
PHYSICAL REVIEW B 107, 085145 (2023)

Electrical and thermal conductivity of fcc and hcp iron under conditions of the Earth’s
core from ab initio simulations
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We use ab initio simulations based on density functional theory to calculate the electrical and thermal
conductivity of solid iron in face-centered cubic and hexagonal phases at high pressures and temperatures
up to Earth’s core conditions. Both our electrical and thermal conductivities increase systematically with
density and reasonably follow the Wiedemann-Franz law, in particular at low temperatures. A trend towards
density-independent thermal conductivity observed in recent experiments is not supported by our calculations.
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I. INTRODUCTION

The electrical and thermal conductivity of iron play an
important role in the stability and evolution of planetary
magnetic fields [1]. Liquid iron dominates the dynamo-active
outer core in terrestrial planets, and solid phases in the inner
core–at least for Earth and Mercury [2,3]–may influence the
generation of magnetic fields [4]. At the high pressure (P)
of planetary interiors, experiments show that close-packed
phases exist along the melting curve, with the triple point
between the face-centered cubic (fcc), the hexagonal close
packed (hcp) phases, and the liquid located at P = 90 −
110 GPa and temperature T = 2800 − 3400 K [5–7]. Despite
the lack of experiments indicating its presence [8,9] at condi-
tions of the Earth’s core (P > 135 GPa and T � 4000 K [10]),
the possible occurrence of the body-centered cubic (bcc)
phase predicted by some molecular dynamics simulations [11]
remains a topic of debate in mineral physics. However, the
consideration of this phase is beyond the scope of the current
manuscript.

The past decade has seen significant advances [12–14] in
both experimental [15–20] and computational studies [21–31]
on high-P conductivities of iron and some of its alloys, but
no study has systematically investigated the effect of crystal
structure on electronic transport; only the difference between
the solid and liquid phases has been considered, for the sys-
tematic jump in electrical (σ ) and thermal conductivity (λ)
[21–23,28]. Here we compare σ and λ of the fcc and hcp
phases and explore their anisotropy in the hcp phase. We do
so by performing finite-temperature density functional theory
(FT-DFT) calculations. This method allows for a description
of the electronic and ionic structure of iron from first princi-
ples and has been successfully applied also to other metals,
e.g., lithium [32], molybdenum [33], and aluminum [34,35].

II. THEORY AND METHODS

A. Density functional theory and molecular dynamics

We describe our system with a combination of FT-
DFT [36–38] for the electrons and classical molecular

dynamics (MD) for the atoms, based on the Born-
Oppenheimer approximation [39], using the Vienna Ab
initio Simulation Package (VASP) [40–42] in version 5.4.4.
Electronic exchange and correlation (XC) effects are approx-
imated with the functional of Perdew, Burke, and Ernzerhof
(PBE) [43]. We use a projector augmented wave (PAW) poten-
tial [44–46] with 8 valence electrons ([Ar]4s13d7, PAW_PBE
Fe_GW) for the electron-ion interaction, and a plane-wave
cutoff of 1200 eV. The electronic wave functions are calcu-
lated at the � point for the hexagonal structure and at the
Baldereschi mean value point [47] for fcc. For convenience,
an orthorhombic supercell is used to describe the hexagonal
structure [48], which yields equivalent results [49]. Temper-
ature is controlled by a Nosé-Hoover thermostat [50,51]. All
FT-DFT-MD simulations are performed with a time step of
2 fs and are run for 2–10 ps. Most of these numerical param-
eters were also used in previous work [29] and we confirm
them to yield converged results. We run our simulations
at densities ρ = 9.00, 10.36, 12.00, 13.55 g/cm3 and T =
1850, 3350, 4350, 6350 K. We carefully monitor the struc-
tures through the pair distribution function during the MD
simulations to see whether they remain solid and stay in the
same symmetry.

Our present calculations exclusively employ the spin-
degenerate version of DFT, and calculations in the liquid
phase show that this approximation is physically reasonable
at P > 50 GPa (ρ ∼ 9.5 g/cm3), where liquid iron loses its
paramagnetic properties [29].

