = hB

p〈x|p − 1〉, (55)

E
2
p = −γ̄ 2 + αp (56)
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for p � 1, where hA
p and hB

p are c numbers, |p〉 stands for the
pth eigenfunction and 〈x|p〉 is its coordinate space representa-
tion. For p = 0, we have E0 = iγ̄ , and the wave functions are
given by the non-Hermitian JR solutions (30) and (31).

We note that the energy E p of the pth level is pure imagi-
nary when

p <
γ̄ 2

α
= γχξ

4κ2λ
. (57)

We call mode |p〉 the SUSY JR mode because we create it
from the JR mode |0〉 by the operation of b†. The SUSY
JR modes are supersymmetric, whereas the JR mode breaks
it. They describe the numerically obtained energy spectrum
shown in Figs. 2(b2)–2(d2).

We determine the relation between two c numbers hA
p and

hB
p . We write down the eigenvalue equations (27) explicitly,

iγ̄ �A
p + A†�B

p = E p�
A
p , A�A

p − iγ̄ �B
p = E p�

B
p , (58)

which we rewrite with the use of (55) as

iγ̄ hA
p|p〉 + √

αhB
pb†|p − 1〉 = E phA

p|p〉, (59)

√
αhA

pb|p〉 − iγ̄ hB
p |p − 1〉 = E phB

p |p − 1〉. (60)

It follows that

iγ̄ hA
p + √

αphB
p = E phA

p, (61)

√
αphA

p − iγ̄ hB
p = E phB

p . (62)

or
√

αphB
p = (E p − iγ̄ )hA

p, (63)

√
αphA

p = (E p + iγ̄ )hB
p, (64)

which leads to

hB
p =

(
E p − iγ̄

E p + iγ̄

)1/2

hA
p . (65)

Hence, the wave-function �B
p is determined once the wave-

function �A
p is given.

Here we recall that there are two series of eigenfunc-
tions corresponding to E

±
p = ±

√
−γ̄ 2 + αp for p � 1 and

E
+
0 = iγ̄ . We focus on SUSY JR modes, where γ̄ 2 > αp.

In the parameter region with γ̄ 2 � αp, we would expand
E

±
p = ±iγ̄ + · · · . Then, we have(

hB
p

hA
p

)2

= E
+
p − iγ̄

E
+
p + iγ̄

� 1 for E
+
p = iγ̄ + · · · , (66)(

hB
p

hA
p

)2

= E
−
p − iγ̄

E
−
p + iγ̄

� 1 for E
−
p = −iγ̄ + · · · . (67)

Hence, ∣∣�A
p

∣∣ � ∣∣�B
p

∣∣ for the series E
+
p , (68)∣∣�A

p

∣∣ � ∣∣�B
p

∣∣ for the series E
−
p . (69)

FIG. 6. Red (blue) bars show the amplitudes numerically calcu-
lated at the A (B) site. Magenta (cyan) heavy curves are analytical
results given by Eq. (73), which envelop the numerical results very
well. Each panel contains SUSY partners made of amplitudes |φA

n |
and |φB

n−1|. Their magnitudes are quite different for γ = 0.5. The left

(right) column is for the series of the energy E
+
n (E

−
n ).

This explains a huge difference numerically found between
the amplitudes at the A and B sites in Fig. 6.

We comment on the SUSY quantum mechanics. First of
all, there are two series of energies E

±
p = ±

√
−γ̄ 2 + αp,

although the relevant energies are EB
p−1 = EA

p = αp for both
series in SUSY quantum mechanics. However, the magnitudes
of the amplitudes are very different,∣∣φA

p

∣∣ � ∣∣φB
p−1

∣∣ for the series E
+
p , (70)∣∣φA

p

∣∣ � ∣∣φB
p−1

∣∣ for the series E
−
p , (71)

which follows from (45) and (69). These two series are shown
in Fig. 6.

The wave function is given by 〈x|p〉 apart from the nor-
malization constant, and, hence, it is written in terms of the
Hermite polynomials precisely as in the Hermitian model,

�A
p (x) = hA

p

√√√√ 1

p!2p

√
λ

πξ
Hp

⎛⎝√
λ

ξ
x

⎞⎠ exp

[
− λ

2ξ
x2

]
, (72)

�B
p (x) = hB

p�
A
p−1(x), (73)

where hB
p is given by Eq. (65) whereas hA

p is to be determined
numerically.

