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Inhomogeneous magnetic fields interacting with spinful states in a double quantum dot:
Evidence for a staggered spin-orbit interaction
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The coupling of the spin and the motion of charge carriers is an important ingredient for the manipulation
of the spin degree of freedom and for the emergence of topological matter. Creating domain walls in the spin-
orbit interaction at the nanoscale may turn out to be a crucial resource for engineering topological excitations
suitable for universal topological quantum computing or for new schemes for spin quantum bits. Realizing
this in natural platforms remains a challenge. Using circuit quantum electrodynamics magnetospectroscopy, we
investigate the spinful states of a double quantum dot made in a single wall carbon nanotube with lithographically
patterned magnetically textured gates. While a full understanding of the behavior of our magnetic textures would
be helpful, the experimental signals are consistent with a change of the spin-orbital structure of the states above
each gate. The coherence of the data, backed up by extensive theoretical modeling and a control device, points
towards the existence of a synthetic staggered spin-orbit interaction in our device.
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I. INTRODUCTION

Mastering spin-orbit interaction at the nanoscale is an im-
portant topic of condensed matter research which has turned
out to be crucial for the emergence of topological excitations.
Many recent studies in materials with a priori strong spin-
orbit interaction such as semiconducting nanowires question
whether the requirements for topological superconductivity
large spin orbit, superconductivity, and large magnetic Zee-
man splitting can be met together [1,2]. Many theoretical
works have suggested an alternative route in an all proximity
platform which consists essentially of proximity magnetic
textures and proximity superconductivity. As a first important
step, we have constructed an elementary two site chain which
shows the basic requirements needed for a chain, i.e., that
one can change its local parameters, and importantly, its local
spin-orbit interaction by an amount larger than the hopping
between the sites. In view of the scalability of our approach,
we can envision to build, besides engineering exotic electronic
states [3,4], longer chains of 10 to 20 sites which could host
non-Abelian excitations.

Such a setup can readily be implemented using a double
quantum dot (DQD) and the corresponding matrix element
can directly be measured by cavity quantum electrodynamics
techniques [5]. The large electric field gradients which can
be achieved inside a microwave cavity enable the sensing
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of magnetically active nanoscale dipoles [6]. Specifically, we
study a device made out of a carbon nanotube double quan-
tum dot proximal to two different magnetic textures inducing
locally different synthetic spin-orbit interactions [7]. As a
consequence, the localized energy levels respond differently
to the external magnetic field. The microwave signal reveals a
large difference of the magnetic field response of the two dots,
witnessing a large spin-orbit contrast at the nanoscale.

The principle of our experiment is depicted in Fig. 1(a).
A double quantum dot with each of the two dots subject to
two different synthetic spin-orbit interactions is coupled to
a photonic field which actuates tunneling between these two
dots as schematized by the orange arrow [8]. The electric
dipole φ stems from tunneling between the two dots which
is directly linked to the overlap between the wave functions
of the left and the right dots. Owing to the band structure of
carbon nanotubes, the single-particle Hilbert space has at least
four dimensions for each of the two dots due to the spin and
the orbital degeneracies.

II. EXPERIMENTAL SETUP

Our physical implementation of such a setup is presented
in Fig. 1(b). A double quantum dot is formed in a single
wall carbon nanotube (CNT) using a nanoassembly technique
[9]. The device is designed with two magnetically textured
gates, colored in blue in Fig. 1(b), made out of CoPt stacks
[7] above which the nanotube is transferred. From the mag-
netic force microscope (MFM) micrograph shown in Fig. 1(c),
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FIG. 1. The device. (a) Schematics of the DQD. It is defined
inside a CNT connected to two normal contacts (grey). The two blue
gates yield an oscillating magnetic field (red) at the level of the dots.
The DQD is also coupled to a microwave cavity through the orange
gate; as a consequence, the transmission phase � is sensitive to the
charge susceptibility of the DQD. (b) False-color SEM image of
the sample, with the CNT highlighted in white. The central orange
gate is connected to the cavity central conductor. The two lateral
blue gates are made of the CoPt stacks. (c) MFM phase cut of the
sample, displaying oscillations of the AFM phase signal above the
magnetic gates (blue region). (d) Photograph of the CPW resonator
in which the sample is embedded.

modulations of the magnetic signal are observed with a length
scale λ of about 170 nm for the left dot and 150 nm for the
right dot. This yields a priori a large and inhomogeneous
spin-orbit energy scale [8,10] of hvF /2λ ≈ 8 meV, where vF

is the Fermi velocity in the SWNT, comparable to the mean
energy level spacing of each dot, of about hvF /2L ≈ 3 meV,
where L ≈ 500 nm is the designed physical length of each
dot. The device is embedded in a Nb microwave cavity with
a quality factor of about 1000 and a resonance frequency of
fcav = 6.42 GHz, shown in Fig. 1(d).

The two devices presented here consist in DQD made out
of a CNT, stapled over a mesoscopic circuit using the stapling
technique described in Ref. [9]. The DQD is coupled to a
λ/2 coplanar waveguide (CPW) resonator etched from a Nb
thin film.

We now describe in more details the fabrication and
measurement techniques. The electrical circuit and mi-
crowave cavity were lithographically defined on a high-
resistivity Si/Si02 substrate. First, a 100-nm-thick Nb layer is

evaporated at a pressure below 5 × 10−10 mbar, then the cav-
ity pattern is defined with laser lithography and etched using
a reactive ion etching (RIE) process with SF6. The CPW
resonator of sample 2 is represented in Fig. 1(d). Then, the
nanoscale circuit for defining the DQD is drawn using electron
beam lithography and metal evaporation processes. Trenches
are defined around this circuit with either optical or electron
beam lithography and RIE etching. Carbon nanotubes were
chemically grown using a methane process, on a separated
chip designed for the nanoassembly process, and subsequently
transferred under vacuum. Once a good electrical contact is
measured at room temperature, the circuit is transferred to
a cryostat. The nanoassembly step occurs after all the nano-
lithography steps, including the deposition of the magnetic
gates.

Both samples were characterized in a dilution fridge with
base temperature of about 20 mK, through simultaneous DC
and RF measurements. For RF measurement, a heterodyne
detection scheme is used with a modulation frequency of
20 MHz. For every change in magnetic field, the change in
the bare cavity resonant frequency is measured with the DQD
transitions detuned.

The two devices differ in the nanoscale circuit defining
the DQD. For the main device, the CNT is positioned over
two magnetically textured gates and a central Al/AlOx gate.
This last gate can be DC biased and is also connected to the
central conductor of the microwave cavity. The magnetic gates
are made out of ten repetitions of Co/Pt, with a Ta/Pt initial
layer and a thin Alox cap. The CNT is connected to two Pd
electrodes, through which a current can be measured. The
electrode height is chosen so that the CNT is lying on the
magnetic gates, to maximize their effect.

The control device on the other hand, was fabricated with
several Al/AlOx gates and two narrow magnetic gates with
only five repetitions of a Pt/Co bilayer. The CNT is again
connected with two Pd contacts. The electrode height is in-
creased, so that the CNT is suspended above the gate structure
(as in Ref. [9]). The CNT is capacitively coupled to a mi-
crowave cavity through one of the Al/Alox gates, of resonant
frequency 6.439 GHz and quality factor 1600.

III. CAVITY BASED MAGNETOSPECTROSCOPY

The phase of the cavity transmission is sensitive to the
charge susceptibility of the quantum circuit [11]. Such mea-
surements are presented in Figs. 2(a) and 2(b) for the control
and the textured device, respectively. The charge susceptib-
lity is mainly sensitive to interdot tunneling but also, weakly
to the dot-lead tunneling [11]. In both cases, we see qual-
itatively the same features. On the top of a faintly visible
“honeycomb” pattern characteristic of the stability diagram
of a double quantum dot, we see, as expected, large phase
contrasts of about 10◦–20◦ at the interdot tunneling edge. On
each of panels a and b an arrow is superimposed, indicating
the “detuning” axis between the left and right dot of the
corresponding gate voltage setting. The Ed label corresponds
to the detuning.

