
PHYSICAL REVIEW B 107, 085135 (2023)

Non-Hermitian Weyl fermions of types III and IV: Hamiltonian, topological
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We adopt the non-Hermitian Hamiltonian formalism to describe Weyl fermions of types III and IV. The
spectrum of Hamiltonian has an unusual type of anisotropy. Namely, the hermiticity of Hamiltonian strongly
depends on the direction in momentum space: for some directions, the spectrum is real, in contrast for other
directions it becomes complex. It is shown that the type III and IV Weyl points are topologically stable and the
Chern number is equal to ±1 despite to the fact that the Hamiltonian is not Hermitian. Furthermore, we calculate
the Landau levels and demonstrate that zero Landau level is real, which means that there is a real spectral flow
between electronlike and holelike states. Due to the formal analogy with the index theorem, the presence of such
a flow as well indicates a nonzero Chern number. In addition, we illustrate that the non-Hermitian Hamiltonian
can be regarded as a one-particle problem in the context of topological band theory.
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I. INTRODUCTION

The current theoretical progress in band theory allows
to describe topologically protected quasiparticles in modern
experimentally accessible materials [1]. Due to their unique
properties, for instance, chiral transport, the topological mate-
rials are expected to be promising for future electronics [2].
Among all, the topological materials with Dirac [3–6] and
Weyl [7–11] points, as well as degenerate points [12] and
lines [13–15] in the Brillouin zone are of particular interest.
The massless fermions in such materials are topologically
protected, which results in quantum-electrodynamics effects
known from high-energy physics [16].

The idea of realization of Weyl points in condensed mat-
ter physics belongs back to C. Herring [17,18]. According
to Herring’s description, the presence of Weyl points can
be understood within a two-band model. The corresponding
Hamiltonian of in momentum representation can be presented
in the Pauli basis

H (p) = σ0 f0(p) +
3∑

i=1

σi fi(p), (1)

where σ0 is 2 × 2 unit matrix, σi are Pauli matrices, and p is
a three-dimensional (3D) momentum vector. The Weyl point
pW arises due to crossing of bands, which satisfies to three al-
gebraic equations fi(pW) = 0. Materials with these conditions
are known as Dirac and Weyl semimetals [19]. Typically such
kind of situation is easily realizable in 3D systems, and equa-
tions fi(pW) = 0 represent the two-dimensional (2D) surfaces
in momentum space: three closed 2D surfaces can have many
crossing points. In 2D systems, this condition corresponds to
the crossing of three lines. This is not trivial and in order
to have the Weyl point in 2D system, the certain types of

symmetries (for example, C6ν point symmetry) are required
[19]. In the vicinity of Weyl point pW , one can expand the
function fi(p) in the Taylor series, which results in low-energy
linear spectrum, namely, fi(p) ∝ |p|, and corresponding exci-
tations are known as massless (Weyl or Dirac) fermions [19].
Equation (1) describes conventional (nontilted) type I Weyl
fermions for zero and constant values of f0(p).

Apart from Weyl semimetals of type I, it was proposed
Weyl semimetals of type II [20–23]. Nowadays such a kind
of materials are accessible experimentally and WTe2 is one of
the candidates for a realization of type II Weyl fermions [24].
In short, the Hamiltonian for such systems can be modeled
at the intersections of Fermi pockets and the spectrum turns
out to be tilted. The minimal Hamiltonian for this case has the
following form:

H (p) = vF σ · p + σ0ω · p, (2)

where vF is Fermi velocity and ω is a tilt vector. For vF > ω,
this Hamiltonian describes the Weyl semimetals of type I
with the tilted spectrum, and consequently, for vF < ω, the
Hamiltonian corresponds to type II Weyl semimetals, where
ω = |ω| is a modulus of vector. It is worth mentioning that
Weyl semimetals of type II can be used for “modeling” of
black and white holes, event horizons [25,26]. Indeed, assum-
ing that the parameter of tilting, ω(x), is a function of spatial
coordinates, the Weyl fermions of type II can be described by
an action of the massless spinor field [25]

SII =
∫

d4x[iψ (υF γ μ∂μ + γ 0ω(x) · ∂)ψ], (3)

where ψ is a Dirac spinor and γ μ is the Dirac matrix in the
Weyl representation γ μ = ( 0 σμ

σ̃μ 0 ) with σμ = (σ0, σ ) and
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σ̃ μ = (σ0,−σ ) and ∂μ = (v−1
F ∂t , ∂). This is the possible basic

(minimalistic) action for the description of massless spinor
field in curved space with metrics ds2 = (|ω|2 − 1)dt2 − 2ω ·
dxdt + dx · dx and allows to model phenomena in the vicin-
ity of the event horizon.