There is the JR mode only for the A site, whose wave
functions are

�A
0 (x) = hA

0 exp

[
− λ

2ξ
x2

]
, �B

0 (x) = 0. (74)

This is the SUSY-broken state.
Finally, we compare the analytic solutions and the numeri-

cal solutions of the wave functions in Fig. 6. The coincidence
is very well between the analytic solution and the numerical
results except for a minor difference where the mirror sym-
metry is slightly broken in the numerical results. It is due to
the difference between the hopping parameters κA,n and κB
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FIG. 7. Spatial profile of the amplitude |�n|. (a1)–(a3) linear model, (b1)–(b3) η = 100, (c1)–(c3) η = 10, (d1)–(d3) η = 1, (e1)–(e3)
η = 0.1, and (f1)–(f3) η = 0.01. We have set χ = 2, γ = 0.1, L = 399, and ξ = 200. (a1)–(f1) t = 50, (a2)–(f2) t = 100, and (a3)–(f3)
t = 1000. The wave function is saturated and fixed real at the A sites in red and pure imaginary at the B sites in blue for finite η.

in Eq. (3) where the band widths are different between the
topological and trivial phases. This difference is taken care
of in the numerical calculation but ignored in the analytical
study.

VII. GAIN WITH SATURATION

A. Quench dynamics

We have so far studied the linear model containing loss and
gain. The amplitude increases infinitely as time passes. Actu-
ally, there must be a saturation effect in gain, which makes the
amplitude finite. We include the saturation effect by keeping
η finite in Eq. (1). We show the results in Figs. 4(c1)–4(c3).
The amplitudes remain finite due to the saturation effect. It
is a topological interface laser stabilized by nonlinear and
non-Hermicity effects. We also show the time evolution of the
amplitude |ψnIF | in Fig. 4(c4).

We show the spatial profile of the amplitude |ψn| at t =
50, 100, 1000 for various η’s in Fig. 7. Main excitations are
localized at the A sites in the vicinity of the interface, whose
wave function is real. This is simply because the gain is given
to the A sites. However, there are also excitations at the B sites
as in Fig. 7, which is a nonlinearity effect. We observe three
key properties: (1) �A is proportional to

√
η. (2) �B/�A is

independent of η. (3) �B is pure imaginary, and it vanishes at
the interface site. We explain them analytically based on the
nonlinear JR theory in the following subsection.

There is an important remark. Bulk excitations emerge in
transient states as in Figs. 7(b1)–7(f1) and 7(d2)–7(f2), but
they disappear after enough time (t = 1000) as in Figs. 7(a3)–
7(f3). The time for saturation is longer for smaller η. Hence,
we conclude a stable single-mode topological lasing after
enough time irrespective of the saturation parameter η.

B. Nonlinear Jackiw-Rebbi theory

We have numerically revealed the excitations at the B sites
in the presence of the saturation term. We now show that
they form the JR mode generalized to the nonlinear regime.

Replacing the linear gain term with the nonlinear gain term in
Eq. (49), we have

( iγχ

1+|�A(x)|2/η − iγ A†

A −iγ

)(
�A(x)
�B(x)

)
= E

(
�A(x)
�B(x)

)
. (75)

We analyze a small excitation at the B sites. Using a mean-
field approximation, we obtain �A(x) and �B(x) as

�A(x) = c exp

[
−κλ

2ξ
(1 + c2)x2

]
, (76)

�B(x) = −ic
x

η

c2κλ

ξ
exp

[
−κλ

2ξ
(1 + c2)x2

]
, (77)

where c is a normalization constant, and

c2 = γ 2χ2ξ

κ2λ

[
1

1 + |�A|2/η − 1

1 + |�A(0)|2/η
]
, (78)

with �A the mean of �A(x). See Appendix B for a detailed
derivation. We note that

�B(x)

�A(x)
= −ix

γ 2χ2

κ

[
1

1 + |�A|2/η − 1

1 + |�A(0)|2/η
]
. (79)

The relative phases between A and B are fixed to be ±i.
We summarize the key properties of the wave function. The

equation of motion (75) becomes free from the parameter η

if we scale the amplitudes by the factor
√

η as we already
noted in the paragraph below Eq. (6). It explains that �A(x)
is proportional to

√
η. Then, it follows from Eq. (79) that

�B(x)/�A(x) is independent of η. Equation (79) itself says
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that �B(x) is pure imaginary, and it vanishes at the interface
site.

VIII. CONCLUSION AND DISCUSSION

We have explored the SSH model with a topological inter-
face as a model of a large area single-mode laser. In previous
works [27,30], the gain terms were only introduced at the edge
sites in order to excite the topological edge states. On the
contrary, in the present model, the gain terms are introduced
to all the A sites. Although bulk modes are excited in tran-
sient process, they decay after enough time. The topological
interface mode lases solely, which is the JR mode.