We discuss now how we convert in energy the detuning
axis. A first approximative value for the lever arms of both
gates was extracted from Coulomb diamonds. However, the
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FIG. 2. Magnetospectroscopy of staggered and control device. [(a) and (b)] VgR-VgL cavity phase shift maps for the control (a) and main
(b) samples. [(c) and (d)] Bext-Ed maps of the cavity phase shift, over a magnetic field range of about ±(0.15 − 0.2) T for the two samples and
along the Ed cut shown by a black arrow in the respective (a) and (b). For the control sample (c), the cavity signal is unaffected by the external
magnetic field, as opposed to the main sample (d). Circled numbers refer to situations described in Fig. 3(a). The red dashed lines are a fit to
the transition energy with the simplified model.

strong interdot coupling deforms the stability diagram and
hinders a precise measurement of these lever arms. A correc-
tion to the lever arms is thus kept as a general parameter in
order to compare with our models. First, the gate voltages are
converted into a detuning value for the main sample through

Ed = μR − μL with μR = 0.31VgR − 0.025VgL

and μL = −0.10VgR + 0.11VgL.

We anticipate now on our fitting of the microwave measure-
ments. Fitting the interdot transition cavity phase shift at zero
external magnetic field imposes strong constraints on the en-
ergy axis and thus acts as a self calibration. The electronic
temperature and the interdot tunneling affect very differently
the shape of the phase contrast. The electronic temperature
affects more the amplitude of the phase contrast while the

interdot tunneling affects more its width. They can therefore to
a large extent be considered as evaluated separately although
they are calibrated in a single step. We find that all interdot
transitions signals can be quantitatively reproduced by ap-
plying a factor 1/4 to Ed which is then fixed to this value
in all analysis. The width is essentially fitted for getting the
factor 1/4. It is therefore mainly the interdot tunneling which
sets this procedure. The values of the fitting parameters of
the different interdot transitions are given below as well as
details of data and fits of each subpanel of Fig. 10. The gate
voltages to detuning conversion factor for the control sample
are comparable to the ones of the main sample and given by

Ed = μR − μL with μR = 0.33VgR − 0.1VgL

and μL = −0.16VgR + 0.621VgL.
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The magnetic field dependence of the phase contrast along
each of the arrows allows one to map the spin-orbital depen-
dence of the energy levels of the double quantum dots. Such
a map is displayed in Figs. 2(c) and 2(d) for the control as
well as for the staggered device. The control device map is
shown in Fig. 2(c). As shown in the Appendix, the control
device has three nonmagnetic gates above which the double
quantum dot is formed and two Co/Pt magnetic gates. The
MFM signal above each of these gates is markedly different
from the one shown in Fig. 1(c). No modulation is observed
above the CoPt electrodes indicating essentially a single do-
main structure on the lateral scale of the magnetic gate. Such
a control device has therefore all the elements present in the
staggered one but without the magnetic modulation observed
in Fig. 1(c). The phase contrast as a function of VgR − Bext over
the values spanned by the black arrow is shown in Fig. 2(c).
Up to a faint “upturn” on the right hand side due to a non
reproducible gate drift, the cavity signal at resonance does not
change with an external magnetic field between ±150 mT.
Like for any gated devices, there are charges trapped on the
substrate in the vicinity of the gates and of the quantum dots.
They fluctuate over time and usually lead to abrupt jumps in
the 2D maps. There are some instances where they change
gradually the electrostatic background, which typically leads
to the “faint upturn” mentioned above. Theses changes are
not reproducible and qualitatively different from the stable
and reproducible maps for the main device of the manuscript.
A very different signal is observed for the staggered sample
as shown in Fig. 2(d). The phase contrast resonance starts to
shift towards positive detuning up to 10 GHz at ±100 mT and
then shifts towards negative detuning values down to −5 GHz.
This occurs symmetrically for positive and negative magnetic
field.

The phenomenology of the above findings can be captured
through the cartoon picture of Fig. 3. In a double-quantum
dot setup, a phase shift is measured when two energy levels
are essentially resonant, as sketched in the leftmost panel
(1) of Fig. 3(a). When an external magnetic field is applied,
Bext �= 0, the energy levels are shifted by an energy δEL(R) =
gL(R)μBBext, where gL(R) is an effective Landé factor in the
left (right) dot. In absence of a magnetic texture, the two
dots being formed inside the same CNT, the Landé factor is
expected to be identical in the two dots and δEL = δER as
shown in panel (2) of Fig. 3(a). In this situation, the cavity
signal at the resonant frequency is expected to be unaffected
by the external magnetic field (the linewidth of the cavity is
not affected much at these magnetic fields). This is what hap-
pens in the control device. In contrast, in the second situation
where gL �= gR, as illustrated in panels (3) and (4) of Fig. 3(a),
one has to apply a finite detuning Ed in order to bring two
spinful levels in resonance. This leads to a dispersion of the
interdot phase resonance in the Ed -Bext plane. This is what
happens in the staggered device. The reason for having a very
inhomogeneous Landé factor between the left and the right
dot can be captured in the cartoon pictures of Figs. 3(b) and
3(c). First, each wave function has a different overlap with the
magnetic texture as shown in Fig. 3(b). Second, these different
overlaps change as a function of the magnetic field quite
strongly because a small magnetic field changes the domain
structure of the magnetic texture. Hence, we can qualitatively

(a)

= ≠== ≠≠

(b)

(c)

Change of electronic wave function

Change of external magnetic field

2 41 3

FIG. 3. Picture of evolution of DQD levels and of the staggered
spin-orbit interaction. (a) Schematic representation of the evolution
of the DQD charge susceptibility with an external field Bext , from
a no-detuning situation [panel (1)]. When the left and right Landé
factors are equal, gL = gR, the cavity signal is unaffected by Bext

[panel (2)]. When they are different, the cavity signal is modified
[panel (3)], but the resonant condition can be recovered with a finite
detuning Ed [panel (4)]. (b) Schematic illustrating the evolution of
the spinful levels resulting from the overlap between the electronic
wave function and the magnetic textures stray field due to a change
of gate configuration. (c) Schematic illustrating the evolution of the
spinful levels resulting from the overlap between the electronic wave
function and the magnetic textures stray field due to a change of
external magnetic field.

conclude that the findings presented in Fig. 2(d) are strongly
suggestive of a staggered spin-orbit interaction.

IV. THEORY OF A SYNTHETIC SPIN-ORBIT
INTERACTION IN A SINGLE WALL CARBON NANOTUBE

The simplest model we use to account for the very large
g-factors measured above is a simple two level system model
(spin qubit). It is very appealing since it is very simple. It
is however not obvious that the level structure will be the
same in the actual system. This is why we develop in this
section models with growing complexity, up to a full model
treating explicitly the carbon nanotube band structure. We
then first develop a low-energy theory using a Schrieffer-Wolf
transformation on the nanotube Dirac Hamiltonian taking into
account the intrinsic spin-orbit interaction of nanotubes and
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FIG. 4. Numerics for the spectrum of a carbon nanotube with magnetically textured gates. (a) Spectrum of a carbon nanotube with periods
λ0 = 225.4 nm as a function of the external magnetic field Bext. (b) Spectrum of a carbon nanotube with periods λ0 = 149.9 nm as a function of
the external magnetic field Bext . (c) Effective Landé factors resulting from the magnetic texture for three different texture periods. (d) Calculated
microwave phase signal using the numerical spectrum. The magnetic field dependence of the input energy levels has been symmetrized,
consistently with the experiment. The energy levels correspond to an electron filling n1 = 11 for the left dot and n2 = 23 for the right dot.

the K/K’ valleys. This yields Hamiltonian (8), (9) which is
not a two level system but produces the same spectrum as
that of the spin qubit for the two lowest levels. Then, we
go to real space modeling to further justify the structure of
Hamiltonian (8), (9), which was produced by perturbation
theory on the Dirac Hamiltonian. This layer of modeling treats
the full band structure of nanotubes and its dependence upon
changes in the parameters (e.g., B field and magnetic texture)
of the experimental system. The spectrum and the eigenstates
of electrons in a finite sized carbon nanotube subject to a cy-
cloidal magnetic field in the general case is a priori complex.
We obtain it in two ways: both by an analytical calculation in
the reciprocal space and a numerical tight-binding simulation
on the atomic lattice (see below and the Appendix). Both
approaches agree very well, and the analytical one yields the
low-energy Hamiltonian (8), (9). As shown in Figs. 4(a) and
4(b) for two different initial periods λ0 of the cycloidal field,
149.9 [Fig. 4(a)] and 225.4 nm [Fig. 4(b)], the cycloidal field
produces very large slopes of the carbon nanotube energies
in external magnetic field which, as shown in Fig. 4(c), yield
very large effective Landé factors, up to about 280. Here, as
assumed in a previous work [7], the large effective Landé

factor stems from the large spin polarization induced by the
magnetic texture as well as the strong dependence of λ on the
external field Bext. One can insert the obtained spectra into
the expected expression of the phase signal for a DQD. This
yields the phase map of Fig. 4(d), which is qualitatively sim-
ilar to that of Fig. 2(d). Note that the Bext dependence of the
magnetic parameters of the numerics has been assumed to be
symmetric with respect to Bext direction to make contact with
the experimental findings (see the Appendix). It is important
to add here that this is not at all the case for the spin qubit
model which we use for accounting for the measurements of
Fig. 10 where the magnetic field symmetry is naturally present
in the theory.