In this paper, we make a further step to develop the theory
for Weyl fermions of types III and IV. We show that these
fermions can be described using the Hamiltonian formalism
in the framework of non-Hermitian quantum theory. More-
over, the non-Hermitian Hamiltonian arises as a one-particle
problem in the context of a band theory of Weyl semimetals.
In order to study the properties of this Hamiltonian and asso-
ciated Hilbert space, the acceptable theory of non-Hermitian
systems is presented below. The spectrum of the Weyl Hamil-
tonian under consideration turns out to be anisotropic in
momentum space, namely, for some directions, the spectrum
is real, and for other directions, it is a complex quantity. The
necessary and sufficient conditions for the real spectrum of
the general Hamiltonian under consideration are formulated.
The main feature of the system we are interested in is that the
Chern number is equal to ±1 despite to the non-Hermitian
Hamiltonian and the zero Landau level is purely real. The
existence of the real zero Landau level additionally confirms
the nonzero Chern number. This is the direct consequence of
analogy with the index theorem (see Ref. [37]).

The rest of the paper is organized as follows. In Sec. II,
using the ideas of Refs. [27,28] we introduce the theory of
Weyl fermions of types III and IV in Hamiltonian formalism
and calculate the energy spectrum. In Sec. III, we provide the
study the topological protection and associated Chern number.
Section IV is devoted to the investigation of Landau levels
and spectral flow. We present our discussion in Sec. V and
conclusion in Sec. VI. Details of calculations are given in
Appendices.

II. WEYL FERMIONS OF TYPE III AND IV

In recent seminal papers, Refs. [27,28], the authors have
suggested Weyl fermions of types III and IV. Briefly, using
the tetrad formalism, there was provided the general action of
a massless spinor field of the form

S =
∫

d4x
√−g

[
iψγ νeμ

ν ∂μψ
]
, (4)

where g is the determinant of the metric tensor and eμ
ν is the

tetrad tensor. One can see from Eq. (4), that Weyl fermions of
types I and II are particular cases of the general tetrad action
theory. Indeed, if one keeps only diagonal elements of tetrad
tensor eμ

ν = vF δμ
ν , then we get the action for Weyl femions of

type I. If one set eμ
ν = vF δμ

ν + δ0
νω

iδ
μ
i , then we get the action

for type II Weyl fermions presented in Eq. (3). However, in
more general case, Eq. (4) can contain other nonzero com-
ponents of the tetrad tensor, namely, eμ

ν = vF δμ
ν + δ0

νω
iδ

μ
i +

ϑiδ
i
νδ

μ
0 , where ϑi are the components of additional tilt param-

eter vector ϑ. The presence of last term restores the symmetry
with respect to rearrangement of indices μ and ν. Note that
this form corresponds to a spatially isotropic tetrad when there
is no δi

νδ
μ
j term. According to Ref. [27], the case vF > ω and

vF < ϑ corresponds to Weyl fermions of type III, and vF < ω

and vF < ϑ is associated with type IV, where ϑ = |ϑ|. Due

to the last term, ϑiδ
i
νδ

μ
0 , the Lagrangian contains a new term

with zero component of momentum σ iϑi p0 and pμ = (p0, pi )
with p0 = ε/vF . Particularly, the possible origin of this term
and consequently Weyl points of types III and IV were as-
sociated with many-particle effects and thus can be worked
out from the self-energy [27]. It is worth mentioning that in
the framework of Hermitian quantum mechanics, the Hamil-
ton formalism does not allow to take into account this term.
Throughout the paper, parameters ω and ϑ do not depend
on the spatial coordinate thus the theory does not contain
any additional terms related to the noncommutativity of a
momentum and a coordinate.

Nevertheless, we insist that the Hamiltonian formalism
can be constructed but in the framework of non-Hermitian
quantum mechanics. Moreover, the non-Hermitian Hamilto-
nian formalism allows the alternative explanation, which does
not necessarily include many-particle effects as the possible
mechanism of explanation. In order to introduce the Hamilto-
nian, we first construct the wave equation

G−1(p0, pi )|�〉 = 0, (5)

where for the spatially isotropic case, which contains all
important physics, Green’s function associated with action,
Eq. (4) is given by

G−1(p0, pi ) = vF σ 0 p0 − vF σ i pi − ωi pi − σ iϑi p0. (6)

Using the above expression, Eq. (5) can be easily rewritten in
a conventional form, where the Hamiltonian in the left-hand
side is the function of only three-dimensional momentum.
After simple algebra, one arrives to the following two wave
equations:

H|�R〉 = εR|�R〉, H†|�L〉 = εL|�L〉, (7)

where the non-Hermitian Hamiltonian takes form

H = (i + K )/(1 − β2),  = σ · [p × ϑ],

K = [vF σ + σ0(ω + ϑ)] · p + (σ · ϑ)(ω · p)/vF , (8)

and β = ϑ/vF . This is the Hamiltonian of types III and IV
non-Hermitian Weyl fermions and is our main result. This
Hamiltonian can be also obtained directly from the action,
Eq. (4), if one writes the wave equation as the Euler-Lagrange
equation for the Dirac field. In Eq. (7), we have defined the
R (right) and L (left) wave functions. It is worth mentioning
that use of so called dual basis (R, L) is a convenient step for
non-Hermitian systems, which allows to restore the common
structure of Hilbert space [29–31].

