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Morse theory study on the evolution of nodal lines in PT -symmetric nodal-line semimetals
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A nodal-line semimetal is a topological gapless phase containing one-dimensional degeneracies called nodal
lines. The nodal lines are deformed by a continuous change of the system such as pressure and they can even
change their topology, but it is not systematically understood what kind of changes of topology of nodal lines
are possible. In this paper, we classify the events of topology change of nodal lines by the Morse theory and
reveal that only three types of topology changes of nodal lines, i.e., creation, reconnection, and annihilation,
are possible in the spinless nodal-line semimetal protected by inversion and time-reversal symmetries. They are
characterized by an index having the values 0, 1, and 2 for the above three types in the Morse theory. Moreover,
we extend our theory to systems with rotational symmetries and mirror symmetry and disclose the possible
events of topology change of nodal lines under each symmetry.
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I. INTRODUCTION

Topological phases of matter have been attracting much
attention in condensed matter physics. The topological phases
are classified into two cases: topological insulators [1–7] and
topological semimetals [8–11]. The topological semimetals
can hold either zero-dimensional (0D), one-dimensional (1D),
or two-dimensional (2D) degeneracies in k space between
a conduction band and a valence band in three-dimensional
(3D) materials. In the momentum space, a topological 0D
degeneracy is Dirac points [12–14] and Weyl points [15–26],
a topological 1D degeneracy is nodal lines [9,27], and a
topological 2D degeneracy is nodal surfaces [28–34]. These
gapless states are robust against perturbations because of
symmetry or topological reasons. The topological semimetals
possessing the nodal lines are called nodal-line semimetals,
and the nodal lines have several varieties depending on the
relative positions of nodal lines: nodal rings [35–41], nodal
chains [42–44], nodal links [45–50], and so on. The nodal ring
is a loop of the nodal line, the nodal chain has touching points
of two nodal lines, and the nodal link forms a link between
two nodal lines.

The nodal line is protected by crystal symmetry, such as
mirror symmetry or a combination of inversion (P) symmetry
and time-reversal (T ) symmetry [9,10]. The nodal lines are
confined on the mirror planes in the former case, and there are
no constraints for the positions of nodal lines in the latter case.
Meanwhile, the nodal lines are characterized by a quantized
value of the Berry phase [51–53] in the latter. When the
spin-orbit coupling (SOC) is negligible in systems considered,
the Berry phase on any closed path is quantized to be 0 or
π modulo 2π under PT symmetry. The nodal line with PT
symmetry has a π Berry phase when the closed path links with
the nodal line.

In this paper, we focus on the nodal lines protected by the
π Berry phase. Under a continuous change of the system, the
shapes of the nodal lines with the π Berry phase are deformed
as long as the system keeps the PT symmetry. In addition

to the deformations of the shapes of nodal lines, the nodal
lines may change their connectivity, i.e., their topology. For
example, through a continuous change of the system, two
nodal lines may merge into one and vice versa.

In this paper, we show that the change of topology of nodal
lines are classified in terms of the Morse theory and reveal
that there are only three cases for the change of topology,
i.e., creation, reconnection, and annihilation. We introduce
the notion of the index in the Morse theory. Moreover, we
classify the evolutions of nodal lines in systems with mirror
or rotational symmetry. In these cases with additional crys-
tallographic symmetry, the Morse theory cannot be directly
applied and the index is not defined. Here, we find that in such
cases the coefficient functions in the Hamiltonian is always
“factorized,” and after the factorization one can apply the
Morse theory to define the index and to classify the events
of topology changes of nodal lines. Through this study, we
exhaust all the possible events of topology changes of nodal
lines. It also means that events of topology changes other than
these listed in this paper do not occur. For example, a direct
transition from two nodal lines to a nodal link cannot occur
when no crystallographic symmetry is assumed.

This paper is organized as follows. In Sec. II, we show
an example of the evolution of the nodal line in a previous
study and the limitation of the model. In Sec. III, we reveal
relationships between an index and a possible evolution of
nodal line under PT symmetry and classify the changes with
indices. In Sec. IV, we show evolutions of nodal lines with an
additional rotational or mirror symmetry. We summarize the
paper in Sec. V.

II. NODAL LINES WITH π BERRY PHASE
AND THEIR EVOLUTIONS

A. Nodal lines with the π Berry phase

We study nodal lines in 3D spinless systems protected by
the quantized π Berry phase. For this purpose, we need to
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consider one conduction and one valence bands and a two-
band Hamiltonian is written as

H(k) = a0(k)σ0 + a(k) · σ, (1)

where k = (kx, ky, kz ), a0(k) and a(k) = (ax(k), ay(k), az(k))
are real functions, σ0 is the 2×2 identity matrix, and σ =
(σx, σy, σz ) are the Pauli matrices. We put a0(k) = 0 for sim-
plicity because it does not affect the nodal lines. In the absence
of SOC, PT symmetry ensures that the Hamiltonian is real
[H(k) = H∗(k)], i.e., ay(k) = 0 under an appropriate gauge
choice. The energy spectra are E±(k) = ±√

a2
x (k) + a2

z (k),
and the positions of the nodal lines in k space are obtained
by solving ax(k) = az(k) = 0. The Berry phase along a loop
in the k space in a system with PT symmetry without SOC is
quantized to 0 or π modulo 2π , and the nodal line is protected
by the π Berry phase.

B. Change of topology of the nodal lines

In the previous study [46], a two-band model for a nodal
link and a nodal chain is proposed, and the Hamiltonian
H(A)(k) is given as

H(A)(k) =a(A)
x (k)σx + a(A)

z (k)σz, (2)

a(A)
x (k) =2 sin kx sin kz + 2 f (k) sin ky, (3)

a(A)
z (k) = sin2 kx + sin2 ky − sin2 kz − f 2(k), (4)

where f (k) = ∑
i=x,y,z cos ki − m and m is a real parameter.

This two-band model exhibits two nodal rings for m > 3, a
nodal chain with a touching point k = 0 for m = 3, and a
nodal link for m < 3. Namely, the nodal chain is an intermedi-
ate state between the nodal rings and the nodal link. However,
we will show that this kind of a direct change between the
nodal ring and the nodal link via the nodal chain does not
occur in general, and this change in the model is permitted due
to a special feature of the model, which is explained further
below.

The nodal lines are regarded as intersections between two
2D closed surfaces a(A)

x (k) = 0 and a(A)
z (k) = 0 in the mo-

mentum space. By using this, we can calculate the tangential
vector of the nodal line. The normal vector n(x) of the closed
surface a(A)

x (k) = 0 is parallel to ∇ka(A)
x = ( ∂a(A)

x
∂kx

,
∂a(A)

x
∂ky

,
∂a(A)

x
∂kz

)
with

∂kx a
(A)
x (k) = 2 cos kx sin kz − 2 sin ky sin kx, (5)

∂ky a
(A)
x (k) = 2 f (k) cos ky − 2 sin2 ky, (6)

∂kz a
(A)
x (k) = 2 cos kx sin kz − 2 sin ky sin kz, (7)

when ∇ka(A)
x �= 0. Likewise, the normal vector n(z) of

the closed surface a(A)
z (k) = 0 is parallel to ∇ka(A)

z =
( ∂a(A)

z

∂kx
,

∂a(A)
z

∂ky
,

∂a(A)
z

∂kz
) with

∂kx a
(A)
z (k) = 2 sin kx cos kx + 2 f (k) sin kx, (8)

∂ky a
(A)
z (k) = 2 sin ky cos ky + 2 f (k) sin ky, (9)

∂kz a
(A)
z (k) = −2 sin kz cos kz + 2 f (k) sin kz, (10)

when ∇ka(A)
z �= 0. Then, the tangential vector t of the nodal

line is determined as t ‖ (n(x)×n(z) ).
Now we focus on the touching point of the nodal chain

(m = 3), located at k = 0. At the touching point (k = 0)
in the nodal chain (m = 3), we obtain ∇ka(A)

x (0) = 0 and
∇ka(A)

z (0) = 0, which means that the tangential vector is not
detemined. This is consistent with the shapes of the nodal
lines, which cross perpendicularly at the touching point.
Nonetheless, this result of vanishing values of ∇ka(A)

x =
(0, 0, 0) and ∇ka(A)

z = (0, 0, 0) at the touching point does not
come from physical reasons such as symmetry, but it is by
accident. Since the Hamiltonian defined by Eqs. (3) and (4)
has only the translation and PT symmetries but no other crys-
tallographic symmetry, this result of ∇ka(A)

x = ∇ka(A)
z = 0

cannot come from crystallographic symmetries. Hamiltonians
for real materials are complicated, and there is no reason for
these two vectors to be simultaneously zero at the touching
point. Therefore the evolution of the nodal lines in this model
may be unstable against perturbations.

Here we address a question whether such kinds of direct
changes from nodal lines to nodal lines via nodal chains are
possible. In a more general context, we study what kind of
events are possible in general, which changes the topology of
nodal lines. In the next section, we reveal what kind of events
are allowed via the Morse theory.

III. EVOLUTIONS OF NODAL LINES WITHOUT
ADDITIONAL SYMMETRIES

A. Example

In this section, we show three possible topology changes in
the evolutions of nodal lines in the momentum space in two-
band spinless Hamiltonians with PT symmetry. The three
possible changes of topology of nodal lines are reconnection,
annihilation, and creation. In this section, we give Hamiltoni-
ans to show such changes, and in the next section, we present
a general classification scheme for these events, to show that
the topology changes are restricted to the above three types.
The tangent vector of the nodal line, ∇kax×∇kaz, is ill de-
fined at the k where the topology of nodal lines changes.
This is natural because the nodal lines become points at the
creation and annihilation or cross with other nodal lines at the
reconnection.