A. Local fields and effective-g model

We assume here that the Hamiltonian of the system can
be simplified if one considers the ground state and the first
excited state. This is fully justified in our case since the cavity
is energy selective and filters the transition which is the closest
to the cavity frequency ωcav/2π . We therefore model our
devices as a double quantum dot (DQD) with one level in each
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dot, with an effective spin degree of freedom corresponding to
the ground and excited states of Hamiltonian (8) and (9).

The two ground state levels are detuned by an energy
Ed , and coupled through a tunnel coupling of energy t . We
introduce ρ0,x,y,z, π0,x,y,z as the Pauli matrices for the left/right
and effective spin subspaces. Each dot is subject to a local
effective field BL,R that is in the x − y plane (BL is along the x
axis, and BR has an angle θ to BL). An external magnetic field
Bext can be applied along the z axis, that is the axis of the CNT.
Bext can thus both have a Zeeman and orbital contribution to
the spectrum. The orthogonality between Bext and the local
effective field ensures a symmetric spectrum with respect to
Bext, as experimentally observed.

The model Hamiltonian is the following:

Htot = Ed

2
ρz + tρx + Hspin,L + Hspin,R

with

Hspin,L = −gLμBBL

4
(ρ0 + ρz )πx − gLμBBext

4
(ρ0 + ρz )πz,

Hspin,R = −gRμBBR

4
(ρ0 − ρz )(sin(θ )πx + cos(θ )πy)

− gRμBBext

4
(ρ0 − ρz )πz.

The cavity transmission is given by

T = κ/2

( fcav − fd ) − iκ/2 − χ
, (1)

where fcav, κ are the cavity resonance frequency and line
width and fd is the drive frequency. The charge susceptibility
χ is given by

χ =
∑
i, j

χi j (ni − n j ) and χi j = g2
i j

fi j − fd − i(�1 + �φ/2)/2
,

(2)

with ni, n j the thermal occupations at an electronic temper-
ature Te, and fi j = fi − f j the transition frequency between
eigenvalues i and j. The electron-photon coupling strength
gi j is calculated from the electron-photon coupling opera-
tor: gi j = g0|〈i|ρ0 − ρz| j〉|/2, where g0 is a fit parameter.
For simplicity, the dephasing rate �1 = 1 MHz is kept con-
stant, whereas the �φ for each (i, j) are calculated from the
model Hamiltonian Htot (defined above) through the projec-
tion of the different dephasing operators with the initial and
final states. The dephasing operators are ρz (charge) and πz

(spin).

B. Low-energy Hamiltonian of a carbon nanotube
in the presence of a magnetic texture

We present in this section the derivation of the low-energy
Hamiltonian of a single wall carbon nanotube in the presence

of a magnetic texture. The spectrum of the SWNT subject to
an external magnetic field reads [12]

Eκ,k,τ,σ = ±h̄vF

√
κ2 + k2 + 1

2 gorbB‖τ + 1
2 gsBextσ, (3)

where gorb(s) are the orbital (spin) Landé factors, vF the Fermi
velocity, τ (σ ) are the orbital(spin) indices, κ and k are the
transverse and longitudinal wave vectors of the nanotube,
respectively. Using the conventional quantization conditions
for both κ and k, we can introduce the wave functions of
electrons/holes in a quantum dot made out of a carbon
nanotube:

〈ϕ, ζ |�m,n,τ,σ 〉 = ei
−→
K (′ ).−→r
√

4π
ei(m−τν/3)ϕ�m,n(ζ ), (4)

where n and m are the quantum numbers for the transverse
and longitudinal quantization, respectively. The parameter
ν = 0,±1 encodes whether the nanotube is semiconducting
(ν = ±1) or metallic (ν = 0). The wave function �m,n(ζ )
has the usual spinor structure to account for the graphene
sublattices [12]:

�m,n(ζ ) = C

[
zκm,kn,τ

1

]
eiknζ + D

[
zκm,−kn,τ

1

]
e−iknζ (5)

with zκ,k,τ = ±τ (κ − iτk)/
√

κ2 + k2. The coefficients C and
D depend on the boundary conditions of the nanotube. We
would like to calculate the matrix elements arising from the
spin texture. The corresponding terms in the nanotube Hamil-
tonian read [13]

spin : 1
2 gsBosc(σ̂z cos 2πζ/λ + σ̂x sin 2πζ/λ), (6)

valley : 1
2 gorbBoscτ̂zη̂x cos 2πζ/λ. (7)

In the above expressions, we have assumed a cycloidal mag-
netic texture oscillating with a period λ and an amplitude Bosc.
The matrices σ̂i, τ̂i, and η̂i are the Pauli matrices acting on
the spin, valley, and sublattice spaces, respectively. We define
kλ = 2π/λ. The matrix elements of these terms for the wave
functions |�m,n,τ,σ 〉 are all of the form

Amnn′
sin((kn ± kn′ ± kλ)L/2)

(kn ± kn′ ± kλ)L/2
,

where L is the length of the confined region of the nanotube
forming the quantum dot (assuming a square potential for the
sake of simplicity) and Amnn′ is a coefficient which depends
on the overlap between the wave functions of the dot and
the subband index. We would like now to obtain an effective
spin-valley Hamiltonian for the CNT. Two terms arise from
the above discussion: terms which conserve the longitudinal
index (first order) and terms which couple different orbitals.
The Hamiltonian of the system is now:

H =
∑

n

|n〉〈n|
[

En + 1

2
gsμB

(
Bext + ασz

nnBoscσ̂z + ασx
nnBoscσ̂x

) + 1
2 gorbμB

(
Bext + βτz

nnBosc
)
τ̂z

]
(8)

+
∑
nn′

|n〉〈n′|
[

1

2
gsμBBosc

(
α

σz

nn′ σ̂z + α
σx
nn′ σ̂x

) + 1

2
gorbμBBoscβ

τz

nn′ τ̂z

]
+ H.c. (9)
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The second line terms modify at the second order the
Hamiltonian. This can be calculated using a Schrieffer-Wolff
transformation:

H̃ = eSHe−S ≈ H + [S, H] + 1
2 [S, [S, H] + . . .

where S is a anti-Hermitian operator. The operator S has to be
chosen such that its commutator with the diagonal part of the
Hamiltonian in the orbital subspace (8) is exactly the opposite
of the off-diagonal part (7). One can show that an operator
satisfying these conditions has the following matrix elements:

〈n, σ, τ |S|m, σ ′, τ ′〉 =
[
σδσσ ′α

σz
nm + σδσσ ′ασx

nm + τβ
τz
nm

]
δττ ′

En − Em + 1
2 gsμB

(
Bext + Bosc

√
α

σz
nn

2 + α
σx
nn

2)
σ − 1

2 gsμB
(
Bext + Bosc

√
α

σz
mm

2 + α
σx
mm

2)
σ ′

,

where σ is the new quantum number along the quantization axis defined by the external field and the first-order terms of the
magnetic field arising from the magnetic texture. Noting ESO = hvF /λ, the final version of the Hamiltonian (projected on the
orbital |n〉) is

Heff = En + 1

2
gsμB

(
Bext + ασz

nnBoscσ̂z + ασx
nnBoscσ̂x

) + 1

2
gorbμB

(
Bext + βτz

nnBosc
)
τ̂z (10)

+ γ σzτz
nn

gsgorb(μBBosc)2

ESO
σ̂zτ̂z + γ σxτz

nn

gsgorb(μBBosc)2

ESO
σ̂x τ̂z + γ

σy
nn

(gsμBBosc)2

ESO
σ̂y + γ σ0

nn gs + γ τ0
nn gorb

ESO
(μBBosc)2. (11)

The dimensionless parameters α
σz
nn, ασx

nn, β
τz
nn, γ σ0

nn , γ τ0
nn , γ

σxτz
nn ,

γ
σzτz
nn , and γ

σy
nn are of the order of 1 and depend on the wave

function, the value of λ and therefore on the external magnetic
field Bext as well. Their expressions are given in Sec. IV E. It
is important to realize that we obtain for the two first terms
of the second line the same form as that for the intrinsic
spin-orbit interaction [14] in carbon nanotubes which shows
that the magnetic texture plays indeed the role of an effective
spin-orbit interaction. Finally, it is essential to note that the
synthetic spin-orbit interaction acts already at first order as an
effective magnetic field which depends on the wave functions
through the parameters α

σz
nn, ασx

nn, and β
τz
nn which imply in

particular an orbital dependent effective field direction for the
spin defined by the angle θn = arctan[ασx

nn/α
σz
nn].