Now one can easily obtain the spectrum of non-Hermitian
and conjugated Hamiltonians from Eq. (7). The spectra are
coincides with each other, namely,

ε = εR = ε∗
L = A(p) ± √

B(p)

1 − β2
, A(p) = (ϑ + ω) · p,

B(p) = [(ϑ + ω) · p]2 + (1 − β2)
[
v2

F p2 − (ω · p)2], (9)

where p = |p|. Note that the Hamiltonian of form H = aσ0 +
(b + ic)σ has the spectrum ε = a ± √

b2 − c2 + 2ib · c,
which contains exceptional point due to term b · c. In our
case, b is proportional (collinear) to p and c is proportional
to vector product [p × ϑ], thus b · c = 0 and the expression
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FIG. 1. (Top) It is shown the segments of angles between vectors
ϑ (red arrow) and p (blue arrow), where the imaginary part of spec-
trum, Im(ε) is zero (green) and nonzero (yellow). The angle χ0 =
arcsin(1/β ) corresponds to the direction of the momentum vector
relative to vector ϑ, at which the transition from the real to complex
spectrum occurs. The black dots represent different directions of the
momentum relative to vector ϑ. (Bottom) It is shown the evolution
(black arrows) of the real and imaginary parts of the spectrum Eq. (9)
when the momentum direction changes from position 1 to position 9
(see the upper part of the figure). The brown and blue dots correspond
to the hole and electronic states, respectively, while the red and
green dots correspond to the complex spectrum with positive and
negative imaginary parts, respectively. Dots 3 and 7 correspond to
the transition points from the real to complex spectrum in Eq. (9) at
vanishing B(p).

under the root always is real. For simplicity, we set ω = 0 for a
further discussion. This does not affect the outcome, since the
nonhermiticity is described by term i. Then the Hamiltonian
from Eq. (8) can be rewritten in the form

H = [σ · (vF ep + iϑ sin χeχ )p + ϑ · p]/(1 − β2), (10)

where the unit vector ep is directed along the momentum p
and the unit vector eχ is directed along the direction of the
cross product [p × ϑ]. For values ϑ < vF (β < 1), the pa-
rameter ϑ renormalizes the velocity ∂ε/∂ p due to coefficient
1/(1 − β2) and results in slope (tilt). For ϑ > vF (β > 1), the
spectrum in Eq. (9) is real in the segment | sin χ | < β−1. In
contrast, for | sin χ | > β−1, the spectrum consists of complex-
conjugated branches. Therefore we get the anisotropy with
respect to spectrum’s (Hamiltonian’s) hermiticity (see Fig. 1).
The eigenstates |�R〉 and |�L〉 are orthogonal: 〈Ψ L

±|Ψ R
∓〉 = 0

and 〈Ψ L
±|Ψ R

±〉 �= 0, where “±” corresponds to electron hole

states in Eq. (9) (see Secs. A and B in Appendix for details).
The existence of a segment with the real spectrum, despite
the non-Hermitian nature of the Hamiltonian, is surprising.
Nevertheless, we can prove the following statement. If the
non-Hermitian Hamiltonian H can be transform to Hermitian
Hh one, using the similarity transformations with a nondegen-
erate matrix, then the eigenvalues of H are real. Indeed, let
us apply the similarity transformation, SHS−1 with the linear
operator S in the from of nondegenerate matrix, (S−1)† =
(S†)−1, to Hamiltonian H. Next, we assume that the following
equality holds:

SHS−1 = Hh. (11)

Then SHS−1|�〉 = Hh|�〉 = E |�〉, where E is real since
Hamiltonian Hh is Hermitian. On the other hand due to lin-
earity of operator S, this equation can be written as H|�〉 =
E |�〉, where |�〉 = S−1|�〉. Thus the eigenvalues of the non-
Hermitian Hamiltonian, which satisfies the condition (11), are
real. Equation (11) can be rewritten in a new form

H† = (S†S)H(S†S)−1 = ηHη−1, (12)

where we have introduced the Hermitian operator η = S†S.
Equation (12) is the necessary and sufficient condition for
the spectrum of Hamiltonain H to be real. If S is unitary
matrix, then S†S = 1 and Eq. (12) recovers the hermicity of
the Hamiltonian from Hermitian quantum mechanics. One can
show that Hamiltonian (10) satisfies the condition (12) for
| sin χ | < β−1 segment (see Appendix C for details). For non-
degenerate matrix (S−1)† = (S†)−1, the condition in Eq. (12)
coincides with the condition of pseudohermiticity [32–34].
This is the necessary condition for a spectrum to be real. The
sufficient condition for the spectrum to be real is the existence
of operator η in the form of S†S. The condition in Eq. (12) at
S†S = η is known as η− hermiticity. We call Hamiltonains H
and Hh from Eq. (11) equivalent, since they have the same
real spectrum even if one of them is non-Hermitian. The
equivalence of two Hamiltonians in that sense is the necessary
and sufficient condition to have a real valued spectrum.