B. Electronic transport coefficients

From each of the equilibrated FT-DFT-MD simula-
tions, we take 10–30 uncorrelated ionic configurations
and run static FT-DFT calculations to compute the elec-
tronic transport properties, and average the results over
configurations. We evaluate the following expressions for
the Onsager coefficients derived from linear response
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theory [52,53]:

Ln(ω) = 2π (−1)n

V ω

∑
kνμ

Re(〈kν|v̂|kμ〉 ⊗ 〈kμ|v̂|kν〉)

× ( fkν − fkμ)

(
Ekμ + Ekν

2
− he

)n

× δ(Ekμ − Ekν − h̄ω), (1)

with frequency ω, the reduced Planck constant h̄, the volume
of the simulation box V, the matrix elements 〈kν|v̂|kμ〉 with
the velocity operator v̂ and Bloch states |kμ〉, energy eigen-
value Ekμ, Fermi occupation number fkμ and the enthalpy
per electron he. The matrix elements 〈kν|v̂|kμ〉 are calculated
from the dipole matrix elements 〈kν|r̂|kμ〉1 that take into
account the nonlocal contributions from the PAW potentials
and are implemented in the optical routines of VASP [53,54].
A Gaussian function is used to broaden the δ function to a
small finite width.

The static electrical conductivity is given by

σ = e2 lim
ω→0

L0(ω), (2)

where e is the elementary charge. The coefficient L0(ω) is
known as the ω-dependent Kubo-Greenwood formula [55,56].
The thermal conductivity reads

λ = 1

T
lim
ω→0

(
L2(ω) − L1(ω)L−1

0 (ω)L1(ω)
)
. (3)

In practice, the static electrical and thermal conductivities are
derived by linear extrapolations to ω = 0 across an unphysical
decrease at very small ω (Fig. 3 in the Supporting Online
Material [57]).

The electrical and thermal conductivity are related by the
Lorenz number, which is given by

L = λ

T σ

(
e

kB

)2

, (4)

with the Boltzmann constant kB. In the degenerate limit, the
Wiedemann-Franz law [58,59] describes this ratio between λ

and σ by the constant value of π2/3 [60].
The static FT-DFT calculations are run with an energy

cutoff of 400 eV [29] and several different Monkhorst-Pack
k-point sets in the irreducible wedges of the Brillouin zones
of the ideal crystalline supercells [61], similar to previous
work [33,62]. Our convergence tests on particle number
and k points (see Tables I-III in the Supporting Online
Material [57]) show that it is necessary to consider at least
288 atoms and a reduced wedge Monkhorst-Pack k-point set
of 4 × 4 × 4 in case of the hexagonal (orthorhombic) system
and 256 atoms and a reduced wedge Monkhorst-Pack k-point
set of 4 × 4 × 4 for the fcc structure to get results for σ and
λ that are converged to 1–6%, depending on density ρ and
T . Further, we quantify the influence of the pseudopotential,
which somewhat affects the ionic configurations generated

1This procedure is only applicable to the off-diagonal matrix ele-
ments. However, diagonal matrix elements (electron velocities) do
not contribute in Eq. (1).

FIG. 1. Dependence of the c/a ratio in hexagonal iron on den-
sity at T = 0. DFT results are shown as green dots (pressure
method) and black diamonds (energy method) compared to the ideal
hcp ratio (blue line). Results are fitted (red) with an analytical
function, Eq. (5).

from the FT-DFT-MD simulations and, consequently, conduc-
tivities in Figs. 1 and 2 of the Supporting Online Material
[57]. Compared to a hard potential with 16 valence electrons,
σ is lower by 5% compared to the 8-valence electron poten-
tial. Combining these accuracy assessments, we estimate an
uncertainty of 10% for the calculated transport properties.