1. Reconnection of nodal lines

When a Hamiltonian H(B)(k) reads

H(B)(k) = a(B)
x (k)σx + a(B)

z (k)σz, (11)

a(B)
x (k) = 1

2 k2
x + k2

y + k2
z + 1

2 m2 + kx + 2m, (12)

a(B)
z (k) = − 1

2 k2
x + 1

2 k2
y + 3

2 k2
z − 1

2 m2 + kx + m, (13)

a reconnection of nodal lines happens at m = 0 as shown
in Fig. 1(a). The red, black, and blue lines represent nodal
lines with m = −0.003, 0, and 0.003, respectively. When m
is changed from −0.003 to 0.003, two nodal lines approach
each other, and they meet at k = 0 when m = 0. Thereby
they are reconnected and become two nodal lines which are
different from those at m < 0.
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FIG. 1. Possible evolutions of nodal lines in the momentum
space. (a) Reconnection of nodal lines in the Hamiltonian H(B)(k).
The red, black, and blue lines represent nodal lines with m =
−0.003, 0, and 0.003, respectively. Two nodal lines touch at m = 0,
and their reconnection happen as an intermediate state from nodal
lines with m = −0.003 to different nodal lines with m = 0.003.
(b) Annihilation (creation) of a nodal line by increasing (decreasing)
the parameter m in the Hamiltonian H(C)(k). The red, black, and
blue lines represent nodal lines with m = −0.1, −0.05, and − 0.01,
respectively. The size of the nodal line gets smaller when m is
increased, and there are no nodal lines in m � 0.

2. Annihilation of a nodal line

When a Hamiltonian H(C)(k) is

H(C)(k) = a(C)
x (k)σx + a(C)

z (k)σz, (14)

a(C)
x (k) = 1

2 k2
x + k2

y + k2
z + 1

2 m2 + kx + 2m, (15)

a(C)
z (k) = − 1

2 k2
x + 1

2 k2
y − 1

2 k2
z − 1

2 m2 + kx + m, (16)

a nodal line is annihilated at m = 0 as shown in Fig. 1(b).
The red, black, and blue lines represent nodal lines with m =
−0.1, −0.05, and − 0.01, respectively. When m is increased
from −0.1 to −0.01, the length of the nodal line gets shorter.
The nodal line shrinks to a point at k = 0 and is annihilated at
m = 0. There is no nodal line when m > 0.

3. Creation of a nodal line

The process of creating a nodal line is a reverse process
of annihilating a nodal line. Hence, the nodal line is created
at m = 0 in Fig. 1(b) in decreasing the parameter m. Alter-
natively, the nodal line is created at m = 0 by increasing m
after a transformation m → −m in Eqs. (14)–(16), and we
label these transformed equations as H(D)(k), a(D)

x (k) and
a(D)

z (k). Within this transformed Hamiltonian, the red, black,
and blue lines in Fig. 1(b) correspond to nodal lines with
m = 0.1, 0.05, and 0.01, respectively.

We have shown three examples for a topology change in
the evolutions of nodal lines in the momentum space above
and we will introduce a notion of indices in the Morse theory
in the next section, which will be used to classify these events.

B. Classification of topological changes of the nodal lines

The nodal lines evolve in the 3D k space with changing
m. For the purpose of classifying the events of their topology
changes, we consider a four-dimensional (4D) (k, m) space by
adding a new axis of the parameter m into the 3D k space, and
the nodal lines in the 3D k space are regarded as a 2D manifold
M in the 4D (k, m) space. In other words, conditions for nodal

FIG. 2. An example of a 2D manifold in the 4D (k, m) space, but
the 3D k space is described as a 2D k space in the figure for the sake
of illustration. There are four critical points of the function f = m:
two local maxima at Q1 and Q2, a saddle point at Q3, and a local
minimum at Q4. As the contours of this manifold at fixed m give the
nodal lines, the topology of the nodal lines changes when the value
of m is changed across Qi (i = 1, 2, 3, 4).

lines ax(k) = 0 and az(k) = 0 compose the 2D manifold M in
the 4D (k, m) space because these two conditions lower the
dimension by two. Let f denote a function f : M → R giving
the value of the parameter m for each point on M. Then, we
show that the evolution of the nodal lines and their topology
change are naturally described by the Morse theory [54,55].
In the Morse theory, we define a critical point Q on M as a
point where the gradient of f is zero. In Fig. 2, we show a
schematic figure of the critical point Q. The nodal lines change
their topology by changing m across the critical point Q on the
2D manifold M. Each critical point Q is associated with an
index, which is defined as the number of negative eigenvalues
in the Hessian matrix of the function f on the 2D manifold
M. Because the Hessian matrix contains all the second-order
partial derivatives of the multivariable function, its eigenval-
ues discriminate a local maximum, a local minimum, and a
saddle point of the function f . Therefore the index reveals the
shape of the 2D manifold M around the critical point Q, and
characterizes the topology change of the nodal lines. From
the Morse theory we will show that the 2D manifold M is
allowed to have three types of shapes around a critical point Q
corresponding to the three types of topology change discussed
in the previous section.

In our illustrative example of a 2D manifold M in Fig. 2,
there are four critical points Qi (i = 1, 2, 3, 4) for the function
f = m. By noting that the nodal lines are the contours at m =
const, one can see that the topology changes of the nodal lines
occur at Qi by changing the value of m. The function f has
two local maxima at Q1 and Q2, a saddle point at Q3, and a
local minimum at Q4, and they correspond to the three types of
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evolution of the nodal line, i.e., the annihilation, reconnection,
and creation, respectively.

By following this scenario, we then rewrite the Hamil-
tonian defined in the 4D (k, m) space H(k) → H(k, m),
a j (k) → a j (k, m) ( j = x, z), and ∇k → ∇k,m ≡ ( ∂

∂k , ∂
∂m ).

Additionally, we introduce a function f (k, m) = m for calcu-
lation, where (k, m) is a point on the 2D surface M.

Here, the 2D manifold M is defined by the two constraints
ax = 0, az = 0. Therefore, from the Kamiya theorem in the
Morse theory [56] (see Appendix A), when a point Q is a
critical point for the function f defined on the manifold M,
∇k,m f is a linear combination of ∇k,max and ∇k,maz. Namely,
the following relation is satisfied:

∇k,m f (Q) = αx∇k,max(Q) + αz∇k,maz(Q), (17)

where αx and αz are real parameters. Furthermore, the index
N of the critical point Q is equal to the number of negative
eigenvalues of the matrix

M = P (H ( f )|Q − αxH (ax )|Q − αzH (az )|Q)P, (18)

where the matrix P represents an orthogonal projection to
the 2D tangent vector space at the critical point Q, and H is a
Hessian matrix. For the further discussion, we need to restrict
ourselves to the cases where the critical point is nondegener-
ate, which means that the matrix M in Eq. (18) has no zero
eigenvalue. Equation (18) is a 2×2 real symmetric matrix in
terms of the basis of the tangent vector space, and so its index
N takes the values 0, 1, and 2. Using the Morse lemma (see
Appendix B), we obtain the form of the function f around the
critical point Q through the value of the index, and we will see
that N = 2, 1, 0 corresponds to annihilation, reconnection,
and creation of nodal lines, respectively. To illustrate this
feature, we consider the three Hamiltonians H(B), H(C), and
H(D) as examples to show how this theory works.

1. Reconnection of nodal lines

We consider the Hamiltonian H(B) in Eq. (11) and examine
the nature of the 2D surface M defined by a(B)

j (k, m) = 0 ( j =
x, z) around its critical point (k, m) = (0, 0) where the nodal
lines are reconnected as shown in Fig. 1(a). The gradients of
a(B)

j (k, m) and f at (k, m) = (0, 0) are

∇k,ma(B)
x (0, 0) =

⎛
⎜⎜⎝

1
0
0
2

⎞
⎟⎟⎠, ∇k,ma(B)

z (0, 0) =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠, (19)

∇k,m f (0, 0) =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, (20)

and we get the following relationship:

∇k,m f (0, 0) = ∇k,ma(B)
x (0, 0) − ∇k,ma(B)

z (0, 0). (21)

This equation implies that Q(0, 0) is a critical point by the
Kamiya theorem explained in Appendix A, as expected. Basis
vectors of the space spanned by the vectors in Eq. (19) are

given by

b(B)
1 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, b(B)

2 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, (22)

and an orthogonal projection to the tangent vector space at the
critical point Q(0, 0) is written as

P (B) = I4 − b(B)
1 b(B)T

1 − b(B)
2 b(B)T

2 =

⎛
⎜⎜⎝

0
1

1
0

⎞
⎟⎟⎠.

(23)

Moreover, Hessian matrices of a(B)
j (k, m) and f (k, m) at the

critical point are obtained as

H
(
a(Bx )

)|Q =

⎛
⎜⎜⎝

1
2

2
1

⎞
⎟⎟⎠, (24)

H
(
a(B)

z

)|Q =

⎛
⎜⎜⎝

−1
1

3
−1

⎞
⎟⎟⎠, (25)

H ( f )|Q = 0. (26)

Therefore the matrix M (B) is written as

M (B) = P (B)
(
H ( f )

∣∣
Q − H

(
a(B)

x

)∣∣
Q + H

(
a(B)

z

)∣∣
Q

)
PB

=

⎛
⎜⎜⎝

0
−1

1
0

⎞
⎟⎟⎠, (27)

and it indicates that the critical point Q(0, 0) is nondegenerate
by the Kamiya theorem because the rank of M (B) is 2, which
is equal to the dimension of M. Furthermore, the index N of
f , defined as the number of the negative eigenvalues at the
critical point (0, 0) is 1.