We would like now to discuss the assumptions made on
the magnetic texture here. At the beginning of this section, we
have assumed that the magnetic texture had a perfect cosine
like cycloïdal shape. This is just for getting more intuitive
calculations and for showing what length scales matter in
the problem. As shown in formulas just above, the dimen-
sionless parameters entering the effective Hamiltonian do not
depend on that. They are just matrix elements from two orbital
wave functions. Physically, this means that the structure of
the low-energy Hamiltonian does not depend on the exact
shape of both the wave functions and the magnetic texture
but rather on the overlap between them, as sketched in Fig. 3.
This stems from the fact that the orbital wave functions are
0D essentially. As a consequence, a perfect periodic texture
is not needed in order to get a staggered spin-orbit inter-
action in our setup, which is a considerable experimental
simplification. Note also that we do not need to make any
assumption on the exact shape of the wave functions and their
confinement potential for the general shape of the low-energy
Hamiltonian.

C. Real space modelling

The tight-binding Hamiltonian is constructed for one pz

orbital per site,

H =
∑
〈i, j〉

∑
ss′

ti j,ss′ (B)c†
isc js′

+
∑

i,s

μB[sBz,ic
†
iscis + Bx,ic

†
i,sci,−s] + H.c. (12)

The first sum runs over the nearest-neighbor atomic positions
〈i, j〉 and contains the information about the intrinsic spin-
orbit coupling and the orbital response to the magnetic field,
the second sum accounts for the Zeeman effect, with Bμ,i the
μ component of the magnetic field at the atom i. Without the
magnetic field the hopping elements ti j,ss′ from atom j to atom
i are given by [15–17]

ti j,ss(B = 0) = V π
pp cos(ϕi − ϕ j ) − (

V σ
pp − V π

pp

)
× R2

a2
c

[1 − cos(ϕi − ϕ j )]
2

+ s 2iδSO
{
V π

pp sin(ϕi − ϕ j ) + (
V σ

pp − V π
pp

)
× R2

a2
c

sin(ϕi − ϕ j )[1 − cos(ϕi − ϕ j )]
}
, (13)

ti j,s,−s = −s δSO
(
V σ

pp − V π
pp

) R(zi − z j )

a2
c

× [1 − cos(ϕi − ϕ j )]
(
eiϕi + eiϕ j

)
, (14)

where s is the electron spin, R the nanotube radius, ac = 1.42
Å the carbon-carbon bond length, and ϕi and zi the polar
and axial coordinates of the ith atom. The hopping integrals
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(a) (b)

FIG. 5. Spectrum of a (6, 3) × 400 CNT (d = 0.62 nm, L = 451 nm) in cycloidal magnetic field with Bosc = 10 T and δ = 0, as a function
of the magnetic period λ. (a) Energy levels and spin expectation values 〈sz〉, 〈sx〉 (〈sy〉 = 0) in their corresponding eigenstates as functions of
the magnetic period λ, here in the units of the CNT unit cell length (TCNT = 1.127 nm). The results were obtained with exact diagonalization
method. The numbers in the plot denote the longitudinal modes, and the subscript a/p whether the configuration of valley and spin in the
doublet is antiparallel or parallel, respectively. (b) Transmission through the same CNT, calculated with the Green’s function method. Orange
points mark the energy values from exact diagonalization shown in (a). The coupling to the leads is taken to be �L = �R = 0.1 meV.

V σ
pp = 6.38 eV and V π

pp = −2.66 eV are taken from Ref. [18],
and the strength of the intrinsic spin-orbit coupling is
determined by δSO, which is set to 10−3 in our calculation.

In presence of the magnetic field the hopping elements are
modified by the Peierls phase �i j . The gauge we chose for
the cycloidal field is

Aosc : Aosc,x = Aosc,z = 0, Aosc,y =
(

x − λ

2π

)
sin

(
2πz

λ
+ δ

)
,

Bosc : Bosc,x = Bosc

(
1 − 2πx

λ

)
sin

(
2πz

λ
+ δ

)
, Bosc,y = 0, Bosc,z = Bosc sin

(
2πz

λ
+ δ

)
.

Since x � λ, Bosc,x ≈ Bosc sin(2πz/λ + δ), in agreement with
the sinusoidal form of B in Eqs. (6) and (7). We have included
here also an arbitrary phase shift δ to account for shifting
magnetization profiles. The main contribution to the orbital
effect comes from Bosc,z.

The external magnetic field is applied in the z direction,
parallel to the CNT axis, with

Aext = (0, x Bext, 0), Bext = (0, 0, Bext ).

The code setting up the atomic lattice and the Hamiltonian is
written in C++, using the Armadillo linear algebra library
[19]. In the first step the Hamiltonian (12) is diagonalized
directly, using sparse matrix algorithms from MATLAB. The
energy levels for the first 32 states in the conduction band of a
(6,3) CNT with 400 unit cells [denoted as (6, 3) × 400, with

d = 0.62 nm, L = 450 nm] in a Bosc = 10 T with varying λ

and δ = 0 are shown in Fig. 5(a). The spectrum splits into
a series of doublets na/p, where n denotes the longitudinal
mode, p the parallel (τ s = 1) and a the antiparallel (τ s = −1)
alignment of the valley pseudospin and the electronic spin.
The cycloidal field has two effects. First, it affects the position
of the energy levels within each doublet, with the degeneracy
restored whenever L is an integer multiple of λ, when the ef-
fects from the positive and negative Bosc,z, Bosc,x components
cancel out on average. The second effect is the mixing of
longitudinal modes, which is stronger but limited only to the
states for which the criterion of κn ± κ ′

n = 2π/L is fulfilled.
As far as the spin is concerned, in the cycloidal field the energy
states are mostly eigenstates of sz, except when the intermode
mixing occurs and a discernible sx component appears.
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FIG. 6. The longitudinal profile of the modulus |ψn+(K )| for the first eight eigenstates in the conduction band of a (12, 6) × 400 CNT. The
grey points mark the numerical data for sublattice B, the colored points the data for sublattice A. The colored background displays | sin(κnx)|
with the values of κn in π/L units taken from the table on the right. As n increases, κn,a of the antiparallel and κn,p of the antiparallel Kramers
doublets both converge to (n − 1/2)π/L. For this CNT, �k⊥ = −1.36 × 10−3 Å−1, which corresponds to �k⊥ = −1.96π/L.

The exact diagonalization is expensive in terms of com-
putational time and resources. If we are interested mostly
in the evolution of the energy levels and not in the eigen-
states, we can turn to Green’s function methods and associated
decimation techniques [20]. In this approach the nanotube
is connected to the wide-band leads (�L = �R = 0.1 meV)
and its transmission is calculated with the Meir-Wingreen-Lee
formula [21]. The peaks of transmission occur at the poles
of the Green’s function, i.e., at energies matching those in
the spectrum of the nanotube, as shown in Fig. 5(b). This is
therefore our method of choice for the numerical calculation

of the larger (12, 6) × 400 CNT with d = 1.4 nm, closer to
the experimental size.

The influence of Bosc on electronic eigenstates can be better
understood in terms of the minimal model presented below.
For the analytical calculation of the coefficients α

σx
nn′ , α

σz

nn′ , and
β

τz

nn′ , we need to first identify the unperturbed quantum states.