C. Static DFT calculations for hexagonal iron

Before discussing the FT-DFT-MD simulations, we ex-
amine the equilibrium geometry of hexagonal iron at T = 0
with static DFT calculations. By adjusting the c/a ratio at
given ρ until the diagonal elements of the pressure tensor
are equal, we find hydrostatic ratios for densities between
4.35 and 26.5 g/cm3, and test this approach by minimizing

FIG. 2. Static c/a ratios of hexagonal iron calculated in the pres-
sure range up to 350 GPa. Our results from Eq. (5) are shown as a
black line, and compared to other DFT calculations by Gannarelli
et al. [63] (blue triangles) and Kádas et al. [65] (green diamonds).
Also shown are experimental data at room T by Dewaele et al. [66]
(open blue triangles), Edmund et al. [67] (open red squares), and Ma
et al. [68] (open red triangles).
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TABLE I. Coefficients for Eq. (5).

b0 b1 [cm3/g] b2 [(cm3/g)2] b3 [(cm3/g)3] b4 [(cm3/g)4]
1.591 0.5813 −13.00 88.34 −246.10

total energy as a function of c/a at selected ρ. For these
calculations we use a hexagonal cell with two atoms and a
Monkhorst-Pack k-point mesh of 39 × 39 × 30 and an energy
cutoff of 1200 eV, which is sufficient to converge all pressure
tensor components.

III. RESULTS

A. c/a ratio at zero temperature

The hydrostatic c/a ratio at T = 0 is always smaller than
the ideal hcp ratio of

√
8/3 ≈ 1.633 (Fig. 1). It decreases

strongly toward low ρ and approaches a constant value of
∼1.60 for high ρ. Numerically, we fit our results to

c

a
(ρ, T = 0) = b0 + b1

ρ
+ b2

ρ2
+ b3

ρ3
+ b4

ρ4
, (5)

with coefficients given in Table I. Results from equalizing the
components of the pressure tensor and minimizing energy are
fully consistent.

In Fig. 2 we compare our c/a results to other DFT calcu-
lations and experimental data at room T . In the range P =
0 − 350 GPa, our results are in a good agreement with earlier
DFT calculations by Gannarelli et al. [63], Steinle-Neumann
et al. [64], and Kádas et al. [65], the latter with a small
systematic deviation relative to the other results.

Figure 2 also shows measurements by Dewaele et al. [66],
Edmund et al. [67], and Ma et al. [68] at room T , who
provide results in the same P region as the DFT calculations.
Differences of our results to experiments are likely due to the
PBE approximation of the XC functional, assuming T = 0,
and nuclear vibrational quantum effects not considered here.

In the following, we use the c/a ratio from Eq. (5) as a
lower bound in our FT-DFT-MD simulations as the c/a ratio
can be expected to increase with T and, possibly, approach the
ideal hcp value. Experiments of Ma et al. [68] indicate that the
T dependence of the c/a ratio is very weak up to 2750 K.

B. Pressure-temperature conditions

An analoguous determination of the hydrostatic c/a ratios
for each ρ at various T > 0 would require a large amount of
FT-DFT-MD simulations, which we did not attempt. Instead,
we explore the sensitivity of conductivities on c/a by per-
forming the calculations with three different ratios: The static
value from Eq. (5), the ideal value of c/a = √

8/3 ≈ 1.633,
and c/a = 1.61, which lies in between.

Figure 3 shows the P−T conditions generated in our sim-
ulations. All hexagonal and the fcc structures result in very
similar P at given T and ρ, with differences <7%. For nonhy-
drostatic conditions, the average of the diagonal components
of the pressure tensor is taken as total P.

As calculations with the PBE functional do not reproduce
the experimental P−ρ relation correctly, we add a P correc-
tion from Wagle and Steinle-Neumann [10] to mitigate this

FIG. 3. Phase diagram of iron with phase boundaries given by
Anzellini et al. [8], Li et al. [69], and Sinmyo et al. [9]. The symbols
show the pressure-temperature conditions for the simulations we per-
form. Open circles indicate iron in the liquid phase, filled circles the
hcp phase. Also shown are the pressures at the core-mantle (CMB)
and inner core boundary (ICB) in Earth (dashed vertical lines).

inaccuracy. This correction has a more pronounced effect for
calculations at ρ = 9 g/cm3, where the correction leads to
P = 9 GPa compared to 12 GPa obtained directly from the
simulations. For higher ρ, the P correction becomes smaller
and is almost negligible for our highest ρ values, with 1 GPa
on P = 300 GPa from FT-DFT-MD.