Next we discuss the meaning of the index from the Morse
lemma explained in Appendix B. Since N = 1 we can set
a local coordinate (k1, k2) along M around the critical point,
which satisfies

k1(Q) = k2(Q) = 0, (28)

f = f (Q) − k2
1 + k2

2 . (29)

This function f has a saddle point, as shown in Fig. 3(a),
and reproduces the shape of of the 2D manifold M around
the critical point Q. The contour lines of this function f at
f = m are nodal lines. Thus, in Fig. 3(a) when we increase the
value of m, the contour lines projected to the (k1, k2) plane,
i.e., the nodal lines, are reconnected across the critical point
Q. In that sense, a critical point Q with N = 1 corresponds to
the reconnection of nodal lines.

The nodal lines in this paper are characterized by the quan-
tized π Berry phase, and this quantization is topologically
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FIG. 3. Relationship between an index N and a 2D surface M
around a critical point Q. (a) The 3D graph of f − f (Q) = −k2

1 + k2
2

has a saddle point when N = 1. The 2D surface M around the critical
point Q locally has the same shape with this graph. Reconnection
of nodal lines, which are contour lines in this figure, occurs at the
critical point Q when we change contour lines from bottom to top by
increasing f (= m). (b) The 3D graph of f − f (Q) = −k2

1 − k2
2 has a

local maximum when N = 2. The 2D surface M around the critical
point Q locally has the same shape with this graph. Annihilation
of nodal lines, which are contour lines in this figure, occurs at the
critical point Q when we change contour lines from bottom to top by
increasing f (= m). (c) The 3D graph of f − f (Q) = k2

1 + k2
2 has a

local minimum when N = 0. The 2D surface M around the critical
point Q locally has the same shape with this graph. Creation of nodal
lines, which are contour lines in this figure, occurs at the critical point
Q when we change contour lines from bottom to top by increasing
f (= m).

protected in systems with PT -symmetry without SOC. This
π Berry phase is along a loop C encircling the nodal line [see
Fig. 4(a)]. This quantized π Berry phase is very different from
other topological invariants such as the Chern number or the
Z2 topological invariant, in that the Berry phase is associated
with a specific loop C (and therefore it depends on the choice
of the loop C), while the Chern number and the Z2 topological
invariant are associated with the entire occupied bands. Thus
the π Berry phase along the loop C does not tell us about
any information on the phases of the topological semimetal.
Therefore the topology changes of the nodal lines such as
reconnection, creation, and annihilation are not related with
a change of any bulk topological invariant, and they do not
correspond to topological phase transition.

Meanwhile, one can argue how the Berry phase is affected
by the change of topology of nodal lines. As we explained,
the Berry phase along the loop C encircling the nodal line
[Fig. 4(a)] is equal to π (mod 2π ). Along the loop C, the band
gap is always open. Therefore, if the gap remains open on the
loop C under the change of the system parameter m, the Berry
phase remains constant. For example, in Fig. 4(b1) the Berry
phase along the loop C1 and C2 are π and 2π , respectively.
Then if the nodal lines in Fig. 4(b1) are reconnected, the nodal
lines will look like Fig. 4(b2), where the Berry phase along the
loop C1 and C2 are π and 0, respectively. Thus, considering
that the Berry phase is defined in terms of modulo 2π , the
Berry phase is unaffected by the reconnection. It is also seen
in Fig. 1. The Berry phase along a closed loop on the kz = 0
plane encircling the two nodal lines (red lines) at m = −0.003
in Fig. 1(a). Via the change of m through m = 0 [the change
from red to blue lines in Fig. 1(a)], the Berry phase changes
from 2π to 0 (modulo 2π ), which means that the Berry phase
remains constant across the reconnection. It is natural because
on the closed path, the system remains gapped and therefore
the Berry phase cannot have a jump across the reconnection.

FIG. 4. Schematic figures for the quantized Berry phase around
the nodal lines. (a) The Berry phase around the single nodal line is
quantized to be π . (b) Across the reconnection, the Berry phases
along C1 and C2 are preserved. (c) In the annihilation of the nodal
line via the change of the parameter m, the Berry phase along the
fixed loop C becomes undefined somewhere before the annihilation
because the loop C crosses the nodal line.

On the other hand, suppose the nodal line in Fig. 4(c1) is
annihilated as shown in Figs. 4(c2) and 4(c3). In this case, for
the fixed loop C, it will eventually cross the nodal line before
the nodal line shrinks to a point, and the Berry phase jumps
from π to 0. The value of m where this jump occurs depends
on the position of the loop C, and it does not correspond to the
value of m where the nodal line is annihilated. Thus the Berry
phase for the specific loop C does not give any information on
the topological phase.

2. Annihilation of a nodal line

We examine the nature of the 2D surface M defined by
a(C)

j (k, m) = 0 ( j = x, z) around its critical point (k, m) =
(0, 0) where the nodal line is annihilated as shown in Fig. 1(b).
By the classification similar to Sec. III B1, the point Q :
(k, m) = (0, 0) is a critical point of the function f with the
index N = 2.

From the Morse lemma, we can set a local coordinate
(k1, k2) around the critical point, which satisfies

k1(Q) = k2(Q) = 0, (30)

f = f (Q) − k2
1 − k2

2 . (31)

This function f means a local maximum of the 2D manifold
M around the critical point Q, as shown in Fig. 3(b). When
we increase the value of m, the contour line projected to the
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(k1, k2) plane vanishes. Hence, a critical point Q with N = 2
leads to the annihilation of nodal lines.

3. Creation of a nodal line

We examine the nature of the 2D surface M defined by
a(D)

j (k, m) = 0 ( j = x, z) around the critical point (k, m) =
(0, 0), having the index N = 0, where the nodal line is created
as shown in Fig. 1(c).

From the Morse lemma, we can set a local coordinate
(k1, k2) around the critical point, which satisfies

k1(Q) = k2(Q) = 0, (32)

f = f (Q) + k2
1 + k2

2 . (33)

This function f has a local minimum around the critical point
Q, as shown in Fig. 3(c). The change of the contour line
projected to the (k1, k2) plane obtained by increasing the value
of m reveals the creation of the nodal line. Thus a critical point
Q with N = 0 indicates the creation of nodal lines.

C. Results of a speciality removed model for the nodal link

As we discussed in Sec. II B, in the model described by
Eqs. (2)–(4), both ∇ka(A)

x and ∇ka(A)
z vanish at the touching

point of the nodal chain. This does not come from physical
reasons such as symmetry, and is considered as an artifact of
the special choice of the model. We can remove this artifact by
adding some terms to the Hamiltonian. For example, we re-
define the Hamiltonian by a(A)

x → a′(A)
x = a(A)

x + α sin kx and
a(A)

z → a′(A)
z = a(A)

z + α sin kz, where α is a real parameter.
Then, as shown in Appendix D, instead of the direct transition
from the nodal lines to a nodal chain, a reconnection of nodal
lines occur three times to get a nodal chain.

In fact, this is expected from the Morse theory in this
section. If we assume no crystallographic symmetry except
for translation and PT symmetries, the discussion in this
section section tells us that the topology change of nodal lines
are restricted to three types, creation, reconnection, and an-
nihilation. Meanwhile, the model (2)–(4) in Sec. II exhibits a
direct transition from nodal lines to a nodal link, and this event
is not among the three types described above. This means that
the model (2)–(4) is not general but specially designed, and
this transition from nodal lines to a nodal link is unstable
against perturbations. Namely, from nodal lines to a nodal
link, one cannot have direct transition, but it can be realized
through multiple reconnections of nodal lines, if no additional
crystallographic symmetries are assumed.

D. Short summary of this section

In this section, we reveal that there are three possible events
of topology change of nodal lines from the above calculations.
These events are characterized by the index N from the Morse
theory, and N = 2, 1, and 0 corresponds to the annihilation,
the reconnection, and the creation of nodal lines, as schemat-
ically shown in Figs. 5(a), 5(b) and 5(c), respectively, where
f (= m) is a parameter driving the evolution of nodal lines.
The topology change of the nodal line in the vicinity of the
critical point is illustrated in terms of the 2D local coordinates
around the critical point in Fig. 3.

FIG. 5. Evolution of nodal lines with PT symmetry in the mo-
mentum space. (a) The reconnection of nodal lines happen in the
middle panel. (b) The nodal line is annihilated from the left panel to
the right panel. (c) The nodal line is created from the left panel to the
right panel.

IV. EVOLUTIONS OF NODAL LINES IN SYSTEMS
WITH ADDITIONAL SYMMETRIES

This section shows topology changes of nodal lines with
additional crystallographic symmetries in PT -symmetric sys-
tems. For this purpose, we characterize the topology change
in terms of the index N in the Morse theory, by using k · p
models with rotational or mirror symmetry.

We start with the 2×2 Hamiltonian H(k) = ax(k)σx +
az(k)σz with PT symmetry. In the presence of other crystallo-
graphic symmetries, we focus on a topology change of nodal
lines at the k point invariant under this crystallographic sym-
metry, and let G denote the little group at this k point. Then,
the 2×2 effective Hamiltonian around that point satisfies

D(g)H(k)D−1(g) = H(gk) ∀g ∈ G, (34)

where D(g) is a representation matrix of the symmetry oper-
ation g ∈ G. In the following, we consider the cases with Cn

symmetry and with mirror symmetry.

A. Cases with Cn symmetries (n = 2, 3, 4, and 6)

Among various rotational symmetries, only the n-fold ro-
tational (Cn) symmetry with n = 2, 3, 4, and 6 is allowed
in crystals. We show how a nodal line evolves under the
rotational symmetries.