There are some eminent features with respect to the mode
excitations. First, as a nonlinear effect, the JR mode has am-
plitudes not only at the A sites, but also at the B sites. Second,
their relative phase is fixed and, hence, the JR mode presents
a single coherent mode. Third, the A-site component of the JR
mode is compatible with the gain terms introduced only to the
A sites.

We have also revealed that SUSY quantum mechanics
underlies the basic structure of the present bipartite system.
By extending SUSY quantum mechanics to non-Hermitian
systems, we have found a series of analytic solutions formed
either A or B sites. They have pure imaginary energies and
their wave functions are given by those of a harmonic oscil-
lator. They form the SUSY partners where the JR state is the
SUSY breaking state formed on the A sites. Furthermore, we
have derived an analytic form of the JR mode in nonlinear
regime by using a mean-field approximation.

We have applied quench dynamics to investigate a topo-
logical interface laser. However, it may be hard to observe
the time evolution in actual optical experiments because the
timescale is too short. The same physics is executed by the
coupled-wave-guide arrays along the z direction [63], simply
by replacing time t by coordinate z in the equation of motion.

We have developed an analysis based on the basic equa-
tion (1). On the other hand, it is well known that the dynamics
of a laser is described by the rate equations. It is actually
possible to derive Eq. (1) from the rate equations in a certain
limit provided the carrier population is saturated. See details
for Appendix C.
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APPENDIX A: TOPOLOGICAL PROPERTY OF THE
NON-HERMITIAN SSH MODEL

We consider a homogeneous system. The Hamiltonian in
the momentum space corresponding to the hopping matrix

(9) is

H̃ =
(−iγ (1 − χ ) κA + κBe−iak

κA + κBeiak −iγ

)
,

= −iγ
(

1 − χ

2

)
I2 + HSSH, (A1)

with a as the lattice constant and

H ≡
(

iγχ/2 κA + κBe−iak

κA + κBeiak −iγχ/2

)
. (A2)

The Hamiltonian HSSH is non-Hermitian for γ �= 0. The re-
lation between the eigenenergy of the Hamiltonians (A1) and
(A2) is

Ẽ = −iγ

(
1 − χ

2

)
+ ESSH. (A3)

The energy spectrum reads

E (k) = ±
√

κ2
A + κ2

B + 2κAκB cos ak − γ 2. (A4)

Especially, we have

E (π/a) = ±
√

(κA − κB)2 − γ 2. (A5)

The system is the PT preserved phase for γ < |κA − κB|
where the bulk energy is real even though the system is non-
Hermitian, whereas the system is the PT-broken phase for γ >

|κA − κB|, where the bulk energy becomes pure imaginary for
a certain range of the momentum k.

We recall that the PT-symmetry operation is defined by

PT = σxK, (A6)

with K as the complex conjugation. Since we have

PT H (k)PT)−1 = H (k), (A7)

and, hence, HSSH is a PT-symmetric Hamiltonian.
The topological number is defined with respect to the

Hamiltonian (A2). We define the right and left eigenvectors
by

H |ψR〉 = E |ψR〉, H†|ψL〉 = E |ψL〉. (A8)

The non-Hermitian Zak phase is a topological number [64],

W ≡ i

2π/a

∫ 2π/a

0
〈ψL| ∂

∂k
|ψR〉dk. (A9)

It is straightforward to show that W = 1 for κA < κB and
W = 0 for κA > κB irrespective of γ . Hence, the system is
topological for κA < κB and trivial for κA > κB.

APPENDIX B: NONLINEAR JACKIW-REBBI SOLUTION

We derive a set of the saturated distribution (76) and (77)
from Eq. (75). First, we write Eq. (75) explicitly as

iγ

(
χ

1 + |�A(x)|2/η − 1

)
�A(x) + A†�B(x) = E�A(x),

(B1)

A�A(x) − iγ�B(x) = E�B(x), (B2)
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where A and A† are given by Eq. (25) with Eq. (26). The
second equation is solved as

�B(x) = A�A(x)

E + iγ
, (B3)

which we insert into the first equation to derive

A†A�A(x) = (E + iγ )

[
E − iγ

(
χ

1

1 + |�A(x)|2/η − 1

)]
× �A(x). (B4)

We assume that the energy is modified from Eq. (14) as

E = iγ (χ − 1) + c1, (B5)

where c1 is a constant to be determined. Inserting it and we
have

A†A�A(x)  iγχ

[
c1 + iγχ

(
1 − 1

1 + |�A(0)|2/η
)]