D. Quantization of longitudinal modes

The eigenstates of the unperturbed CNT at low energies
can be calculated from the Dirac Hamiltonian in the two
valleys [15–17],

Hτ (κ ) = h̄vF

(
0 eiτ (θ+π/3)(τ�k⊥ + iκ )

e−iτ (θ+π/3)(τ�k⊥ − iκ ) 0

)
, (15)

where θ is the chiral angle of the CNT. The momentum is calculated from the center of each valley, i.e., κ = k − τK , where
K is the longitudinal momentum corresponding to the K point. In metallic nanotubes the transverse momentum of the Dirac
subbands is τK⊥, so κ⊥ = 0, but the curvature of the lattice results in an additional term opening a small band gap, �k⊥ =
ac(1 + 3(V σ

pp − V π
pp)/(8V π

pp)) cos 3θ/(4R2). The intrinsic spin-orbit coupling adds another, spin-dependent shift, s�kSO � �k⊥,
cf. the table in Fig. 6. In the calculation of the matrix elements we will neglect �kSO. We can introduce an auxiliary phase

γτ (κ ) := arg(τ�k⊥ + iκ ) with γτ (−κ ) = −γτ (κ ), (16)

so that the spinorial part of the Bloch states is

|u+(τ, κ )〉 = 1√
2

(
1

e−iτ (θ+π/3) exp(−iγτ (κ ))

)
, |u−(τ, κ )〉 = 1√

2

(
1

−e−iτ (θ+π/3) exp(−iγτ (κ ))

)
, (17)

for the conduction (+) and valence (−) bands, respectively.
In a finite system, the eigenstates can be expressed as linear
superpositions of Bloch states with opposite momenta,

|n±(τ )〉 = 1√
2

(|(τK⊥, τK + κn)〉 ⊗ |u±(τ, κn)〉

− |τK⊥, τK − κn〉 ⊗ |u±(τ,−κn)〉), (18)

where κn is quantized [22] according to

τ�k⊥ = κn tan κnL. (19)

The quantization of κn depends then on the curvature-induced
gap; when �k⊥ = 0, this results in a half-integer quantization
κn = (n + 1/2) π/L. When �k⊥ � 1/L, the quantization ap-
proaches the standard quantum box condition, κn = nπ/L.
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For our (12, 6) × 400 CNT, the first eight eigenstates in the
conduction band and their corresponding momenta κn are
shown in Fig. 6.

Another form of the quantization condition (cf. Eq. (9) in
Ref. [23]) is

sin

(
κL − γτ (κ ) − γτ (−κ )

2

)
= 0. (20)

Together with (16), it tells us that

κL − γτ (κ ) = πn, m ∈ Z. (21)

It is not obvious, but n is indeed the quantum number of the
longitudinal mode, counting the first nontopological state as
n = 1. This will allow us to replace γτ in the following.

E. Matrix elements of Hosc

The matrix elements of Hosc between the unperturbed
eigenstates (18) are introduced in Eqs. (6) and (7). Us-
ing the shorthand notation �κ := (κn − κn′ )/2, κ̄ := (κn +
κn′ )/2, nB := πL/λ and �n := n − n′, we find the analytical
expressions for the coefficients α

σx
nn′ , α

σz

nn′ , and β
τz

nn′ ,

α
σx
nn′ = 1

4 {S−(n, n′, λ)[cos(�κL + nB + δ) + (−1)�n cos(�κL − nB − δ)]

−S+(n, n′, λ) [cos(κ̄L + nB + δ) + (−1)�n cos(κ̄L − nB − δ)]}, (22)

α
σz

nn′ = 1
4 {S−(n, n′, λ)[sin(�κL + nB + δ) − (−1)�n sin(�κL − nB − δ)]

−S+(n, n′, λ) [sin(κ̄L + nB + δ) − (−1)�n sin(κ̄L − nB − δ)]}, (23)

where

S±(n, n′, λ) := sin((κn ± κn′ )L/2 + nB)

(κn ± κn′ )L/2 + nB
+ (−1)�n sin((κn ± κn′ )L/2 − nB)

(κn ± κn′ )L/2 − nB
.

In order to calculate β
τz

nn′ analytically, we first notice that the local tangential component of Aosc, Aϕ = BoscR sin(2π z/λ)/2
is the main factor determining the Peierls phase. The phase acquired upon hopping between atoms j and i is then given by

�i j = πR2

φ0
Bosc sin(2π z̄/λ)(ϕi − ϕ j ),

where φ0 = h/e is the magnetic flux quantum and z̄ = (zi + z j )/2. The expression for the dimensionless coefficient β
τz

nn′
is then

β
τz

nn′ = (−1)n+1

4
{S−(n, n′, λ)[sin(κ̄L + nB + δ) − (−1)�n sin(κ̄L − nB − δ)]

− S+(n, n′, λ) [sin(�κL + nB + δ) − (−1)�n sin(�κL − nB − δ)]}. (24)

The value of gorb is evF R/2. The evolution of the matrix elements, both calculated numerically and analytically, is shown in
Fig. 7(b), for a CNT (12,6)×400—twice wider than the (6,3) shown in Fig. 5. While the n′ = n elements exhibit one resonance,
at κ̄ = κn = π/λ, for the n′ �= n another resonance appears at high λ, corresponding to �κ = π/λ. The numerical and analytical
matrix elements show excellent agreement, except for α

σz

n,n′ �=n at high λ. This discrepancy is not yet understood but does not
change qualitatively our results.

The coefficients describing the effect of intermode coupling due to the texture are given by

γ σ0
nn = ESO

∑
l �=n

∣∣ασz

ln

∣∣2 + ∣∣ασx
nl

∣∣2

El − En
, γ τ0

nn = ESO

∑
l �=n

∣∣βτz

nl

∣∣2

El − En
, γ σzτz

nn = ESO

∑
l �=n

β
τz

nl α
σz

ln + α
σz

nl β
τz

ln

El − En
, (25)

γ σxτz
nn = ESO

∑
l �=n

β
τz

nl α
σx
ln + α

σx
nl β

τz

ln

El − En
, γ

σy
nn = iESO

∑
l �=n

α
σz

nl α
σx
ln − α

σx
nl α

σz

ln

El − En
, (26)

where ESO = hvF /λ, as before. Both analytical models re-
produce nicely the numerical results, as shown in Fig. 8,
with the full model [Eqs. (6) and (7)] yielding a slightly
better quantitative agreement with the numerics than the
Schrieffer-Wolff transformed projection on a single mode
[Eqs. (8) and (9)]. Eigenstate spins are oriented predominantly
in the z direction, except when α

σx
nn′ becomes significant.

Interestingly, the synthetic spin-orbit depends strongly on
the phase δ—even for λ = 200TCNT = L/2, where both
Bosc,x and Bosc,z components average out to 0, the levels
which are degenerate at δ = 0 become strongly split when

δ = 90◦. This confirms again that the interplay between
the nanotube’s wave functions and the profile of the tex-
ture is a crucial factor determining the synthetic spin-orbit
coupling.

F. Magnetic texture and external magnetic field

In order to model the dependence of the synthetic spin-
orbit coupling on the external magnetic field, we take as our
starting point the results of the micromagnetic simulations
discussed in E and adjust their output parameters, guided by
the experimental data.
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(a)

(b) (c)

FIG. 7. Perturbation caused by the cycloidal magnetic field. (a) Transmission through a (12, 6) × 400 CNT (d = 1.25 nm, L = 451 nm),
with Bosc = 10 T, δ = 0, and �L = �R = 0.1 meV, displaying the longitudinal mode numbers for each valley/spin quadruplet. Dashed white
lines mark the values of λ0 for which the results shown in Fig. 9 were obtained. The cycloidal field does not couple different valleys, but it
can mix both spins and the longitudinal modes [cf. Eq. (6) and (7)]. The matrix elements within each longitudinal mode ασx

nn , ασz
nn, and βτz

nn

are shown in column (b), the matrix elements between mode n′ = 4 (chosen for illustration) and modes n �= 4 are shown in column (c). The
horizontal axis is [(κn + κn′ )/2 + π/λ] L/π , showcasing the common resonance (or antiresonance in case of ασx ) at 0.

Based on the results shown in Fig. 15, we model the varia-
tion of Bosc as

λ(Bext ) = λ(0) + dλ

dBext
Bext,

Bosc(Bext ) = Bosc(0) + dBosc

dBext
Bext. (27)

The parameters in the simulations take the values λ(0) =
112 nm, Bosc(0) = 0.234 T, dλ/dBext = −93 nm/T, and
dBosc/dBext = −185mT/T.

The first adjustment is based on the MFM data, shown in
Fig. 1(c) with λ � 160 nm, thus we modify λ(0) upwards.