The pair distribution function and particle diffusion reveals
that the solid structures melt into the liquid state at two
conditions (ρ = 9 g/cm3, T = 3350 K and ρ = 12 g/cm3,
T = 6350 K), generally consistent with experimental melting
curves (Fig. 3). Those simulations are excluded from further
processing.

Based on a decrease of the pressure tensor anisotropy at
higher c/a ratio for high T , we infer that the hydrostatic c/a
ratio has to increase with T at given ρ. Nevertheless, the
hydrostatic c/a ratios at arbitrary T fall between the value
calculated for T = 0 (Fig. 1) and the ideal hcp value.

C. Conductivity anisotropy in hcp iron

Our computed electrical and thermal conductivity tensors
show that they are relatively insensitive to the c/a ratio, espe-
cially for T � 3350 K (Tables IV and V in the Supporting
Online Material [57]). Due to the small influence of c/a
on conductivities, we continue the discussion exclusively for
the conductivities of ideal hcp (Figs. 4 and 5). Because of
the hexagonal symmetry, the xx and yy components of the
conductivity tensors, i.e., in the basal plane (indexed with
B) should be equal, which we observe within 4–5% for our
orthorhombic supercells with 288 atoms (Tables I and II in the
Supporting Online Material). This small deviation supports
the good convergence with respect to k points and particle
numbers in our calculations, and we take the mean values of
the xx and yy components as σB and λB.
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FIG. 4. Components of the electrical conductivity tensor for hcp
Fe, σxx (squares), σyy (triangles), and σzz (circles), for different tem-
perature and densities from simulations with 288 atoms. Also shown
are fits for σzz (dashed lines) and σB (solid lines) using Eq. (6).

The zz component of σ and λ in the hexagonal phase is
systematically larger by 3–33% than the basal component.
The magnitude of the anisotropy decreases with T and almost
vanishes at 6000 K. Anisotropy in conductivities for hcp iron
has previously been reported by Xu et al. [27] and Ohta et al.
[70]. Xu et al. [27] predicted σzz > σxx with a combination
of DFT and dynamical mean-field theory (DFT+DMFT) by
a factor of 1.3, comparable to our results. Ohta et al. [70]
measured λzz > λB by a factor of 3–4 at room T , in line with
the T trend of the anisotropy, although with a significantly
larger value.

FIG. 5. Components of the thermal conductivity tensor for hcp
Fe, λxx (squares), λyy (triangles), and λzz (circles), for different tem-
perature and densities from simulations with 288 atoms. Also shown
are fits for λzz (dashed lines) and λB (solid lines) using Eq. (7).

TABLE II. Coefficients for Eq. (6).

Tσfcc TσB Tσzz

c0 [MSK/m] −2477 17490 7464
c1 [SKm2/g] 1434 1136 1555
c2 [MS/m] 0.933 1.684 1.101
c3 [MSK/m] −1228 −3760 −2708

D. Comparison of hcp and fcc conductivities

Results for the basal plane B and zz components of σ and λ

are used for analytical fits. The following expressions, which
allowed for an accurate parametrization of FT-DFT-MD con-
ductivity data for solid molybdenum [33], are used:

T σi = c0 + c1ρ + c2T + c3 ln T, (6)

λi = d0 + d1ρ + d2T + d3 ln T . (7)

Resulting coefficients are given in Tables II and III. Com-
puted conductivities for fcc iron are processed the same way.
These fit formulas are purely empirical and should not be
extrapolated far beyond the underlying points used in the
parametrization.

In Fig. 6 we show electrical conductivities in the fcc phase
compared with the directionally averaged values for the hcp
phase calculated via

σhcp = 2
3σB + 1

3σzz. (8)

The electrical conductivity decreases with T and increases
with ρ, and values for the fcc structure are larger than for hcp
by up to ∼25%. Also shown are plots of the fit functions,
Eq. (6), along isotherms which reproduce the numerical re-
sults very well.