1. C2 symmetry

We consider nodal lines with PT symmetry and twofold
rotational symmetry with respect to the kz axis. In spinless
systems, the eigenvalue of C2 is 1 for the irreducible rep-
resentation (irrep) A and −1 for the irrep B, and we use
conventional names for irreps known as Mulliken symbols
[57,58]. We discuss topology changes of nodal lines at a point
k = k0 on the C2 axis (kz axis). Let us consider the case where
one of the two bands follows the irrep A and the other follows
the irrep B. Later in Sec. IV B, we consider the case with the
two bands following the same irreps. Then, a representation
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FIG. 6. Evolutions of nodal lines with the C2 symmetry in
the momentum space. Nodal lines are given by the Hamiltonian
H(C2 )(k) with c1 = 1, c2 = 1

2 , c3 = 1
4 , c4 = 1

2 , c5 = 1, c6 = 1,

c7 = −1, c8 = 1, and c9 = 1. (a), (b), and (c) represent nodal lines
with m = −0.3, −0.25, and − 0.2, respectively. The nodal lines
are reconnected at m = −0.25 in (b).

matrix of the C2 rotation is obtained as

D(C2) =
(

1 0
0 −1

)
. (35)

We shift the origin in k space by k0, so that the focused
point becomes k = 0. By using Eq. (34), the k · p Hamiltonian
around k = 0 is written up to the second order in k as

H(C2 )(k) = a(C2 )
x σx + a(C2 )

z σz, (36)

a(C2 )
x (k) = c1kxkz + c2kykz + c3kx + c4ky, (37)

a(C2 )
z (k) = c5k2

x + c6k2
y + c7k2

z + c8kxky + c9kz + m, (38)

where ci (i = 1, 2, . . . , 9) and m are real parameters. We set
c1 = 1, c2 = 1

2 , c3 = 1
4 , c4 = 1

2 , c5 = 1, c6 = 1, c7 = −1,

c8 = 1, and c9 = 1 as an example. The parameter m, which
plays a role of driving the evolution of nodal lines, is
introduced as a constant term in Eq. (38) for simplicity.
As shown in Fig. 6, a reconnection of nodal lines hap-
pens. Figures 6(a), 6(b) and 6(c) represent nodal lines with
m = −0.3,−0.25,−0.2, respectively. When m is changed
from m = −0.3 to −0.2, the nodal lines are reconnected at
k = (0, 0, 1

2 ) with m = − 1
4 . By the calculation simillar to

Sec. III B, we find that the point (k, m) = (0, 0, 1
2 ,− 1

4 ) is a
critical point with index N = 1 by the Kamiya theorem. Then
the reconnection of the nodal lines must occur by the Morse
lemma, in agreement with Fig. 6.

Next, we generalize the result on the model Hamil-
tonian (36), and consider ax(k) and az(k) as general
analytic functions of k. Because of Eq. (34), they fol-
low ax(kx, ky, kz ) = −ax(−kx,−ky, kz ) and az(kx, ky, kz ) =
az(−kx,−ky, kz ). Then, the gradients of the functions f , ax,
and az for the Morse theory at a point on the C2 axis (kz axis)
are obtained as

∇k,m f (0, 0, kz, m) = (0, 0, 0, 1)T , (39)

∇k,max(0, 0, kz, m) = (·, ·, 0, 0)T , (40)

∇k,maz(0, 0, kz, m) = (0, 0, ·, ·)T , (41)

where · represents a term left undetermined only from the
symmetry, and such a term is in general nonzero. If there
is a point (0, 0, kz, m) where Eqs. (39)–(41) are linearly de-
pendent, the point is a critical point by the Kamiya theorem.
It occurs when ∂az

∂kz
= 0, leading ∇k,m f ∝ ∇k,maz. Therefore

FIG. 7. Schematic pictures for the topology changes of nodal
lines with the twofold rotational symmetry in the momentum space.
The red colored nodal lines reside inside the C2-symmetric red plane
near the C2 axis. The reconnection of nodal lines occurs in (a-1)–
(a-3), and the annihilation or creation occur in (b-1)–(b-3). We note
that away from the C2 axis, the nodal lines can be away from the
red plane.

the critical point (k, m) = (0, 0, kz, m) is determined by two
conditions, az = 0 and ∂az

∂kz
= 0, because on the C2 axis,

ax(0, 0, kz, m) vanishes because of symmetry. Since the num-
ber of equations is equal to the number of variables (kz, m),
they can have solutions which are isolated points in the (k, m)
space in general. Then, the eigenvalues of the 2×2 matrix
M are nonzero in general, and the critical point is classified
in terms of the index N into three cases, N = 0, 1, and 2,
corresponding to creation, reconnection, and annihilation of
nodal lines, respectively.

In order to see how the nodal lines evolve under C2 sym-
metry, we note that the vector ∇kax|P = (·, ·, 0) at the critical
point P on the C2 axis defines a normal vector of the surface
ax = 0. Thus, in the vicinity of the critical point P, the nodal
lines evolve along the plane normal to this vector ∇kax|P =
(·, ·, 0). This plane is C2-symmetric and it contains the C2

axis as shown in Fig. 7. The red lines represent nodal lines,
which lie along the red plane containing C2 axis, and the
nodal lines follow C2 symmetry. For example, when N = 1
and the reconnection happens, the nodal lines evolve from
Figs. 7(a-1) to 7(a-3) through 7(a-2), and vice versa. This
result from symmetry and the Morse theory matches with
that of the numerical calculation in Fig. 6 in the vicinity
of the critical point. Next when N = 2 and the annihilation
happens, the nodal lines evolve from Figs. 7(b-1) to 7(b-3)
through 7(b-2). The nodal ring shrinks to a point on C2 axis as
shown in Fig. 7(b-2). Then, the case with N = 0 corresponds
to the creation of nodal lines, and is a reverse process, from
Figs. 7(b-3) to 7(b-1).

2. C3 symmetry

We consider nodal lines with PT symmetry and threefold
rotational symmetry with respect to the kz axis. In spinless
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FIG. 8. Evolutions of nodal lines with the fourfold rotational
symmetry in the momentum space. Nodal lines are given by
the Hamiltonian H(C4 )(k) with c1 = 1, c2 = 2, c3 = 1, c4 = −1,

and c5 = 1. (a), (b), and (c) represent nodal lines with m = −0.3,

−0.25, and − 0.2, respectively. The nodal lines are reconnected at
m = −0.25 in (b).

systems, the eigenvalue of C3 is 1 for the irrep A, e2π i/3 for the
irrep 2E, and e−2π i/3 for the irrep 1E. Under the PT symmetry,
the irreps 1E and 2E are degenerate because they are complex
representations, and a nodal line formed by 1E and 2E irreps
always lies along the C3 axis. Therefore it is impossible to
see the topology change reflecting C3 symmetry, and we can
exclude this case from our discussion.

3. C4 symmetry

We consider nodal lines with PT symmetry and fourfold
rotational symmetry with respect to the kz axis. We discuss
topology changes of nodal lines at a point k = k0 on the C4

axis (kz axis). In spinless systems, the eigenvalue of C4 is 1
for the irrep A, −1 for the irrep B, i for the irrep 2E, and
−i for the irrep 1E. We can exclude the irreps 1E and 2E
from our discussion because under the PT symmetry the
complex irreps 1E and 2E are degenerate. Therefore let us
consider the case where one of the two bands follows the
irrep A and the other follows the irrep B. The cases with
the two bands following the same irrep A (or B) will be dis-
cussed in Sec. IV B. Then, the representation matrix for C4 is
obtained as

D(C4) =
(

1 0
0 −1

)
. (42)

We focus on a point k0 on the C4 axis. For convenience, we
shift the origin in k space by k0, so that the focused point
becomes k = 0.

Now we discuss the evolution of nodal lines under the C4

symmetry with Eq. (42). We begin with a simple example; by
using Eq. (34), the k · p Hamiltonian around k = 0 is written
up to the second order in k as

H(C4 )(k) = a(C4 )
x σx + a(C4 )

z σz, (43)

a(C4 )
x (k) = c1

(
k2

x − k2
y

) + c2kxky, (44)

a(C4 )
z (k) = c3

(
k2

x + k2
y

) + c4k2
z + c5kz + m, (45)

where ci (i = 1, 2, . . . , 5) and m are real parameters. We
set c1 = 1, c2 = 2, c3 = 1, c4 = −1, and c5 = 1 as an ex-
ample. We show the result in Fig. 8, where nodal lines are
reconnected by increasing m. Figures 8(a), 8(b) and 8(c)
represent nodal lines with m = −0.3, −0.25, and − 0.2,
respectively. When m is changed from m = −0.3 to m =
−0.2, the nodal lines are reconnected at k = (0, 0, 1

2 ) with

m = − 1
4 . Next, we want to characterize the point P (k, m) =

(0, 0, 1
2 ,− 1

4 ) by the Morse theory. Nevertheless, within our
scenario in the previous sections, this point is not a critical
point in the Morse theory since ∇ka(C4 )

x = 0 at this point. As
a result, one cannot study this reconnection in terms of the
Morse theory.

Here we find that by adopting the following argument of
factorization this point P can be regarded as a nondegenerate
critical point in the Morse theory, and then the classification
in terms of the index N can now be used. First, we note that
a(C4 )

x can be factorized under the C4 symmetry:

a(C4 )
x (k) = ((

√
2 − 1)kx + ky)((

√
2 + 1)kx − ky)

≡ a(C4 )(I)
x (k)a(C4 )(II)

x (k), (46)

where a(C4 )(I)
x (k) = (

√
2 − 1)kx + ky and a(C4 )(II)

x (k) = (
√

2 +
1)kx − ky. Equation (46) means that a(C4 )

x (k) changes its sign
four times around the kz axis as is expected from the symmetry
constraint a(C4 )

x (k) = −a(C4 )
x (C4k). Therefore the condition for

nodal lines is decomposed as
(I) a(C4 )(I)

x (k) = 0 and a(C4 )
z (k) = 0,

(II) a(C4 )(II)
x (k) = 0 and a(C4 )

z (k) = 0.
We discuss a change of topology of nodal lines in cases

(I) and (II) separately. In both cases (I) and (II), the point
(k, m) = (0, 0, 1

2 ,− 1
4 ) now becomes a critical point with in-

dex N = 1 by the Kamiya theorem. At this critical point,
the reconnections of nodal lines occur on a(C4 )(I)

x (k) = (
√

2 −
1)kx + ky = 0 and a(C4 )(II)

x (k) = (
√

2 + 1)kx − ky = 0 planes
by the Morse lemma. The change of topology of nodal lines
occurs in a C4-symmetric way because cases (I) and (II) are
related to each other by C4 symmetry.