Since the experimental results display few kinks, λ(0) is
likely close to an integer fraction of L, where En(λ) do not
feature many crossings (cf. Fig. 8). We choose three initial
values of λ(0), namely L/3 = 149.9 nm, L/2 = 225.4 nm,

and L/2.2 = 202.9 nm.
The second adjustment is motivated by the giant gorb values

recorded in the experiment. They indicate a much stronger
influence of the magnetic texture than the value of Bosc(0) =
0.234 T would imply. The texture may be interacting with
the nanotube not only through the stray field, but also by
direct exchange interaction mediated by impurities [24] in
the aluminium oxide thin layer separating the texture and
the nanotube. Since we cannot reliably estimate the correct
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FIG. 8. Numerical vs analytical results. Comparison of the numerical results from a transmission calculation (greyscale background, dark
corresponds to transmission peaks) and the analytical model (colored points), either diagonalizing the full analytical Hamiltonian [Eqs. (6)
and (7)] with the first 32 states (leftmost two panels) or the Schrieffer-Wolff transformed Hamiltonian [Eq. (8)] projected onto each mode
(remaining panels). Color denotes the orientation of the eigenstate’s spin in the xz plane, θxz = arctan(〈sx〉/〈sz〉).

Bosc, we keep our initial value of Bosc(0) = 10 T and rescale
dBosc/dBext by a factor of 10/0.243—this rescaling is the
most arbitrary step in our simulation. As shown in the main
text and in Fig. 9, the resulting evolution of energy levels in
Bext displays low field slopes consistent with the giant geff

factors observed in the experiment. In order to correctly model
the effect of the texture we would need both a better under-
standing of the exchange interaction between the texture and
the nanotube, and the knowledge of the nanotube’s diameter
and chirality.

All the above discussion allows us to fully justify both
the low-energy Hamiltonian derived from the Schrieffer-
Wolf transformation as well as the basic dependence of the

parameters entering in it as a function of the control param-
eters of the systems like the characteristic oscillation period
of the texture as well as the external magnetic field. As
shown in Fig. 4(d), we are able to reproduce the observed
findings using the assumption that the magnetic field de-
pendence is symmetric. The energy levels correspond to an
electron filling n1=11 for the left dot and n2=23 for the right
dot.

The assumption of symmetric dependence of the magnetic
properties entering in the model Hamiltonian, while not fully
obvious in the free energy of the magnetic system, is natural if
one assumes that the magnetic system is always in its ground
state, which should be symmetric with respect to positive and

 

(a)

(b)

FIG. 9. Evolution of the CNT energy levels in external magnetic field Bext. (a) Energy levels of a (12, 6) × 400 CNT (d = 1.25 nm, L = 451
nm) nanotube, with initial Bosc = 10 T, δ = 0 and initial λ0 indicated in the plot. The variation of Bosc and λ with Bext is given in the text. From
the low-field linear fits shown with dashed black lines, the effective geff values shown in (b) are extracted, through geff = �E/(μB �Bext/2).
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negative magnetic field. This is therefore not a very strong
assumption. The most surprising result of our study is the
10 T of field amplitude needed to explain the observed effects.
Exchange effects are expected to have the same qualitative be-
havior as stray fields since they also follow the magnetization
profile but are expected to be much larger as far as magnitude
and inhomogeneity are concerned. The real space modeling
performed above shows that we are not missing anything
in the low-energy effective theory. As a consequence, the
outcome of our study is that magnetic fields with the same
spatial dependence as that we have characterized but much
larger amplitude than possible through stray field effect are
needed to explain our data. The only mechanism possible for
that is through an exchange interaction which will have to be
studied in future works. We admit that this is a hypothesis
at this stage which is substantiated by the large values of the
effective Landé factors. This is why we think that the simple
model is important. Overall, the simple double quantum dot
model with inhomogeneous very large Landé factors is the
simplest explanation which stems from the giant dispersion of
the spinful states as a function of the magnetic field. In order
to further substantiate this, low temperature measurements of
the evolution of the magnetic texture in particular would be
very insightful.

V. QUANTITATIVE MODELLING
OF THE MAGNETO-SPECTROSCOPY

We study now in detail the evolution of the phase contrast
dispersion for different dot orbital states, labeled with indices
iL and iR, obtained for different VgR-VgL gate configurations.
Figure 10(a) displays the corresponding measurements of the
phase contrast as a function of Bext-Ed for several bonding–
antibonding transitions in the staggered sample, subsequently
named interdot transitions. As expected for an orbitally sensi-
tive phenomenon and illustrated in Figs. 3(b) and 3(c), there
are strong qualitative variations for the phase contrast disper-
sion depending on the considered orbital states. The observed
dispersions range from a “v-shape” going up or down to a “w-
shape” going up or down, the reversed “w-shape” of Fig. 2(d)
being one particular example. In addition, there are changes
in the magnitude and sign of the phase contrasts as a function
of the external magnetic field. As a consequence, these mea-
surements show that there are spinful levels whose dispersions
change as the orbital part of the wave function is changed,
as expected for spin-orbit interaction. Since, like in Fig. 2(d),
the dispersion is greater than the width of the phase contrasts
stripe, we are led to conclude that the spin-orbit interaction
engineered in our setup is in the strongly inhomogeneous
regime, i.e., has a staggered character between the two dots.
This means that our setup can be a building block for longer
chains which could host topological excitations. This is the
main result of our work.

We now show that we can explain quantitatively our find-
ings for the existence of a staggered spin-orbit interaction.
The numerical calculations of the nanotube spectrum in a
cycloidal field confirm our analytically obtained low-energy
Hamiltonian. It is enough to consider the ground and first
excited state of such a Hamiltonian here since we are in-
terested in the quasi resonant response of the DQD to the

(a)

(b)

FIG. 10. Orbital effect on spinful transitions. (a) Measured
Bext-Ed phase shift maps for several interdot transitions in the main
sample, labeled by indexes iL and iR from an arbitrary origin iL0, iR0.
The colorbar scale is symmetric and its maximum value is given by
�φm displayed for each interdot transition (iL, iR ). (b) Simulations of
the cavity phase shift signal for the interdot transitions of (a) using
the local fields and effective g model.

cavity photons. This leads us to consider our device using a
two level system Hamiltonian which can be mapped onto an
effective spin qubit model [8,25]. The left and right dots are
subject to a local effective field BL(R) with a relative angle θ

in the x − y plane and have effective Landé factors gL(R). As
shown in Figs. 3(b) and 3(c), these effective parameters stem
from the interplay of the local magnetic field modulations
and the electronic wave function and, while they are related
to the magnetic texture, do not map directly onto the real
magnetic field “felt” by the electrons. We therefore consider
them as fitting parameters. The external magnetic field Bext

is applied along the CNT axis z and BL is taken along the x
axis. All the ingredients of such a low-energy model can be
obtained by considering the effect of the magnetic texture on
a carbon nanotube. In particular, the perturbed spinful energy
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levels acquire a magnetic field dependent orbital part which
strongly renormalizes the effective Landé factors. Since the
magnetic field dispersion of the spinful levels in each dot is
related to the overlap between the electronic wave function
and magnetic texture stray field, there are two ways to control
it, either by detuning each dot or by changing the value of the
external magnetic field, as illustrated in Figs. 3(b) and 3(c).
As shown in Fig. 10(b), we can quantitatively reproduce the
variety of experimental observations. The obtained orders of
magnitude of BL(R), θ and gL(R) are 100–500 mT, 0–0.95π ,
1–200, and t ≈ 3–7 GHz. Besides the qualitative dependence
on the orbital and inhomogeneity, it is worth noticing that
the extracted values of Landé factors are much larger than
the observed values in the literature [22,26,27] and in our
control devices. This allows us to rule out a simple orbital
effect for our measurements. All these facts confirm that we
have achieved the strong inhomogeneity regime of spin-orbit
interaction.