III. TOPOLOGICAL PROTECTION AND CHERN NUMBER

We continue to investigate the spectrum of Weyl fermions
of types III and IV. It is worth mentioning, that Weyl points
are topologically protected with respect to external pertur-
bations. The spectrum remains gapless, for the case of unit
matrix perturbation, H → H + IU0, which causes the shift
of Weyl points with respect to energy and momentum, ε →
ε(p − p0) + ε(p0), where p0 satisfies to the condition [(ϑ +
ω) · p0 + U0]2 + [1 − β2][v2

F p2
0 − (ω · p0 + U0)2] = 0. Next,

the perturbation in the form of a Pauli matrix, H → H + σU
results in the following spectrum:

ε = [E1(p) ± E2(p)]/(1 − β2), (13)

where E1(p) = A(p) + ϑ · U/vF and E2(p) =√
E2

1 (p) + (1 − β2)ξ (p), with ξ (p) = (vF p + U)2 − (ω · p)2

and A(p) is given in Eq. (9). This spectrum has a shift with
respect to the initial one, Eq. (9), but does not contain a gap.

It is as well useful to investigate the stability of spectrum
with the help of topological invariant-Chern number. For a
non-Hermitian Hamiltonian, the Chern number can be written
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as [31,36]

N = 1

4π

∮
i∂p × 〈Ψ L|∂p|Ψ R〉 · dS, (14)

where the integration is carried out over a closed surface
enclosing the Weyl point (see Fig. 2). The Chern number
defined in Eq. (14) must vanish, if the Hamiltonian has certain
symmetries, namely, H(p) = HT (p) (complex symmetric
Hamiltonian which corresponds to C symmetry with c = σ0

[35], where σ0 is unit matrix), σxH(p)σx = HT (p) (pseudo-
Hermitian and real Hamiltonian which corresponds to C
symmetry with c = σx [35]) or H(p) = HT (−p) (Hermitian-
conjugate time reversal symmetry TRS†). The Hamiltonian
does not satisfies any of these conditions, which indicates
of topological protection of Chern invariant for the Hamilto-
nian under consideration. Next, the integration in Eq. (14) is
performed with the help of Stoke’s theorem in Appendix D.
The result is an integer number, namely, N± = ±1. Thus one
can see that the Chern number remains nonzero and integer
despite the fact that the Hamiltonian is non-Hermitian. Ap-
parently, this is a guarantee of the topological stability of the
Weyl points of new types. Below we study the Landau levels
and show that the zero Landau level, which is interpreted as
a spectral flow, is purely real. This is another proof that the
Chern number of Weyl points of types III and IV does not
vanish despite presence of non-Hermiticity.

IV. LANDAU LEVELS AND SPECTRAL FLOW

Here we study the Landau levels for Weyl spectra of new
types in presence of perpendicular magnetic field. The mag-
netic field breaks the T symmetry, which should lead to the
opening of the band gap. However, in topologically nontrivial
systems, so-called spectral fluxes arise in form of unidirec-
tional chiral modes (see, for a review, Ref. [37]). We will
verify that, despite the fact that our system is non-Hermitian,
there are such spectral fluxes and they are purely real, which
is an additional proof of the nontriviality of the nonzero Chern
number. We consider the general case of nonzero ω �= 0.
In presence of a magnetic field B = (0, 0, B > 0), one has
to shift the momentum p → p + e/cA in Hamiltonian and
∇ × A = B. Then, using the Landau gauge, we obtain the
following equation for eigenvalues εn:

[M̂ − ε + ωx px + ωz pz]|�〉 = 0, (15)

where the first term on the left-hand side consists of magnetic
field

M̂ = υF σx

(
px + ε

υ2
F

ϑx − e

c
By

)
+ υF σy

(
py + ε

υ2
F

ϑy

)

+ υF σz

(
pz + ε

υ2
F

ϑz

)
− ωx

e

c
By. (16)

For simplicity, further we set ωy = 0, and to solve the eigen-
values problem, we switch to a moving frame of reference
using the Lorentz boost, pν = gνμ p̃μ, with metric tensor

gνμ =

⎛
⎜⎜⎝

cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (17)

where ν = t, x, y, z is a four-dimensional coordinate subscript
and tanh θ = ωx/υF = β. Thus we have[

− e−σxθ

(
ˆ̃pt − p̄t

ϑx

υF
sinh θ

)

+ σxe−σxθ

(
ˆ̃px + p̄t

ϑx

υF
cosh θ − e

c
By

)
+ σy

(
ˆ̃py − p̄t

ϑy

υF

)

+ σz

(
ˆ̃pz − p̄t

ϑz

υF

)]
|�〉 = 0. (18)

For a stationary problem (|�〉 ∼ exp iεt), after some algebra,
we obtain Landau levels (further calculations are valid in the
so-called magnetic regime, when β < 1. At β � 1 (electric
regime), the electron energy is not quantized:

εn = sgn(n)
√

2υ2
⊥h̄2l2

Bn + υ2
‖ p2

z + ω̃z pz,

ε0 = (±υ‖ + ω̃z )pz, (19)

where lB = √
h̄c/|e|B is a magnetic length and the remaining

parameters have the form

υ⊥ = υF γ 3/2√
ω̄2 − γ 2ϑ2

z

υ2
F

, υ‖ = υF γ
ω̄ + ωzϑz

υ2
F

ω̄2 − γ 2ϑ2
z

υ2
F

, (20)

ω̃z = ω̄ωz + γ 2ϑz

ω̄2 − γ 2ϑ2
z

υ2
F

, ω̄ = 1 + ωxϑx

υ2
F

, γ =
√

1 − β2. (21)

As can be easily seen, the Landau levels are generally com-
plex. However, the zero Landau level is purely real. This
means that there is a real spectral flux between electronlike
and holelike states. The presence of such a flow implicitly
indicates a nonzero Chern number, which is the consequence
of the index theorem (see Ref. [38]).

V. DISCUSSION

Let investigate the spectrum in phase transition point vF =
ϑ . For simplicity, we assume that vectors ϑ,ω are parallel to
p. Then one has (ϑ + ω) · p = ±(ϑ + ω)p, where “±” cor-
respond to positive and negative directions of momentum p.
Let be vF > ω. This corresponds to phase transition between
types I and III. The electron states with positive momentum
and hole states with negative momentum in phase transition
point can be associated with infinite group velocity ∂ε/∂ p.
Indeed, in this case, from Eq. (9), one has

lim
ϑ→vF

ε → ∞. (22)

Such situation is described by vertical line. The second branch
of spectrum originates from electron states with negative mo-
mentum and hole states with positive momentum. For these
states, from Eq. (9), we have

lim
ϑ→vF

ε = −v2
F p2 − (ω · p)2

2(ϑ + ω) · p
. (23)

These two branches for the cases vF > ϑ , vF = ϑ and vF < ϑ

are provided at Fig. 3 in case of type III (the qualitative
picture for the case of type IV is similar). Let discuss these
transitions in details. To do this, let consider the linear func-
tion y = (a − b)x. For a > b, this function describes the line

085135-4



NON-HERMITIAN WEYL FERMIONS OF TYPES III AND IV: … PHYSICAL REVIEW B 107, 085135 (2023)

FIG. 2. It is shown a closed surface in momentum space en-
closing the Weyl point. The surface is divided into two regions:
the spectrum of Hamiltonian, Eq. (10), is real in the region SR and
complex in the region SC. The lines l1 and l2 represent the boundaries
between SR and SC. The vector ϑ is directed along Z axis.

with positive slope. At point a = b, the continuous transition
from positive to negative slope occurs. At the same time,
point a = b corresponds to horizontal line, i.e., the transition
occurs through X axis. Is it possible to make a phase transition
from positive slope to negative through Y axis? This transition
correspond to type I-III (II-IV) and it is completely different
compared to previous one. The main difference is that during
the phase transition there is the swapping of the electron
and hole states. Such a kind of transition can be described
with the function of the form y = x/(a − b). For a > b, this
function describes the straight line with positive slope. For
a < b, the slope is negative. Point a = b corresponds to the
transition from the positive to negative slope. However, com-
pared to the previous example, (a − b)x, this is a singularity
point. Thus the transition from the positive to negative slope
is not continuous. In other words, in the second example,
conditions a > b and a < b correspond to the fundamentally
different phases, and the continuous transition between them
is forbidden. Now, it becomes clear that types I and II are
not topologically different since the continuous transition is
allowed. Consequently, in this context, types I and III, I and
IV are topologically different phases. Note that the discussion
above is true only for one branch (in our case, it is the red
line). For the blue branch, there is no inversion of the electron
and hole parts of the spectrum. Indeed, the slope of the blue

FIG. 3. The electron spectrums of types I (left) and III (right).
The vertical axis is energy and the horizontal axis is momentum. The
spectrum during the phase transition I-III (middle).

branch of the spectrum does not depend on the ratio between
vF and ϑ .