Even apart from the example in Eqs. (43)–(45), in general
C4-symmetric systems we can show that the topology change
of nodal lines is fully characterized by the index N for critical
points. As seen in the above example, the key finding is that
ax(k) can always be factorized under the C4 symmetry. Then,
by using each factor of ax (not ax itself), the points of the
topology change of nodal lines become nondegenerate critical
points in the Morse theory. To see this we assume that ax(k)
and az(k) are analytic in k around the critical point (0, 0, k(0)

z )
and can generally contain higher order terms in k. Even then,
we show that ax(k) is factorized:

ax(k) = i(αk+g(k) − ᾱk−ḡ(k))(αk+g(k) + ᾱk−ḡ(k)),

≡ ia(−)
x (k)a(+)

x (k), (47)

where a(±)
x (k) = αk+g(k) ± ᾱk−ḡ(k), k± = kx ± iky, and α is

a complex constant. The function g(k) is analytic in k and sat-
isfies g(0, 0, k(0)

z ) = 1 and g(k) = g(C4k). The detailed proof
of Eq. (47) is in Appendix E 1. Hence, nodal lines appear in
the following cases:

(I) a(−)
x (k) = 0 and az(k) = 0,

(II) a(+)
x (k) = 0 and az(k) = 0.

Because a(±)
x (C4k) = ia(∓)

x (k), a(±)
x (C2k) = −a(±)

x (k), and
a(±)

x (0, 0, k(0)
z ) = 0, each of the equations a(±)

x (k) = 0 repre-
sents a C2-symmetric surface containing the rotational axis,
and the combination of the two surfaces is C4 symmetric.
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FIG. 9. Schematic pictures of the topology changes of nodal
lines with the fourfold rotational symmetry in the momentum space.
The red (blue) colored line represents the nodal line inside the red
(blue) plane near the C4 axis, which holds C4 symmetry in total.
There are the reconnection of the nodal lines in (a-1)–(a-3), and the
annihilation (creation) of the nodal lines in (b-1)–(b-3). Away from
the C4 axis, the nodal lines may leave the blue and red planes.

Now, we apply the Morse theory in (I) and (II) separately.
We obtain the gradients of the functions used in the Morse
theory at a point along the C4 axis (kz axis):

∇k,m f (0, 0, kz, m) = (0, 0, 0, 1)T , (48)

∇k,ma(±)
x (0, 0, kz, m) = (·, ·, 0, 0)T , (49)

∇k,maz(0, 0, kz, m) = (0, 0, ·, ·)T . (50)

In case (I) [and also in case (II)], similar to the C2-symmetric
case the critical point should satisfy ∇k,m f ∝ ∇k,maz. Thus
the critical point (k, m) = (0, 0, kz, m) is determined by two
conditions az = 0 and ∂az

∂kz
= 0, and this set of equations can

have solutions for two variables kz and m. Because these
conditions, az = 0 and ∂az

∂kz
= 0, are common between cases

(I) and (II), the critical points are common.
The resulting evolutions of nodal lines across the topology

change are illustrated in Fig. 9. The normal vectors of the
two surfaces a(±)

x (k) = 0 are given by ∇ka(±)
x (k); hence at

the critical point, they are perpendicular to each other and
also perpendicular to the z axis. Evolutions of nodal lines
are confined to each plane near the critical point, and they
follow the C4 symmetry in total. When N = 1 corresponding
to the reconnection, the nodal lines evolve from Figs. 9(a-1)
to 9(a-3) through 9(a-2), and vice versa, which is in a good
agreement with the result by the numerical calculation in
Fig. 8. When N = 2 and the annihilation happens, the nodal
lines evolve from Figs. 9(b-1) to 9(b-3) through 9(b-2). Its
reverse process from Figs. 9(b-3) to 9(b-1) corresponds to the
creation of a nodal line with N = 0.

FIG. 10. Evolutions of nodal lines with the fourfold rotational
symmetry in the momentum space. Nodal lines are given by the
Hamiltonian H(C6 )(k) with c1 = 1, c2 = 1, c3 = 0, c4 = 0, c5 =
1, c6 = −1, and c7 = 1. (a), (b), and (c) represent nodal lines with
m = −0.75, −0.25, and 0.25, respectively. The nodal lines are re-
connected at m = −0.25 in (b).

4. C6 symmetry

We consider nodal lines with PT symmetry and sixfold
rotational symmetry along the kz axis. We discuss topology
changes of nodal lines at a point k = k0 on the C6 axis (kz

axis). In spinless systems, the eigenvalue of C6 is 1 for the
irrep A, −1 for the irrep B, e−2π i/3 for the irrep 2E1, eπ i/3

for the irrep 2E2, e2π i/3 for the irrep 1E1, and e−π i/3 for the
irrep 1E2. Here, the pairs of irreps (1E1,

2E1) and (1E2,
2E2)

form Kramers degeneracy because they are complex repre-
sentations. Therefore we can restrict ourselves to the irreps A
and B. We will study the case where the two bands follow the
same irreps (A or B) in Sec. IV B. In this section we study the
remaining case where one of the two bands follows the irrep
A and the other follows the irrep B. Then, the representation
matrix of the C6 rotation is obtained as

D(C6) =
(

1 0
0 −1

)
. (51)

We shift the origin in k space by k0, so that the focused point
becomes k = 0.

Similar to the previous cases, we begin with a simple ex-
ample; by using Eq. (34), the k · p Hamiltonian around k = 0
is written up to the third order in k as

H(C6 )(k) = a(C6 )
x σx + a(C6 )

z σz, (52)

a(C6 )
x (k) = c1kx

(
k2

x − 3k2
y

) + c2ky
(
k2

y − 3k2
x

)
, (53)

a(C6 )
z (k) = c3k3

z + c4
(
k2

x + k2
y

)
kz + c5

(
k2

x + k2
y

)
+ c6k2

z + c7kz + m, (54)

where ci (i = 1, 2, . . . , 7) and m are real parameters. We
set c1 = 1, c2 = 1, c3 = 0, c4 = 0, c5 = 1, c6 = −1,

and c7 = 1 as an example. In a(C6 )
x (k) [Eq. (53)], the low-

est order terms are of the third order in k. On the other
hand the third order terms of a(C6 )

z (k) in Eq. (54) are not
essential and they are set to be zero, i.e., c3 = c4 = 0, for
simplicity. With this choice of parameter values as shown
in Fig. 10, nodal lines are reconnected by increasing m.
Figures 10(a), 10(b) and 10(c) represent nodal lines with m =
−0.75, −0.25, and 0.25, respectively. When m is changed
from m = −0.75 to m = 0.25, the nodal lines are reconnected
at k = (0, 0, 1

2 ) with m = − 1
4 .

Similar to the case with the C4 symmetry, the topology
change of nodal lines cannot be studied within the Morse
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theory because ∇ka(C6 )
x = 0 there. Meanwhile, as is the same

with C4 symmetry in Sec. IV A 3, we find that the function
a(C6 )

x can always be factorized even in general cases with C6

symmetry, and then the topology change of nodal lines can be
fully characterized by the index N for critical points within
the Morse theory. Then we find that the evolutions of nodal
lines occur on three surfaces containing the C6 axis, and the
events such as reconnection, annihilation, and creation are
confined to each surface following C6 symmetry in total as
we give detailed explanations in Appendix F.

B. Case with the two bands having the same irrep
for Cn symmetry (n = 2, 4, and 6)

We have considered the nodal lines with the representa-
tion matrix composed of two different irreps in Cn symmetry
(n = 2, 4, and 6) so far. In this section, we consider the other
case where the two bands have the same irrep (A or B). The
representation matrix is now written as an identity matrix:

D(Cn) = ±
(

1 0
0 1

)
, (55)

where the plus and minus signs correspond to the A and B
irreps, respectively. Because of Eq. (34), we obtain ax(k) =
ax(Cnk) and az(k) = az(Cnk) as symmetry constraints.

The gradients of functions needed for the Morse theory at
a point along the Cn rotational axis (kz axis) are

∇k,m f (0, 0, kz, m) = (0, 0, 0, 1)T , (56)

∇k,max(0, 0, kz, m) = (0, 0, ·, ·)T , (57)

∇k,maz(0, 0, kz, m) = (0, 0, ·, ·)T . (58)

When we focus on the kz and m components because all the
others are zero, the three vectors in Eqs. (56)–(58) reside
in a 2D vector space. Therefore, whenever the nodal line
cross the kz axis, this crossing point (0, 0, kz, m) is always a
critical point since these three vectors are linearly dependent.
Therefore the orthogonal projection P is given by P =
diag(1, 1, 0, 0), i.e., a projection to the kx-ky plane, and the
matrix M is regarded as a 2×2 matrix within the kx-ky plane
on which Cn symmetry is preserved. In the C2-symmetric case,
the two eigenvalues of M are nonzero and independent in
general, and the index N can have the values 0, 1, or 2. On
the other hand, on the C4-symmetric and C6-symmetric cases,
the matrix M has the form M = diag(u, u), where u is a
real number, due to the above symmetry constraints: ax(k) =
ax(Cnk) and az(k) = az(Cnk). Consequently, depending on the
sign of u, the index N only gives 0 or 2, corresponding to
the creation or the annihilation of nodal lines. In particular, in
the C4- and C6- symmetric cases, reconnections of nodal lines
never occur on the Cn axis.