As a conclusion, we have demonstrated using high reso-
lution microwave spectroscopy that magnetic textures can be
used to engineer strong changes in the magnitude and direc-
tion of a synthetic spin-orbit interaction. As such, our device
is an elementary two site chain which can display a staggered
spin-orbit interaction. Importantly, our approach is scalable in
the sense that many such sites can be built lithographically and
compatible with a single single wall carbon nanotube using
our nanoassembly technique. Since nanotubes CVD grown
easily span 30 μm, we can envision 10–20 site chains to be
built experimentally. Such a synthetic material could have
important applications for the engineering of topologically
nontrivial states either Majorana mode related if combined
with superconductors using the central electrode as both a gate
and a contact or more generally charge and spin magnetically
textured states.
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APPENDIX A: FITTING DETAILS

The electronic temperature is taken to be Te = 150 mK.
gorb = 10, �KK ′ = 6 GHz, and κ = 5.5 MHz. �φ,v =
�φ,s = 1 MHz by default. As gorb is taken identical on
the left and right dot (we assume that the filling is not very
different in the two dots [14,26]), it has no effect on the
dispersion which is only sensitive in gradients. The cavity
resonance frequency fcav and the drive frequency fd are
magnetic field dependent with values ranging from 6.415 to
6.43 GHz. Exact values of fcav(Bext ) = fd (Bext ) are taken
from characterization of the cavity resonance shift with Bext,
as shown below.

APPENDIX B: WIDTH OF AN INTERDOT TRANSITION
CAVITY SIGNAL

In order to understand the shape of the phase (and am-
plitude) signal of the transmitted cavity field [Eq. (1)],
we will consider the case of a single transition from the
model above, for the sake of simplicity. We thus have fi j =
fq =

√
E2

d + 4t2, gi j = g̃ = g0t√
E2

d +4t2 , and ni − n j = n+ −
n− = 1

Z (eE+/kBTe − eE−/kBTe ) with E± = ± 1
2

√
E2

d + 4t2, Z =
eE+/kBTe + eE−/kBTe and kB the Boltzmann constant. It yields

n+ − n− = tanh(
√

E2
d +4t2

2kBTe
) Note that populations are estimated

with Boltzmann factors as we restrict to the single particle
situation which is equivalent to considering the noninteracting
case. In addition, the cavity readout drive is set to fd = fcav

giving

T = κ/2

−iκ/2 − g2
0

8t

√
1+

(
Ed
2t

)2

1√
1+

(
Ed
2t

)2
− fcav

2t −i �2
4t

tanh
(

t
kBTe

√
1 + (Ed

2t

)2) , (B1)

as a function of Ed/2t , with �2 = �1 + �φ/2. Typical energy
scales for our experiments are g0 ∼ 20 MHz, �2 ∼ 1 GHz
for the charge, fcav ∼ 6 GHz ≡ 0.3 K and Te = 0.8 − 0.15 K.
We consider three different regimes of t for characterizing the
width of the cavity phase signal which is approximately equal
to �φ = 2

κ
Re[χ ](n+ − n−).

(1) t � h fcav/2 implying t � �2/4 and t � kBTe. In this
regime, tanh ≈ 1 and �φ reduces to

�φ ≈ 2

κ

g2
0

8t

1[
1 + (Ed

2t

)2]3/2 , (B2)

which varies on an energy scale 2t and has a width at half
maximum of about 3t and whose amplitude decreases as 1/t .

(2) t > h fcav/2 implying t � �2/4 and t � kBTe. In this
regime, tanh ≈ 1 and �φ reduces to

�φ ≈ 2

κ

g2
0

8t

1[
1 + (Ed

2t

)2]3/2

1

1 − fcav√
E2

d +4t2

, (B3)

still varying on an energy scale 2t and whose width at half
maximum is larger than in the previous regime, thus larger
than 3t .

(3) kBTe < t < h fcav/2. In this regime, Eq. (B1) cannot
be simplified. The two energy scales on which �φ varies
are 2t (as in previous regimes) and

√
f 2
cav − 4t2, which sets

when the function changes signs at the resonance between the
transition and the cavity resonance frequency. As t decreases
from fcav/2, the width of the phase signal increases from �3t
to ≈2

√
f 2
cav − 4t2.
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(a)

(b)

FIG. 11. Magnetic characterization on control device. (a) False-
color SEM image of the control device, with the CNT appearing in
white. The external orange gate is connected to the cavity central
conductor. The two lateral blue gates are made of CoPt. (c) MFM
phase cut of the sample, acquired in lift mode, displaying no modula-
tions above the magnetic gates (blue region). We attribute this both to
the single domain structure of the stripes “seen” by the nanotube and
to the weaker magnetic stray field produced by the layer as compared
to the one of the staggered device. The large dips in the MFM signal
are due to spurious topographic effects.

(4) t � kBTe < h fcav/2. In this regime, tanh → 0 as the
two states become equally thermally populated and the cav-
ity phase signal drops to zero. Interdot transitions with
t � kBTe are thus hardly measurable. Typically h fcav ≈
2 − 5kBTe in our experiments thus in the resonant regime
(t < h fcav/2) only interdot transitions with t ∼ h fcav are
observed.

APPENDIX C: CONTROL SAMPLE CHARACTERIZATION

We have reproduced the magnetic characterization of the
magnetic electrodes in the case of the control sample, us-
ing equivalent scan settings for magnetic force microscope
(MFM) and a similar magnetic tip. An SEM observation of
the gates geometry [Fig. 11(a)] is added to the MFM data
in Fig. 11(b). Only a small variation of the phase contrast
occurs between the gates due to topographic cross-talk, which

FIG. 12. 2D MFM image of the magnetic gates of the main
device. MFM measurements of the gates of the main device showing
the domain pattern of the CoPt stack. The domain structure is disor-
dered but a 1D cut displays quasiperiodic contrast since the domain
size distribution is peaked around ≈100 nm.

indicates a negligible contribution of the magnetic stray fields
from the gates at the dot locations.

APPENDIX D: TRANSPORT VERSUS CAVITY
MEASUREMENTS

It is important in this note to make a difference between
our cavity measurements and the usual transport measurement
made by the community. As explained in the main text, our
measurements focus on the interdot transitions which do not
change the total number of charge carriers on the nanotube
device. Our measurements are sensitive to internal transitions
between the ground state and the first excited state of the
DQD spectrum. This contrasts with the transport measure-
ments which are directly sensitive to changes in the ground
state corresponding to particle nonconserving processes. In
addition, although transport experiments are a priori sensitive
to internal transitions indirectly also, they do not allow one
to directly probe the hopping between the two dots with a
conventional low-frequency setup.

APPENDIX E: MICROMAGNETIC SIMULATIONS
OF CO/PT MULTILAYER GATES

In this Appendix, we describe the results of micromagnetic
simulations, modeling the cycloidal magnetic texture adopted
in the Co/Pt multilayer gates of sample 2, and the magnetic
stray field patterns that they produce. The simulations have
been performed for different values of the external magnetic
field Bext = μ0Hext, in order to obtain the external field depen-
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dence of the details of the magnetic texture. The experimental
MFM 2D map of our magnetic textures is represented in
Fig. 12.

These numerical simulations are performed for magnetic
domains with uniform magnetization along the direction of
stripes orientation (labelled y). We use a custom made micro-
magnetic solver to perform minimization of the functional

1

Nλ

N∑
i=1

∫ λ

0
dxA[∇−→m (i)]2 + D

[
m(i)

z ∇.−→m (i) − (−→m (i) · ∇ )m(i)
z

] − Ku
[
m(i)

z

]2 − μ0Ms
−→
Hext · −→m (i) (E1)

−μ0Ms

2
−−→
Hdem

(i) · −→m (i) − μ0MsHiec

2
[−→m (i) · −→m (i−1) + −→m (i) · −→m (i+1)], (E2)

whose magnetic interaction terms are defined below, which
describes the micromagnetic energy density of an ensemble
of N magnetic layers whose translationally invariant mag-
netic profiles −→m (i)(x) have a defined periodicity λ along the
direction transverse to the domains (designated x). The thin
magnetic layers have a uniform magnetization across their
thickness, but the −→m (i)(x) can be different in the N layers.
Here, −→m refers to the reduced magnetization vector, being
the volume magnetization

−→
M normalized by the saturation

magnetization Ms. The second line of Eq. (E1) accounts for
the interaction between the magnetic layers. The demagnetiz-

FIG. 13. Example magnetic profile obtained for λ = 100 nm and
Bext = 100 mT. Each panel displays the three component of the
magnetization vector mx (x) (blue), my(x) (orange), and mz(x) (black)
in layer i.

ing field
−−→
Hdem

(i) is computed in each layer i by solving the
magnetostatic potential equations with the magnetic profiles−→m (i)(x) in all layers as the source term. The interlayer ex-
change coupling term takes into account the direct electronic
coupling between the magnetization in successive layers, here
separated only by a thin Pt layer. The −→m (i) · −→m (i−1) and−→m (i) · −→m (i+1) terms are not present for layer i = 1 and i = N ,
respectively.