Finally, let us discuss the possible origin of the non-
Hermitian Weyl Hamiltonian of types III and IV. The authors
of Ref. [27] suggest to associate the Weyl fermions of types
III and IV with many-particle effects. However, it can be
provided the alternative interpretation as well. The alternative
interpretation does not depend directly on the many-particle
effects. We present the explanation in a general form, keep-
ing in mind the two-band model of the band structure.
The wave function in the two-band model has the form
|�p〉 = Cu|up〉 + Cv|vp〉, where amplitude Cu/v corresponds
to |up〉/|up〉 Bloch’s function. Multiplying the wave equation
H |�p〉 = Ep|�p〉 by 〈up| and 〈υp|, we obtain the system of
equations for the amplitudes

(
Hp

uu Hp
uv

Hp
vu Hp

vv

)(
Cu

Cv

)
= Ep

(
Sp

uu Sp
uv

Sp
vu Sp

vv

)(
Cu

Cv

)

= [ f0(p) + σi fi(p)](Cu Cv )T , (24)

where Hp
ab = 〈ap|H |bp〉 is the matrix element of the Hamilto-

nian, with a, b = u, v, and Sp
ab = 〈ap|bp〉 = ∫

a∗
p(r)bp(r)d3r

is the overlap integral. Typically, the Bloch functions are
taken to be orthogonal, thus in Eq. (24), the overlap matrix
becomes a unit matrix, Sp

ab = δab. However, in real mate-
rials, this is not always true and the off-diagonal elements
of the overlap matrix do not vanish (for instance, one of
the reason is indeed many-particle effects) [39–44]. Let
introduce the Bloch functions up(r) = ∑

R e−ip(r−R )φu(r −
R) and vp(r) = ∑

R e−ip(r−R )φv (r − R), where φu and φv

are the atomic orbitals, corresponding to bands u and v,
respectively, and R is a radius vector of a given atom
at the lattice site. Then the off-diagonal overlap integral
can be written as

∫
u∗

p(r)vp(r)d3r = ∑
RR′ eip(R−R′ )

∫
φ∗

u (r −
R′)φv (r − R)d3r. Atomic orbitals corresponding to the same
atom (R = R′) are orthogonal,

∫
φ∗

a (r − R′)φb(r − R)d3r =
δab. However, at different R �= R′, generally speaking these
orbitals are not orthogonal, which results in the nonzero
off-diagonal elements of overlap matrix Sp

ab. At the same
time, we note that the Bloch functions at the Weyl point
will be orthogonal, since at this point, the time reversal
symmetry is not broken. This means that 〈upW |T upW 〉 =
0, where T is the time reversal operator [17,18]. Since
T |upW 〉 = |υpW 〉 then 〈upW |υpW 〉 = 0. Further, the Eq. (24)
can be rewritten as (Sp)−1[ f0(p) + σi fi(p)](Cu Cv )T =
H̃(Cu Cv )T = ε̃(Cu Cv )T , where Sp

ab is a matrix on the
right-hand side of Eq. (24). In the vicinity of Weyl point,
one has fi(p) ≈ vF pi and f0(p) ≈ ω · p. If one requires that
the overlap matrix in Pauli basis has components Sp

uu(vv) =
1 ∓ ϑz/vF , Sp

uv = (iϑy − ϑx )/vF = (Sp
vu)∗, then the effective

Hamiltonian, H̃ = (Sp
ab)−1[ f0(p) + σi fi(p)] completely coin-

cides with the Hamiltonian from Eq. (8) with the same
prefactor 1/(1 − β2). Thus the origin of this Hamiltonian
can be related with the overlap between Bloch functions. For
1D chain, such a Hamiltonian has been recently introduced
by generalizing the Su-Schrieffer-Heeger model in the non-
Hermitian case [45].
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VI. CONCLUSION

To conclude, we have provided the theory of type III and
IV Weyl semimetals within the non-Hermitian Hamiltonian
formalism. The spectrum of this Weyl Hamiltonian exhibits an
unusual type of anisotropy in momentum space, namely, for
some directions, the spectrum is real, in contrast for other di-
rections it is complex. The necessary and sufficient conditions
for the spectrum to be real is provided. It is shown that the type
III and IV Weyl points are topologically stable and the Chern
number is equal to ±1 despite to the fact that the Hamiltonian
is not Hermitian. Apart from that, we have demonstrated that
the zero Landau level is real, which means that there is a real
spectral flow between electronlike and holelike states. The for-
mal analogy with the index theorem indicates the presence of
a nonzero Chern number as well. Additionally, we speculated
on the possible origin of the non-Hermitian Hamiltonian.
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APPENDIX A: THE ORTHOGONALITY CONDITIONS

We write the spectrum from Eq. (9) in the main text with
additional subscripts as

εR,± = ε∗
L,± = A(p) ± √

B(p)

1 − β2
, (A1)

where “±” are associated with electron and hole states. The
corresponding eigenvectors are denoted by |Ψ R,L

± 〉, which
satisfy wave equations H|Ψ R

±〉 = εR,±|Ψ R
±〉, and H†|Ψ L

±〉 =
ε∗

L,±|Ψ L
±〉. In phases III and IV, the spectrum is anysotropic

[see Eq. (9) from main text] with respect to space orienta-
tion of momentum vector: for some directions, the spectrum
is real, in contrast, for other directions, it is complex. It
is worth mentioning that for the real spectrum sector εR =
εL = ε, where “±” is omitted. The existence of domain,
where Im(ε) �= 0 is the main distinguishing feature of the new
phases, III and IV. Apart from this, in domain of complex
spectrum ε∗

± = ε∓, which leads to important consequences.
The main one is related with scalar product 〈Ψ L