In order to see evolutions of nodal lines under the Cn sym-
metry, we note that ∇kax(z)|P = (0, 0, ·)T at the critical point P
on the Cn axis defines a normal vector of the surface ax(z) = 0.
Hence, in the vicinity of the critical point P, the nodal lines lie
along the plane perpendicular to the rotational axis (kz axis) as
shown in Fig. 11. The nodal lines are illustrated as red lines in-
side the red plane which is prpendicular to the rotational axis.
When N = 2, the annihilation of nodal lines happens, and

FIG. 11. Evolutions of nodal lines with the Cn symmetry (n = 2,

4, and 6) in the momentum space. The red lines represent nodal
lines inside the red plane which is perpendicular to the rotational
axis. The annihilation (creation) of nodal lines occurs in (a-1)–(a-3)
in the Cn symmetry. The reconnection of nodal lines occurs in
(b-1)–(b-3) only in the C2 symmetry, and is prohibited in the C4 and
C6 symmetries.

the nodal lines evolve from Figs. 11(a-1) to 11(a-3) through
11(a-2). The case with N = 0 corresponds to the creation,
which is a reverse process from Figs. 11(a-3) to 11(a-1).
These two processes are allowed in the Cn symmetry (n =
2, 4, and 6) as we discuss in the previous paragraph. In
the case with N = 1, corresponding to the reconnection, the
nodal lines evolve from Figs. 11(b-1) to 11(b-3) through
11(b-2). This process is allowed only in systems with C2

symmetry but not with C4 or C6 symmetry. This is naturally
understood graphically; by drawing the figures similar to Figs.
11(b-1)–11(b-3) for Cn (n = 4 and 6), one can see that it is
improbable for the n nodal lines to meet at the Cn axis. To sum-
marize, when the irreps of the Cn symmetry (n = 2, 4, and 6)
for the conduction and the valence bands are the same, the
creation and the annihilation of nodal lines are allowed, but
only the C2 symmetry allows nodal lines to reconnect on the
Cn axis.

C. Cases with mirror symmetry

In this section, we consider nodal lines with PT symmetry
and mirror symmetry Mz with respect to the xy plane. In spin-
less systems, the eigenvalue of Mz is 1 for the irrep A′ and −1
for the irrep A′′. We discuss topology changes of nodal lines
on the mirror-invariant plane. Since the two mirror-invariant
planes kz = 0 and kz = π can be studied similarly, we focus
on the kz = 0 plane here. In this section, we consider the
case where one of the two bands follows the irrep A′ and
the other follows the irrep A′′. The other case with the two
bands following the same irrep (A′ or A′′) will be discussed
in Sec. IV D. Then, the representation matrix of the mirror
operation is

D(Mz ) =
(

1 0
0 −1

)
. (59)

We focus on a point k0 on the mirror plane, and we shift the
origin to the point k0 for simplicity. By using Eq. (34), we
obtain ax(kx, ky,−kz ) = −ax(kx, ky, kz ) and az(kx, ky,−kz ) =
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FIG. 12. Evolutions of nodal lines with the mirror symmetry
in the momentum space, when the two bands have the opposite
mirror eigenvalues. Nodal lines are given by the Hamiltonian
H(Mz )(k) with c1 = 1, c2 = 1

2 , c3 = 1, c4 = 1, c5 = −1, c6 = 1,

c7 = 1, c8 = 1, and c9 = 1. (a), (b), (c), (d), and (e) represent nodal
lines with m = −0.2, −0.05, 0.1, 0.2, and 0.3, respectively.
The blue plane is kz = 0 plane. The nodal lines are reconnected
at m = −0.05 and m = 0.2 on the red plane and the blue plane in
(b) and (d), respectively.

az(kx, ky, kz ). Thus the k · p Hamiltonian around k = 0 reflect-
ing Mz symmetry is written up to the second order in k as

H(Mz )(k) = a(Mz )
x σx + a(Mz )

z σz, (60)

a(Mz )
x (k) = c1kxkz + c2kykz + c3kz, (61)

a(Mz )
z (k) = c4k2

x + c5k2
y + c6k2

z + c7kxky

+ c8kx + c9ky + m, (62)

where ci (i = 1, 2, . . . , 9) and m are real parameters. We
set c1 = 1, c2 = 1

2 , c3 = 1, c4 = 1, c5 = −1, c6 = 1, c7 =
1, c8 = 1, and c9 = 1 as an example. Figures 12(a), 12(b)
12(c), 12(d), and 12(e) represent nodal lines with m =
−0.2, −0.05, 0.1, 0.2, and 0.3, respectively, and the blue
plane is the kz = 0 plane. When m is changed from m =
−0.2 to m = 0.1, the nodal lines outside of the mirror plane
(kz = 0) meet each other at k = (− 11

10 , 1
5 , 0) with m = −0.05,

and they are reconnected [Fig. 12(b)]. At this reconnection,
another nodal line on this mirror plane kz = 0 also crosses this
critical point. Moreover, when m is changed from m = 0.1
to m = 0.3, the nodal lines on the mirror plane kz = 0 are
reconnected at k = (− 3

5 , 1
5 , 0) with m = 0.2 [Fig. 12(d)].

We now explain the reason why there are two types of
reconnections, by noting that a(Mz )

x (k) can be factorized:

a(Mz )
x (k) = kz

(
kx + 1

2
ky + 1

)

≡ kzã
(Mz )
x (k), (63)

where ã(Mz )
x (k) = kx + 1

2 ky + 1. Therefore the condition for
nodal lines is decomposed into two cases

(I) kz = 0 and a(Mz )
z (k) = 0,

(II) ã(Mz )
x (k) = 0 and a(Mz )

z (k) = 0.
In case (I), two nodal lines on the mirror plane (kz = 0)

meet and reconnect. It occurs at (k, m) = (− 3
5 , 1

5 , 0, 1
5 ) with

FIG. 13. Schematic pictures of existance of nodal lines with the
mirror symmetry in the momentum space, when the two bands have
the opposite mirror eigenvalues. (a) The blue line represents the
ndoal line inside the mirror plane which is illustrated as blue plane.
(b) The red line is the nodal line outside the mirror plane.

index N = 1 by the Kamiya theorem corresponding to
Fig. 12(d). On the other hand, case (II) describes nodal lines
outside of the mirror plane, and at the critical point they
meet on the mirror plane kz = 0. Therefore, at this point,
another nodal line in case (I) lying on the mirror plane also
goes across the critical point [see Fig. 12(b)]. It occurs at
(k, m) = (− 11

10 , 1
5 , 0,− 1

20 ) with index N = 1, corrsponding
to the reconnection.

Thus we show that there are two types of nodal-line re-
connections from the model (60)–(62). We can show that also
in general systems with mirror symmetry, there are two types,
(I) and (II), of topology changes of nodal lines from the Morse
theory. Let us assume that ax(k) and az(k) are general analytic
functions of k under the Mz symmetry. Even so, ax(k) is
factorized:

ax(k) = kzãx(k), (64)

where ãx(k) is an analytic function of k satisfying
ãx(kx, ky,−kz ) = ãx(kx, ky, kz ). The condition for the nodal
line is divided into two cases due to the factorization as fol-
lows:

(I) kz = 0 and az(k) = 0,
(II) ãx(k) = 0 and az(k) = 0.
In cases (I) and (II), the nodal lines appear inside the mirror

plane and outside the mirror plane, and they are illustrated as
the blue lines on the mirror plane (blue plane) and the red lines
outside the mirror plane in Fig. 13, respectively. In case (I), the
nodal line exists on the mirror plane as shown in Fig. 13(a).
Meanwhile, in case (II) where the nodal line exists outside the
mirror plane, when the nodal line meets the mirror plane as
shown in Fig. 13(b), the condition of case (I) is also satisfied
there, and it connects with another nodal line on the mirror
plane.

We now classify the critical points in terms of the Morse
theory. We obtain the gradients of the functions needed for
the Morse theory on the mirror plane (kz = 0):

∇k,m f (kx, ky, 0, m) = (0, 0, 0, 1)T , (65)

∇k,mãx(kx, ky, 0, m) = (·, ·, 0, ·)T , (66)

∇k,maz(kx, ky, 0, m) = (·, ·, 0, ·)T . (67)

In case (I), the function ãx is not involved, and Eqs. (65) and
(67) should be linearly dependent at the critical point, and
it holds when ∂kx az = 0 and ∂ky az = 0 are satisfied. There-
fore the number of the conditions (i.e., ∂kx az = 0, ∂ky az = 0,

az = 0) is three, and it is equal to the number of variables for
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FIG. 14. Schematic pictures of evolution of nodal lines inside
the mirror plane in the momentum space [case (I)], when the two
bands have the opposite mirror eigenvalues. The blue colored lines
represent nodal line inside mirror plane, which is illustrated as the
blue plane. The reconnection of nodal lines happens in (a-1)–(a-3),
and the annihilation (creation) does in (b-1)–(b-3).

(k, m) = (kx, ky, 0, m). This is illustrated as the crossing point
on the blue plane in Fig. 12(d). On the other hand, in case (II),
if there is a point (kx, ky, 0, m) satisfying

Det

(
∂kx ãx ∂kx az

∂ky ãx ∂ky az

)
= 0, (68)

that point is regarded as a critical point because ∇k,m f =
αx∇k,mãx + αz∇k,maz is satisfied for real parameters αx and αz.
The critical point can exist because the number of conditions
[i.e., Eq. (68), ãx = 0, and az = 0] is three, and it is the same
with the number of variables for (k, m) = (kx, ky, 0, m). The
crossing point on the red plane in Fig. 12(b) is an example of
the above discussion.