We proceed with the simulation of a magnetic system of
size λ that contains two magnetic domains up (mz > 0) and
down (mz < 0), respectively, and implement periodic bound-
ary conditions in x, thus modeling the continuous magnetic
texture of the Co/Pt electrodes. The magnetization in the
domain boundaries is initialized in-between Néel and Bloch
configurations, thus with |mx(x)| = |my(x)|. The period λ is
discretized into 128 cells, and we consider N = 10 layers.
By varying λ at a given Bext along y, we are able to find the
domain period λ minimizing the overall magnetic energy and
therefore get the field-dependent period λ(Bext ). The ten mag-
netic layers each have a thickness t = 1.5 nm, and are spaced
vertically with a periodicity p = 2.5 nm. The values of the
magnetic parameters for each Co layer inside the Co/Pt multi-
layer are symmetric exchange term A = 10 pJ/m; asymmetric
exchange term D = 0 mJ/m2 (Dzyaloshinskii-Moriya inter-
action terms are overall compensated due to the symmetric
repetitions of Pt and Co); perpendicular magnetic anisotropy
energy Ku = 1.0 MJ/m3 (which corresponds to an effective
anisotropy Keff = 0.1 MJ/m3 for a planar system); and satu-
ration magnetization Ms = 1.2 MA/m for Co, as determined
by SQUID magnetometry performed on patterned devices. In
addition, the direct electronic coupling between the Co layers
through Pt is taken into account by an interlayer exchange
term Biec = 1.0 T.

An example of minimized magnetic domains profile ob-
tained for λ = 100 nm and Bext = 100 mT is displayed in
Fig. 13. The orientation of the magnetization inside the do-
main walls rotates across the different layers, from Néel
(|mx(x)| > |my(x)|) in the bottom layers to Bloch (|mx(x)| <

|my(x)|) configuration in the central layers, and to Néel again
in the top layers, due to interlayer dipolar interactions.

The results of the energy minimization procedure are
shown in Figs. 14(a) and 14(b). The red line in Fig. 14(a)
indicates the domains period λ(Bext ) minimizing the micro-
magnetic energy density at each value of the external field.
This line is reported in Fig. 14(b), which displays the ampli-
tude of the cycloidal dipolar stray field |Bosc| generated at a
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(a) (b)

FIG. 14. Micromagnetic energy minimization results. (a) Micromagnetic energy density E in the magnetic layers as a function of domains
period λ and external field Bext. (b) Amplitude of the cycloidal stray field |Bosc| at 10 nm above the magnetic layers as a function of domains
period λ and external field Bext . In each panel, a red line indicates λ(Bext ) minimizing the micromagnetic energy density.

height of 10 nm above the texture, considered the height of
the CNT lying directly on the electrodes. Note that λ(Bext )
is also the period of the cycloidal stray field generated above
the electrodes. The evolution of λ(Bext ) and |Bosc|(Bext ) is re-
ported in Figs. 15(a) and 15(b), respectively. Linear fits to the
discrete simulation data points provide figures for the external
field susceptibility of the cycloidal dipolar stray field period
and amplitude, providing λ = 112 nm - (93 nm/T) Bext (T)
and |Bosc| = 234 mT - (185 mT/T) Bext (T). These relations
are used for the numerical computation of the CNT spectra as
a function of the external field.

The cycloidal dipolar stray field Bosc is analyzed in more
details in Fig. 16. The spatial evolution of the horizontal Bosc,x

and vertical Bosc,z components of the cycloidal dipolar stray
field above the texture are shown in Figs. 16(a) and 16(b),
respectively. The oscillating components of the field along the
CNT are reported in Fig. 16(c).

APPENDIX F: ADDITIONAL INFORMATION
ON THE INTERDOT TRANSITIONS DISPERSIONS

OF FIG. 4 OF THE MAIN TEXT

1. Magnetic field dependence of the cavity resonant frequency

The Nb resonator resonance frequency shifts with the
applied external magnetic field. The magnetic field and fre-
quency dependence of the resonator transmitted microwave
signal amplitude is shown in Fig. 17(a), taken simultaneously
with the dispersion of the interdot transition (iL − iL0, iR −
iR0) = (1, 1). At a given magnetic field, the frequency is swept
at an off resonant point of the interdot transition (large detun-
ing), then the resonance frequency f (B) is extracted and used
for the detuning sweep of the interdot transition dispersion
measurement. Several background modes are present, which
show no dispersion in magnetic field but hinder a precise esti-
mation of the evolution of the cavity line width κ (B). We find

(a) (b)

FIG. 15. Simulated field evolution of the cycloidal dipolar stray field. (a) Period λ against external field Bext. (b) Cycloidal field amplitude
|Bosc| against external field Bext. In each panel, circles are the micromagnetic simulation points and the line is a linear fit to these points.
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(a)

(b)

(c)

FIG. 16. Cycloidal dipolar stray field generated above CoPt.
(a) Spatial evolution of x-component Bosc,x above the texture. The
red line indicates the cut at z = 10 nm (along the CNT) of Bosc,x

displayed in (c). (b) Spatial evolution of z-component Bosc,z above
the texture. The black line indicates the cut at z = 10 nm (along the
CNT) of Bosc,z displayed in (c). (c) Cut along the CNT of the two
components of the cycloidal dipolar stray field.

that a constant value κ/(2π ) = 5.5 ± 0.5 MHz is appropriate,
as the evolution of κ (B) is of the order of its uncertainty and
its value being 3 to 4 times smaller than the dispersion of f
which has negligible effect on the simulation of the signal.
Dispersions of the cavity resonance frequency simultaneously
acquired with all interdot transition dispersions maps of Fig. 4
of the main text are displayed in Fig. 17(b) showing a robust
and reproducible behavior.

2. Summary of the fit parameters of Fig. 4 of the main text

The parameters of the fits for each interdot transitions of
Fig. 4 of the main text are presented in Fig. 18 as color coded
matrices.

3. Details of each interdot transition dispersion in magnetic field
and detuning

In this section, we show detailed analysis of each interdot
transition presented in Fig. 4 of the main text. Figures 19–34
of this section presents the B-ε/h maps of phase variation �φ

[panels (a) and (b)] (same data and fits as in Fig. 4 of the main
text) and amplitude relative variation �A/A [panels (d) and
(e)] of the microwave signal signal, relative to an off value
far from the transition. A cut along the resonance condition
ωDQD = ωcav, indicated by a red dashed line, is shown for both
the data and fits for both �φ [panel (c)] and �A/A [panel (f)].
Additionnaly, a cut at fixed B, indicated by an orange dashed
line, is shown for both the data and fits for both �φ [panel
(g)] and �A/A [panel (h)]. Finally, a table presenting all the
fitting parameters of the given interdot transition is presented
[panel (i)].
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FIG. 17. Magnetic field dependence of the cavity resonant frequency. (a) Magnetic field and frequency map of the microwave signal
amplitude simultaneously measured with the dispersion of the interdot transition (iL − iL0, iR − iR0) = (1, 1). The position of the resonance
frequency is shown as a blue line. (b) Resonance frequency as a function of magnetic field simultaneously acquired with all interdot transition
dispersion measurements of Fig. 4.
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FIG. 18. Fitting parameters. Summary of all the fitting parameters used in Fig. 4(b).
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FIG. 19. Interdot transition (iL0, iR0).
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FIG. 20. Interdot transition (iL0, iR0 + 1).
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FIG. 21. Interdot transition (iL0, iR0 + 2).
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FIG. 22. Interdot transition (iL0, iR0 + 3).
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FIG. 23. Interdot transition (iL0 + 1, iR0).
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FIG. 24. Interdot transition (iL0 + 1, iR0 + 1).
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FIG. 25. Interdot transition (iL0 + 1, iR0 + 2).
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FIG. 26. Interdot transition (iL0 + 1, iR0 + 3).
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FIG. 27. Interdot transition (iL0 + 2, iR0).
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FIG. 28. Interdot transition (iL0 + 2, iR0 + 1).
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FIG. 29. Interdot transition (iL0 + 2, iR0 + 2).
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FIG. 30. Interdot transition (iL0 + 2, iR0 + 3).
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FIG. 31. Interdot transition (iL0 + 3, iR0).
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FIG. 32. Interdot transition (iL0 + 3, iR0 + 1).
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FIG. 33. Interdot transition (iL0 + 3, iR0 + 2).
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