α |Ψ R
β 〉. Let

consider the following 2 × 2 matrix:(〈Ψ L
+|H|Ψ R

+〉 〈Ψ L
+|H|Ψ R

−〉
〈Ψ L

−|H|Ψ R
+〉 〈Ψ L

−|H|Ψ R
−〉

)
. (A2)

Applying the Hamiltonian inside matrix elements on the right-
and left-hand sides, one obtains(

ε+〈Ψ L
+|Ψ R

+〉 ε−〈Ψ L
+|Ψ R

−〉
ε+〈Ψ L

−|Ψ R
+〉 ε−〈Ψ L

−|Ψ R
−〉

)
=

(
ε+〈Ψ L

+|Ψ R
+〉 ε+〈Ψ L

+|Ψ R
−〉

ε−〈Ψ L
−|Ψ R

+〉 ε−〈Ψ L
−|Ψ R

−〉
)

.

(A3)
From the above equation, it is obvious that 〈Ψ L

±|Ψ R
∓〉 = 0 and

〈Ψ L
±|Ψ R

±〉 �= 0.

APPENDIX B: THE FORM OF EIGENSTATES

The Hamiltonian under consideration has the form

H = A(p)σ0 + [D(p) + iC(p)] · σ, (B1)

where D · C = 0. The spectrum of this Hamiltonian is given
by

εR,± = ε∗
L,± = ε± = A ±

√
D2 − C2, (B2)

where C = |C| and D = |D|. Particularly, for the case un-
der consideration in main text, the parameters are A = (ω ·
p + ϑ · p)/(1 − β2), D = (υF p + 1

υF
ϑ(ω · p))/(1 − β2) and

C = [p × ϑ]/(1 − β2). The eigenstates of the Hamiltonian
are given by

|Ψ R
±〉 = N±

(
Cz − iDz ∓ i

√
D2 − C2

Cx + i(Cy − Dx ) + Dy

)
,

|Ψ L
±〉 = N±

(
Cz + iDz ± i(

√
D2 − C2)∗

Cx + i(Cy + Dx ) − Dy

)
, (B3)

where “∗” means the complex conjugation. Using the form of
eigenstates in Eq. (B3), one can show that 〈Ψ L

±|Ψ R
∓〉 = 0. Fur-

ther, the direct calculations give 〈Ψ L
±|Ψ R

±〉 = −2(D2 − C2) ∓
2i(Cz − iDz )

√
D2 − C2. Therefore the normalizing factor N±

of the eigenfunctions is equal to

N± = 1

i
√

2(D2 − C2) ± 2i(Cz − iDz )
√

D2 − C2
. (B4)

Let us explore the topology of the eigenstates obtained
above. Without loss of generality, we consider the simplest
case when ω = 0 and ϑ = (0, 0, ϑ ). We write the eigenfunc-
tions in spherical coordinates

|Ψ R
±〉 = exp (−iχ )√

2
√

1 − β2 sin2 θ (
√

1 − β2 sin2 θ ± cos θ )

×
(

(cos θ ±
√

1 − β2 sin2 θ )
(1 + β ) sin θeiϕ

)
, (B5)

|Ψ L
±〉 = exp (−iχ )√

2
√

1 − β2 sin2 θ (
√

1 − β2 sin2 θ ± cos θ )

×
(

(cos θ ±
√

1 − β2 sin2 θ )
(1 − β ) sin θeiϕ

)
, (B6)

where χ is some arbitrary phase. However, these eigen-
functions contain points where the uniqueness is lost. The
existence of such points is the source of nontrivial topology. In
our case, these points correspond to angles θ = 0 and θ = π ,
which exactly coincides with the Hermitian Hamiltonian in
the form of a monopole. At point θ = 0, the eigenfunction
has the form (for concreteness, we consider only Ψ R,L

+ )

|Ψ R,L
+ ((θ = 0)〉 = exp (−iχ )

(
1
0

)
. (B7)

Therefore, for uniqueness of the above function, it is neces-
sary to set χ = 0 (northern gauge). However, this gauge is not
suitable for point θ = π . Indeed, at this point, the eigenfunc-
tions have the form

|Ψ R,L
+ (θ = π )〉 = exp (−iχ )

(
0√

1±β

1−β
eiφ

)
. (B8)

We see that for the uniqueness of this function, it is necessary
to set χ = φ (southern gauge). Thus the multivaluedness of
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the eigenstates cannot be eliminated by a global gauge choice
in form of smooth function. Different gauge phases must be
used in the northern and southern hemispheres. Thus, conse-
quently for the eigenfunctions of the southern hemisphere, we
have∣∣∣ S

Ψ R+
〉
= 1√

2
√

1 − β2 sin2 θ (
√

1 − β2 sin2 θ ± cos θ )

×
(

(cos θ ±
√

1 − β2 sin2 θ )e−iϕ

(1 + β ) sin θ

)
, (B9)