For the thermal conductivity, averaging was done the same
way as for σ , see Eq. (8), and results are shown in Fig. 7.
The thermal conductivity increases with T and ρ for both
structures, and–as for σ–the values in the fcc structure are sys-
tematically larger by up to ∼25%. The fit curves from Eq. (7)
are in a good agreement with the computational results. In-
tersections between them at low T are probably artificial and
should be viewed with caution.

E. Lorenz number

Figure 8 shows the Lorenz number calculated from Eq. (4)
using our conductivity results. The Lorenz number of hcp and
fcc iron decreases with P and increases with T . At low T
the results for L become nearly constant and agree with the
Wiedemann-Franz law [58,59] L = π2/3, within few percent.

TABLE III. Coefficients for Eq. (7).

λfcc λB λzz

d0 [W/(Km)] −137.1 373 315.8
d1 [10−6Wm2/(gK)] 35.29 24.35 35.19
d2 [W/(K2m)] 0.02538 0.05051 0.03958
d3 [W/(Km)] −20.07 −82.2 −83.27
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FIG. 6. Dependence of electrical conductivity on temperature for
given densities for solid iron phases. Results for hcp Fe (triangles) are
compared to those of the fcc phase (diamonds). Fits from Eq. (6) are
shown as solid lines for hcp and dashed lines for fcc.

The T and P dependence of L is somewhat weaker for the
fcc phase than for hcp. At high T , the Lorenz number shows
significantly positive deviations from the Wiedemann-Franz
law that can exceed 10%.

Within the adiabatic approximation, the Wiedemann-Franz
law can be derived from kinetic theory for a fully degen-
erate electron gas, regardless of the scattering mechanisms
of the electrons or complexity of electronic structure [60].
The deviations in our calculations likely arise from thermal
electronic excitations and increasing lattice disorder in the
ionic structure. They cannot be caused by electron-electron

FIG. 7. Dependence of thermal conductivity on temperature for
given densities for solid iron phases. Results for hcp Fe (triangles)
are compared to that of the fcc phase (diamonds). Fits from Eq. (7)
are shown as solid lines for hcp and dashed lines for fcc.

FIG. 8. Lorenz number for iron at high pressure and temperature.
Our results for the hcp (triangles) and fcc (diamonds) phases are
compared to those from Zhang et al. [20] for hcp iron (squares) using
DFT+DMFT. The line indicates the degenerate limit L = π2/3 from
the Wiedemann-Franz law.

collisions, which our method does not account for as DFT
represents a single-particle approximation of electrons [71].
Note that in liquid iron, where electrons are less degenerate,
FT-DFT-MD calculations reproduce experimental data for σ

and λ along a low-P isobar within 10%, while also closely
following the Wiedemann-Franz law [29]. This suggests that
electron-electron scattering is not an important process in iron
at geophysical relevant conditions. Electron-electron scatter-
ing must not be confused with correlations among electrons,
which are important and are approximated with the PBE XC
functional used in our work.

IV. DISCUSSION

A. Comparison of conductivities with other
computations and experiments

In Fig. 9, our FT-DFT-MD results for σhcp are compared
to those of Pozzo et al. [23,24], who applied the same com-
putational approach along two isochores. At ρ = 10.36 g/cm3

(P < 100 GPa) our simulations reproduce the values of Pozzo
and Alfè [24] very well. Larger systematic differences occur
for ρ = 13.55 g/cm3 (in the 300 GPa region), where both
our P and conductivities are lower by 3–10%. While this is
within the stated uncertainity of our results, the difference is
systematic and warrants further consideration that may hint at
possible causes:

(i) We find that the pressure tensor is not converged when
using an energy cutoff of 293 eV as in Ref. [24].

(ii) In some cases we observe that if FT-DFT-MD sim-
ulations for hcp iron start with configurations too far from
equilibrium, structural distortions of the lattice (especially in
the third coordination shell) can occur, which then lead to
inconsistent values in the pressure tensor, for σ , and for λ.