We now discuss topology changes of nodal lines for cases
(I) and (II) separately. In case (I), the nodal lines inside the
mirror plane evolve as Fig. 14. When N = 1, the nodal lines
are reconnected, and they evolve as Figs. 14(a-1) to 14(a-3)
through 14(a-2). These figures match with the reconnection
of nodal lines on the blue plane in Figs. 12(c), 12(d) and
12(e). When N = 2 and the annihilation happens, the nodal
lines evolve from Figs. 14(b-1) to 14(b-3) through 14(b-2).
Its reverse process is the creation with N = 0, where the
nodal ring shrinks to a point on the mirror plane. Next, in
case (II), the nodal lines outside the mirror plane (red lines
in Fig. 15) evolve from 15(a-1) to 15(a-3) through 15(a-2),

FIG. 15. Schematic pictures of evolution of nodal lines outside
the mirror plane in the momentum space [case (II)], when the two
bands have the opposite mirror eigenvalues. The blue lines represent
nodal lines inside the mirror plane which is illustrated as blue plane,
and the red lines are described as nodal lines outside the mirror
plane. When the red colored nodal lines penetrate the mirror plane,
they touch with blue colored nodal lines. The reconnection of the
nodal lines occurs in (a-1)–(a-3), and the annihilation (creation) of
the nodal lines occurs in (b-1)–(b-3).

and vice versa when the reconnection happens, corresponding
to N = 1. Particularly, in Figs. 15(a-2) and 15(a-3), the red
colored nodal lines cross the blue colored nodal line on the
mirror plane because they penetrate mirror plane. These fig-
ures explain the reconnection on the red plane in Figs. 12(a),
12(b) and 12(c). When N = 2 and the annihilation happens,
the nodal lines evolve from Figs. 15(b-1) to 15(b-3) through
15(b-2). Its reverse process is the creation with N = 0, where
the nodal ring shrinks to a point on the mirror plane because
of the mirror symmetry.

D. Case with two bands having the same irrep
for mirror symmetry

In this section, we consider the case where the two bands
have the same irrep (A′ or A′′) in mirror symmetric systems.
The representation matrix is written as

D(Mz ) = ±
(

1 0
0 1

)
, (69)

where the plus and minus signs correspond to A′ and A′′
irreps, respectively. and we obtain ax(k) = ax(Mzk) and
az(k) = az(Mzk) because of Eq. (34).

The gradients of the functions needed for the Morse theory
at a point on the mirror plane (kz = 0) are

∇k,m f (kx, ky, 0, m) = (0, 0, 0, 1)T , (70)

∇k,max(kx, ky, 0, m) = (·, ·, 0, ·)T , (71)

∇k,maz(kx, ky, 0, m) = (·, ·, 0, ·)T . (72)

If there is a point (kx, ky, 0, m) satisfying

Det

(
∂kx ax ∂kx az

∂ky ax ∂ky az

)
= 0, (73)

the point is a critical point because ∇k,m f = αx∇k,max +
αz∇k,maz is satisfied for real parameters αx and αz. The critical
point is determined by three conditions [i.e., Eq (73), ax = 0,
and az = 0], and these equations can have solutions for three
variables (i.e., kx, ky, and m). Then, the eigenvalues of the
2×2 matrix M are nonzero in general, and the critical point
is characterized by the index N into three cases, N = 0, 1, 2,
corresponding to creation, reconnection, and annihilation of
nodal lines, respectively.

In order to see topology changes of nodal lines under the
mirror symmetry, we note that the normal vector of the surface
ai = 0 (i = x, z) at any point on the mirror plane is parallel to
∇kai|P = (·, ·, 0)T . Thus the tangent vector of the nodal line
at any point on the mirror plane is t||∇kax×∇kaz||(0, 0, 1),
and it is always perpendicular to the mirror plane as shown
in Fig. 16. (Note that at a critical point, ∇kax and ∇kaz are
parallel due to Eq. (73), and the tangent vector t cannot be
determined, as is naturally expected.) The red lines represent
nodal lines outside the mirror plane which is colored by blue.
When N = 1, the reconnection of nodal lines occurs, and
the nodal lines evolve from Figs. 16(a-1) to 16(a-3) through
16(a-2) and vice versa. When N = 2 corrsponding to the an-
nihilation, the nodal line evolves from Figs. 16(b-1) to 16(b-3)
through 16(b-2). In the case with N = 0, the nodal line is
created as a reverse process of the annihilation.
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FIG. 16. Schematic pictures of evolution of nodal lines outside
the mirror plane in the momentum space, when the two bands have
the same mirror eigenvalues. The red lines are described as nodal
lines outside the mirror plane illustrated as blue plane. The recon-
nection of the nodal lines occurs in (a-1)–(a-3), and the annihilation
(creation) of the nodal lines occurs in (b-1)–(b-3).

V. SUMMARY

In this paper, we reveal that there are three types of evolu-
tions of nodal lines with PT symmetry such as the creation,
reconnection, and annihilation. Such topology changes of
nodal lines are understood by the local maximum, the saddle
point, or the local minimum of the function f (k, m) = m in
the 4D (k, m) space. These critical points are characterized
by the index N = 0, 1, and 2 corresponding to the creation,
reconnection, and annihilation in the Morse theory, and we
give examples for the transition of nodal lines. As a result, we
show that a phase transition between the nodal lines and the
nodal link cannot occur directly, but via several reconnections
of nodal lines, if no additional crystallographic symmetries
are assumed.

Moreover we extend our theory to the case with the rota-
tional symmetries and the mirror symmetry, and disclose the
possible topology changes of nodal lines. When the system
has Cn symmetry (n = 2, 4, and 6), the events of topology
changes of nodal lines occur inside the plane containing (per-
pendicular to) the Cn axis with the different (the same) irreps
for the two band. We exclude the C3 symmetric case because
the nodal line always lies along the rotational axis. When the
two bands have different irreps with Cn symmetry (n = 2,

4, and 6), all events for the topology changes of nodal lines
(i.e., creation, reconnection, and annihilation) are possible.
Meanwhile, with the same irreps for the two bands, only
creation and annihilation are allowed in n = 4 and 6 because
of the symmetry constraints, whereas all events are allowed
on n = 2. When the system has the mirror symmetry with
two bands having the different irreps, the topology changes
of nodal lines classified into those for nodal lines inside and
outside of the mirror plane, corresponding to cases (I) and
(II) in Sec. IV C, respectively. On the other hand, if the two
bands have the same irreps, the nodal lines reside only outside
the mirror plane, and can experience all possible topology
changes.

Thus we have shown that the topology changes of nodal
lines are determined by the point-group symmetry of the k
point at which the topology change occurs. In this paper, we
limit ourselves to the simplest point groups such as rotation
or mirror reflection only. An extension to other point groups
is beyond of this paper, and is left as a future work. In this
paper, we limit ourselves to the nodal lines composed of one

conduction band and one valence band, and we describe the
nodal lines in terms of the two-band model. It should be
interesting if we extend our analysis to the cases with the
larger number of bands, which will include various intriguing
cases such as the triple points [59] and double band inversion
[60]. Nonetheless, the analysis for the larger number of bands
will be largely different and much more complicated than the
two-band cases. Therefore the extension to multiband systems
is left for future work.
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APPENDIX A: KAMIYA THEOREM

The nodal lines evolve by changing the parameter m, and
all possible nodal lines configure the manifold M in (k, m)
space. The topology changes of nodal lines occur across the
critical points on the manifold M. To identify the local struc-
ture of the manifold M around the critical points, we adopt
the Kamiya theorem in Secs. III and IV. In this Appendix, we
explain the Kamiya theorem.

The Kamiya theorem is as follows [56]. Let M be a differ-
enctiable function described as

M = {Q ∈ Rn| f1(Q) = · · · = fr (Q) = 0}, (A1)

where f1, . . . fr : Rn → R are differentiable functions, and
∇ f1(Q), . . . ,∇ fr (Q) be linearly independent. If and only
if for a given function f : Rn → R, the following equa-
tion holds

∇ f (Q0) = a1∇ f1(Q0) + · · · + ar∇ fr (Q0) ai ∈ R, (A2)

Q0 ∈ M is a critical point of the function f̄ = f |M : M → R.
Then, let Q0 ∈ M be a critical point of f̄ , and P be a orthog-
onal projection from Rn to a tangent vector space TQ0 (M ) at
Q0, i.e., P : Rn → TQ0 (M ). If and only if a rank of a matrix

M = P (H ( f )|Q0 −
r∑

i=1

aiH ( fi )|Q0 )P, (A3)

where H is a Hessian matrix, is n − r, i.e., rank M = n − r,
the critical point Q0 is nondegenerate. Moreover, an index of f
at Q0 is equal to the number of negative eigenvalues of matrix
M . In the main text, we take n = 4, r = 2, f1 = ax, and
f2 = az.