�A(x),

where we have used an approximation |�A(x)|2  |�A(0)|2
because �A(x) rapidly decreases except at x = 0. We choose

c1 = iγχ

(
1

1 + |�A|2/η − 1

)
, (B6)

where �A is the mean value of �A(x). We obtain

A†A�A(x) = −γ 2χ2

[
1

1 + |�A|2/η − 1

1 + |�A(0)|2/η
]

× �A(x). (B7)

On the other hand, we assume a wave function modified from
Eq. (74) as

�A(x) = c exp

[
−κλ

2ξ
(1 + c2)x2

]
, (B8)

where c is a normalization constant and c2 is a constant to be
determined. Applying A and A†A to �A(x), we obtain

A�A(x)  −c2κλ

ξ
x�A(x), (B9)

A†A�A(x)  c2κ
2λ

ξ
�A(x). (B10)

Comparing (B10) with Eq. (B7), we obtain

c2 = γ 2χ2ξ

κ2λ

[
1

1 + |�A|2/η − 1

1 + |�A(0)|2/η
]
. (B11)

With the use of Eqs. (B3) and (B9), �B(x) is derived as

�Bx) = −icx
c2κλ

ξ
exp

[
−κλ

2ξ
(1 + c2)x2

]
. (B12)

It is the saturated distribution (77) in the main text. We then
have

�B(x)

�A(x)
= −ix

γ 2χ2

κ

[
1

1 + |�A|2/η − 1

1 + |�A(0)|2/η
]
,

(B13)

which is Eq. (79) in the main text.

APPENDIX C: RATE EQUATION

The rate equations read [28,37,65]

dEA
n

dt
= 1

2

[−γ0 + σ
(
NA

n − 1
)]

× (1 − iαH)EA
n + iκ0

AEB
n + iκ0

BEB
n−1, (C1)

dEB
n

dt
= 1

2

[ − γ0 + σ
(
NB

n − 1
)]

× (1 − iαH)EB
n + iκ0

AEA
n + iκ0

BEA
n+1, (C2)

dNA
n

dt
= RA − NA

n

τr
− F

(
NA

n − 1
)∣∣EA

n

∣∣2
, (C3)

dNB
n

dt
= RB − NB

n

τr
− F (NB

n − 1)
∣∣EB

n

∣∣2
, (C4)

where EA
n and EB

n are electric-field amplitudes in sublattices A
and B and NA

n and NB
n are carrier population densities.

We assume the carrier is saturated

dNA
n

dt
= 0,

dNA
n

dt
= 0, (C5)

or

NA
n − 1 = F

∣∣EA
n

∣∣2 + RA

F
∣∣EA

n

∣∣2 + 1/τr

− 1 = RA − 1/τr

F
∣∣EA

n

∣∣2 + 1/τr

, (C6)

NB
n − 1 = F

∣∣EB
n

∣∣2 + RB

F
∣∣EB

n

∣∣2 + 1/τr

− 1 = RB − 1/τr

F
∣∣EB

n

∣∣2 + 1/τr

. (C7)

By inserting them into the rate equations, we have

dEA
n

dt
= 1

2

[
−γ0 + σ

RA − 1/τr

F
∣∣EA

n

∣∣2 + 1/τr

]
× (1 − iαH)EA

n + iκ0
AEB

n + iκ0
BEB

n−1, (C8)

dEB
n

dt
= 1

2

[
−γ0 + σ

RB − 1/τr

F
∣∣EB

n

∣∣2 + 1/τr

]
× (1 − iαH)EB

n + iκ0
AEA

n + iκ0
BEA

n+1, (C9)

or

i
dEA

n

dt
= i

2

[
−γ0 + σ

τrRA − 1

1 + τrF
∣∣EA

n

∣∣2

]
× (1 − iαH)EA

n − κ0
AEB

n − κ0
BEB

n−1, (C10)

i
dEB

n

dt
= i

2

[
−γ0 + σ

τrRB − 1

1 + τrF
∣∣EB

n

∣∣2

]
× (1 − iαH)EB

n − κ0
AEA

n − κ0
BEA

n+1. (C11)

When αH is negligible and τrRB = 1, by setting

ψA
n = EA

n , ψB
n = EB

n , κA = −κ0
A, κB = −κ0

B, (C12)

γ = −γ0/2, η = τrF, γ χ = σ (τrRA − 1), (C13)

they are reduced to Eq. (1) in the main text.
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