(iii) The extrapolation of σ (ω) to ω = 0 may arrive at
different results, with the linear extrapolation used here (Fig. 3
in the Supporting Online Material [57]) sometimes leading to
larger values than a Drude fit used elsewhere [21].
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FIG. 9. Electrical conductivity of hcp iron as a function of pres-
sure and temperature. Our results (circles) are compared to those
from Pozzo et al. [23,24] (triangles and diamonds) in the same T
and P range.

To compare our conductivity results to experimental data
at arbitrary P and T , we use the Birch-Murnaghan equation of
state for hcp iron by Belonoshko [73] to determine the P corre-
sponding to our fit curves for σ (ρ, T ) and λ(ρ, T ). Resulting
isothermal curves for the electrical and thermal conductivity
as a function of P are compared with diamond anvil cells
measurements in Figs. 10 and 11.

The electrical conductivity is compared to high-T experi-
ments by Ohta et al. [17] and Zhang et al. [20], and a model
resulting from experiments at room T by Gomi et al. [15]
in Fig. 10. Both experimental and computed σ increase with
P and decrease with T . The data of Zhang et al. [20] agree
very well with our values at low P; however, they diverge for

FIG. 10. Electrical conductivity of hcp iron as a function of
pressure for given temperature. Our fit is shown as dashed lines for
four isotherms and compared to experimental data of Zhang et al.
[20] (triangles), Ohta et al. [17] (diamonds), and Gomi et al. [15]
(squares).

FIG. 11. Thermal conductivity of hcp iron as a function of pres-
sure: Experimental data from Konôpková et al. [16] (green squares),
Saha et al. [19] (red triangles: Upward for pressure transmitting
medium NaCl and downward for pressure transmitting medium
Al2O3), and Hasegawa et al. [18] (blue circle) are compared to
the fit of our FT-DFT-MD results for hcp iron evaluated along four
isotherms.

higher P as our σ rises much less steeply than theirs. Gomi
et al. [15] tabulated values for σ at selected geophysically
interesting points, like the core-mantle boundary (CMB) and
inner core boundary (ICB). Their extrapolations to 101 GPa
and 2010 K and the CMB (135 GPa and 3750 K) agree well
with our isothermal model curves at 1850 K and 3350 K;
larger deviations occur for high P and T extrapolations, at
208 GPa and 5220 K and P at the ICB (330 GPa and 4971 K).
Values for σ by Ohta et al. [17] are significantly higher than
ours for all P-T conditions of their experiments. Lobanov
and Geballe [72] suggest that the large discrepancies between
experimental results may originate from P-induced changes of
sample geometry; they semiquantitatively reanalyzed experi-
mental data by Ohta et al. [17] and Zhang et al. [20], and found
that the discrepancy between the measurements decrease, as
well as the difference between our results and experimental
data.

The thermal conductivity is compared to experiments by
Konôpková et al. [16], Saha et al. [19], and Hasegawa et al.
[18] in Fig. 11. The values of Saha et al. [19] overlap with
our curve for 1850 K at low P. Strangely, these measurements
show no increase with P unlike our FT-DFT-MD results. This
also applies to the measurements of Konôpková et al. [16],
made for T = 1600 − 3500 K, which report much lower val-
ues than ours. The data from Hasegawa et al. [18] fall in the
range of the other two experiments.

B. Lorenz number

A different P dependence for σ and λ would imply a
P-dependent Lorenz number, Eq. (4), and consequently a
strong departure from the Wiedemann-Franz law at higher
P. Since our calculated σ and λ rise similarly with P, we
do not observe a substantial P dependence of the Lorenz
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number (Fig. 8). Further, measured values of σhcp are gen-
erally larger than the FT-DFT-MD results (Fig. 10), whereas
the experiments on λ generally yield smaller values (Fig. 11),
especially at P > 100 GPa. If these combined experimental
trends are correct, a Lorenz number smaller by a factor of 2–3
than the Wiedemann-Franz limit of L = π2/3 would follow.
Such a large deviation would require a special theoretical ex-
planation, especially as the degeneracy of electrons becomes
stronger with P, which increasingly favors a Lorenz num-
ber converging to the Wiedemann-Franz limit, not diverging
from it.