APPENDIX B: MORSE LEMMA

The Morse lemma [54,55] used in Secs. III and IV tells us
the local shape of the function f near its critical point. Let M
be a differentiable function and f : M → R be a differentiable
function. When a point Q ∈ M is a nondegenerate critical
point of f , the function f can be expressed in terms of a local
cordinate (U ; x1, . . . , xn) around Q:

x1(Q) = · · · = xn(Q) = 0, (B1)

f = f (Q) − x2
1 − · · · − x2

r + x2
r+1 + · · · + x2

n, (B2)

where r is a index of f on Q.
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APPENDIX C: DETAILED CALCULATION
FOR THE INDEX OF THE ANNIHILATION CASE

We show the detailed calculations of the model for the
annihilation. As the gradients of a(C)

j (k, m) for j = x, z at
(k, m) = (0, 0) are

∇k,ma(C)
x (0, 0) =

⎛
⎜⎜⎝

1
0
0
2

⎞
⎟⎟⎠, ∇k,ma(C)

z (0, 0) =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠, (C1)

we get the following relationship:

∇k,m f (0, 0) = ∇k,ma(C)
x (0, 0) − ∇k,ma(C)

z (0, 0). (C2)

This equation implies that Q(0, 0) is a critical point by the
Kamiya theorem. The vectors in Eq. (C1) span a 2D vector
space with basis vectors

b(C)
1 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, b(C)

2 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, (C3)

and an orthogonal projection to a tangent vector space at the
critical point Q(0, 0) is written as

P (C) = I4 − b(C)
1 b(C)T

1 − b(C)
2 b(C)T

2 (C4)

=

⎛
⎜⎜⎝

0
1

1
0

⎞
⎟⎟⎠. (C5)

Moreover Hessian matrices of a(C)
j (k, m) and f (k, m) at the

critical point Q are obtained as

H
(
a(C)

x

)∣∣
Q =

⎛
⎜⎜⎝

1
2

2
1

⎞
⎟⎟⎠, (C6)

H
(
a(C)

z

)∣∣
Q =

⎛
⎜⎜⎝

−1
1

−1
−1

⎞
⎟⎟⎠, (C7)

H ( f )|Q = 0. (C8)

A matrix M (C) written as

M (C) = P (C)
(
H ( f )|Q − H

(
a(C)

x

)|Q + H
(
a(C)

z

)|Q)
P (C)

=

⎛
⎜⎜⎝

0
−1

−3
0

⎞
⎟⎟⎠ (C9)

indicates that the critical point Q is nondegenerate by the
Kamiya theorem because the rank of M (C) is 2. Furthermore,
as the number of the negative eigenvalues is equal to an index
of f at the critical point Q, the index N of f (Q) is 2.

FIG. 17. Nodal lines in the Hamiltonian H(A) with an addi-
tional term. There are two nodal lines with m = 3.2 in (a-1)
and ther is the nodal link with m = 2.8 in (a-2). The inter-
mediate states between the nodal lines and the nodal link are
illustrated in (b-1)–(b-7) as enlarged views. The nodal lines with
m = 3.07, 3.05, 3, 2.995, 2.99, 2.95, and 2.93 are illustrated in
(b-1)–(b-7) in this order. From the two nodal lines to a nodal link,
reconnections occur three times in (b-2), (b-4), and (b-6).

APPENDIX D: FURTHER EXPLANATIONS
FOR THE NODAL LINK

As we discussed in Sec. II B, the model (2)–(4) gives
a direct phase transition between the nodal lines and the
nodal link, but in terms of the Morse theory it is an arti-
fact of the special choice of the model. Namely, ∇ka(A)

x =
∇ka(A)

z = 0 holds at the transition where the two nodal lines
touch, but these equations cannot hold simultaneously in
general, and they hold just by accident. To remove this arti-
fact, we add some terms to the Hamiltonian: a(A)

x → a′(A)
x =

a(A)
x + α sin kx and a(A)

z → a′(A)
z = a(A)

z + α sin kz, where α is
a real parameter. This model has the nodal lines with m =
3.2 and the nodal link with m = 2.8 in Figs. 17(a-1) and
17(a-2) like the original model H(A). However, the interme-
diate states are different from the original model as shown
in Figs. 17(b-1)–17(b-7), where the nodal lines with m =
3.07, 3.05, 3, 2.995, 2.99, 2.95, and 2.93 are illustrated.
The nodal lines are reconnected three times in Figs. 17(b-2),
17(b-4), and 17(b-6). Therefore this model requires the recon-
nections of nodal lines three times to get the nodal link from
two nodal lines.

Thus the phase transition from two nodal lines to a nodal
link cannot occur directly but via several reconnections. We
show its simplest pattern schematically in Fig. 18 from (a)
to (e) as an example. In this example, the nodal lines are
reconnected twice between (a) and (b), and (c) and (d), and
then the nodal link is finally obtained.

FIG. 18. Schematic pictures of evolution from the nodal lines in
(a) to the nodal link (e). The reconnections happen twice as from
(a) to (b) and from (c) to (d).
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APPENDIX E: FACTORIZATION OF ax

Here, we show that ax is always factorized when the two
bands have different irreps for C4 and C6 symmetries, as
briefly explained in Secs. IV A 3 and 4. On the premise that
ax(k) is an analytic function of kx and ky, one can write

ax(k) =
∞∑

m=0

∞∑
n=0

cmnkm
+kn

−, (E1)

where cmn is a complex analytic function of kz, and k± = kx ±
iky. For the following calculations, we note that cnm = c̄mn

since ax(k) is real.

1. C4 symmetry

When the system has C4 symmetry, we obtain ax(k+, k−) =
−a(ik+,−ik−) because of Eq. (34), and the summation in
ax(k) is rewritten as

ax(k) =
∑
m�0
n�0

m−n≡2 (mod 4)

cmnkm
+kn

−,

=

⎛
⎜⎜⎝

∑
m>n�0

m−n≡2 (mod 4)

+
∑

n>m�0
m−n≡2 (mod 4)

⎞
⎟⎟⎠cmnkm

+kn
−,

= c20k2
+

∞∑
p=0
q=0

dpq(k+k−)pk4q
+ + c02k2

−
∞∑

p=0
q=0

d̄pq(k+k−)pk4q
− ,

(E2)

where dpq = cp+4q+2,p/c20. Because d00 = 1, a square root of
the sum

∑∞
p=0
q=0

dpq(k+k−)pk4q
+ is analytic in k+ and k−, and we

can write g2(k) = ∑∞
p=0
q=0

dpq(k+k−)pk4q
+ , where g(k) is analytic

and g(k = 0) = 1. When we introduce iα2 = c20, where α is
complex constant, ax(k) is explicitly factorized as follows:

ax(k) = iα2k2
+g2(k) − iᾱ2k2

−ḡ2(k)

= i(αk+g(k) − ᾱk−ḡ(k))(αk+g(k) + ᾱk−ḡ(k)). (E3)

Because g(k) is written as g(k) = ∑∞
p=0
q=0

fpq(k+k−)pk4q
+ , where

fpq is a complex constant, we get g(k) = g(C4k).

2. C6 symmetry

When the system has C6 symmetry, we obtain ax(k+, k−) =
−ax(e

π i
3 k+, e− π i

3 k−) due to Eq. (34). Therefore, as well as the
C4-symmetric case, ax(k) is factorized:

ax(k) = iα3k3
+g3(k) − iᾱ3k3

−ḡ3(k),

= i(αk+g(k) − ᾱk−ḡ(k))

× (αk+e
2
3 π ig(k) − ᾱk−e− 2

3 π iḡ(k))

× (αk+e
4
3 π ig(k) − ᾱk−e− 4

3 π iḡ(k)), (E4)

where α is a complex constant, g(k) is an analytic function of
kx and ky with g(k = 0) = 1, and g(k) = g(C6k).

APPENDIX F: DETAIL EXPLANATION
UNDER C6 SYMMETRY

In this Appendix, we show the details of the factorization of
a(C6 )

x under C6 symmetry, similar to the cases under C4 symme-
try. In order to study the topology change of nodal lines within
the Morse theory, we will show that a(C6 )

x can be factorized
because of the C6 symmetry. For example, when a(C6 )

x is given
by Eq. (54) with c1 = 1 and c2 = 1, it is factorized as

a(C6 )
x (k) = (kx + ky)((2 −

√
3)kx − ky)((2 +

√
3)kx − ky)

≡ a(C6 )(I)
x (k)a(C6 )(II)

x (k)a(C6 )(III)
x (k), (F1)

where a(C6 )(I)
x (k) = kx + ky, a(C6 )(II)

x (k) = (2 − √
3)kx − ky,

and a(C6 )(III)
x (k) = (2 + √

3)kx − ky. Therefore the condition
for nodal lines is decomposed into three cases:

(I) a(C6 )(I)
x (k) = 0 and a(C6 )

z (k) = 0,
(II) a(C6 )(II)

x (k) = 0 and a(C6 )
z (k) = 0,

(III) a(C6 )(III)
x (k) = 0 and a(C6 )

z (k) = 0.

In all three cases (I), (II), and (III), one can check that
the point (k, m) = (0, 0, 1

2 ,− 1
4 ) is a critical point with the

index N = 1 by the Kamiya theorem. Then the reconnec-
tions of nodal lines on the three planes a(C6 )(I)

x (k) = kx + ky =
0, a(C6 )(II)

x (k) = (2 − √
3)kx − ky = 0, and a(C6 )(III)

x (k) = (2 +√
3)kx − ky = 0 occur simultaneously by the Morse lemma in

a C6-symmetric manner.
Apart from the above example, even when ax(k) and

az(k) are general analytic functions around the critical point
(0, 0, k(0)

z ) in k with the higher order terms in k, we can show
that ax(k) is factorized:

ax(k) = i(αk+g(k) − ᾱk−ḡ(k))

× (αk+e
2
3 π ig(k) − ᾱk−e− 2

3 π iḡ(k))

× (αk+e
4
3 π ig(k) − ᾱk−e− 4

3 π iḡ(k))

≡ ia(I)
x (k)a(II)

x (k)a(III)
x (k), (F2)

where a(I)
x (k) = αk+g(k) − ᾱk−ḡ(k), a(II)

x (k)=αk+e
2
3 π ig(k)−

ᾱk−e− 2
3 π iḡ(k), a(III)

x (k) = αk+e
4
3 π ig(k) − ᾱk−e− 4

3 π iḡ(k) is an
analytic function of k± and kz satisfying g(0, 0, k(0)

z ) =
1, g(k) = g(C6k), and α is a complex constant. As well as the
C4-symmetric case, the condition for nodal lines is decom-
posed into three cases, and a(i)

x (k) = 0 (i = I, II, III) represent
three C2-symmetric surfaces, which are C6-symmetric in total.
Therefore the evolutions of nodal lines occur on three surfaces
containing the C6 axis, and the events such as reconnection,
annihilation, and creation are confined to each surface, and
they follow C6 symmetry in total. The topology change can be
illustrated easily. It is similar to Fig. 9, only with the change
from C4 to C6, and so is omitted here.
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