Zhang et al. [20] calculated the Lorenz number with
DFT+DMFT using additional repulsive interaction energies
between correlated electronic orbitals via Hubbard model
parameters U and J that are chosen by external constraints
[26,27]. This changes the electronic structure of iron com-
pared to standard DFT calculations and influences σ and λ,
also lowering the Lorenz number by up to 20% (Fig. 8). While
the DFT+DMFT approach may offer an improved descrip-
tion of electronic correlations, it remains an open question
whether it can properly describe electron-electron collisions
as claimed previously [25–27]. Further, the DFT+DMFT
method has not yet been benchmarked against experiments
in the liquid phase [74–78]; neither has the high-T limit for
which the exact limit for L that accounts for electron-electron
scattering, known from Spitzer theory [71,79], been repro-
duced with the DFT+DMFT method.

C. Planetary implications

Assuming T = 6350 K at the ICB (330 GPa) [10,22], σ =
1.65 MS/m and λ = 295 W/(Km) for the hcp phase, making
up the Earth’s inner core, are juxtaposed with σ = 1.60 MS/m
and λ = 230 W/(Km) for liquid iron [21], as a first-order
approximation to the outer core. The small discontinuity (
)
in σ between the solid and liquid is in line with systematic
considerations by Wagle and Steinle-Neumann [28] based
on the Ziman approximation, and slightly smaller than that
estimated by Pozzo et al. [22–24] (
σ = 0.20 MS/m). By
contrast, the large difference in thermal conductivity with

λ = 70 W/(Km) between the liquid and solid (with 
λ =
90 W/(Km) by Pozzo et al. [22–24] even larger) is of geo-
physical significance, with direct consequences on the thermal
state and deformation regime of the inner core [80]. With a
significantly larger value of λ in the inner core, a difference
that will even increase [81] by the expulsion of light elements
during its solidification from the outer core [80], the inner
core is likely not in a convective regime as heat is conducted

very efficiently along an adiabat, counteracting the buildup of
a superadiabatic T profile that could form as a consequence of
a thermal memory effect during its solidification history [82].

The presence of a significant amount of light elements [83]
in the core of Mercury and limited knowledge of its internal
structure [84,85] makes a similar comparison for the inner-
most planet in our solar system less meaningful. Nevertheless,
at its central P ∼ 40 GPa [83,86], with the melting point of
Fe of ∼2500 K [6], the fcc phase of iron coexists with the
liquid, with values for σ = 1.32 MS/m (1.28 MS/m for the
liquid [21]) and λ = 90 W/(Km) (75 W/(Km) for the liquid
[21,28]), respectively. The jump in σ is comparable to that
at ICB conditions in the Earth, and significantly smaller than
that obtained by Wagle and Steinle-Neumann [28] (
σ =
0.18 MS/m), putting the applicability of the Ziman approx-
imation for iron at high P used in their work in question.

V. CONCLUSION

We have calculated the electrical σ and thermal conduc-
tivities λ of hexagonal and fcc iron at high pressures and
temperatures from density functional theory. We show that for
the hexagonal phase they display significant anisotropy that
decreases with T , although the c/a ratio has little influence on
calculated conductivities. Our results for the Lorenz number
closely follow the Wiedemann-Franz law, in contrast to trends
one may deduce from various recently performed experiments
and computations that consider additional electronic repulsion
(dynamic mean field theory). In particular, our calculated ther-
mal conductivity is two times larger than experimental values
and shows a linear increase with density. Our results for elec-
trical conductivity are in good agreement with experiments
at low T and P, but are smaller in the higher P−T region.
These discrepancies need to be resolved by future experiments
and further computations, possibly on other, simpler, metals.
Finally, we provide convenient fit formulas for σ (ρ, T ) and
λ(ρ, T ) for application in planetary science and comparison
to experiments.
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