∣∣∣ S

Ψ L+
〉
= 1√

2
√

1 − β2 sin2 θ (
√

1 − β2 sin2 θ ± cos θ )

×
(

(cos θ ±
√

1 − β2 sin2 θ )e−iϕ

(1 − β ) sin θ

)
. (B10)

And for the eigenfunctions of the northern hemisphere, we
have∣∣∣ N

Ψ R±
〉
= 1√

2
√

1 − β2 sin2 θ (
√

1 − β2 sin2 θ ± cos θ )

×
(

(cos θ ±
√

1 − β2 sin2 θ )
(1 + β ) sin θeiϕ

)
, (B11)

∣∣∣ N

Ψ L±
〉
= 1√

2
√

1 − β2 sin2 θ (
√

1 − β2 sin2 θ ± cos θ )

×
(

(cos θ ±
√

1 − β2 sin2 θ )
(1 − β ) sin θeiϕ

)
. (B12)

We use these eigenstates in Appendix D for calculating of the
Chern number.

APPENDIX C: REAL SPECTRUM OF
PSEUDO-HERMITIAN HAMILTONIAN

From the main text, Eq. (12), it is clear, that [η,H] =
ηH − Hη �= 0, for non-Hermitian H. Indeed, otherwise
[η,H] = 0 and one arrives to contradiction, namely, the
conjugated Hamiltonian H† = ηHη−1 = Hηη−1 = H is Her-
mitian. As an example, let consider the simple non-Hermitian
matrix M = ( 1 1 + λ

1 − λ −1 ), where λ is the arbitrary number.
Next, let find the matrix η, which satisfies the condition
M† = ηMη−1. One can show that the η has the following

form η = (
r+q
1+λ

q
q r−q

1−λ

), where p, q are arbitrary numbers as

well. Further, in order to have the real eigenvalues for matrix
M, there must be possibility to present η = S†S. From these
condition, one consequently obtains that q, r ∈ R and η† = η.
Further, it is obvious, that the condition det(SS†) > 0 must be
satisfied. This condition set limits on the choice of elements
of matrix η. In our case, this condition brings us to inequality
for p, q and λ, namely, q2−r2

λ2−1 − q2 > 0. This inequality does
not work for λ2 > 2. Thus the eigenvalues of matrix M are
real for λ2 < 2.

Let now investigate our Hamiltonian in the same manner
as the example above. For simplicity, we consider the case of

ϑ = (0, 0, ϑ ). In this case, the Hamiltonian in Eq. (10) from
main text is written as

H = υF

1 − β2

[(
pz (1 − β )(px − ipy)

(1 + β )(px + ipy) −pz

)

+ βpzσ0

]
, (C1)

where β = ϑ/vF and σ0 is the identity matrix. The matrix
η has the form η = ( a b

b∗ d), where a = r+bpz

(1−β )(px−ipy ) and d =
r−bpz

(1+β )(px−ipy ) , r, b ∈ C. From condition η = S†S, one gets that

q, r > 0 ∈ R and the condition det(S†S) > 0 results in in-
equality for other parameters, ad − |b|2 > 0 ∈ R. Using these
conditions at β < 1, one can show that matrix η = S†S exists

always. For example, η = (
q

1−β
0

0 q
1+β

), where q > 0 ∈ R. For

β > 1, the matrix η = S†S exists only for p2
z

p2
x+p2

y
< β2 − 1,

which turns out to be | sin χ | < β−1 in spherical coordinates,
and this condition coincides with the one we have provided in
Eq. (9) from main text. In this case the matrix has the form

η = (
pz

β−1 −px + ipy

−px − ipy
pz

β+1
). In other words, for | sin χ | < β−1

the Hamiltonian above, Eq. (C1) can be brought to Hermi-
tian Hamiltonian using similarity transformations. namely,
S−1HS is the Hermitian operator, despite the fact that H is
non-Hermitian. Additionally, it is worth pointing out, that re-
definition of scalar product in Hilbert space (unitary theorem)
in the following form 〈〈�|�〉〉S ≡ 〈�|S†S|�〉 does depend on
time, if Hamiltonian satisfies the condition (12) from main
text. Thus this means that the probability density does not
depend on time, and the unitary condition is suited.

As one can observe from Eq. (12) from main text, in
general the realness of spectrum is defined not only by the
properties of operator by itself, but as well it influences on
Hilbert space. It worth mentioning, that the PT symmetry
for non-Hermitian quantum systems introduced by Bender
[46], says that PT operator and Hamiltonian have the same
eigenvectors. In this case Hamiltonian has the real spectrum,
despite the fact that it is non-Hermitian. This requirements
is the particular case of Eq. (12) from main text. Namely,
to show this, let change a bit the matrix we have considered
above, M ⇒ ( 1 λ − 1

λ + 1 −1 ). This matrix is not Hermitian and it
does not have PT symmetry. However, the eigenvalues of this
matrix are real for any real λ. This is related with the fact that
matrix ( 1 λ − 1

λ + 1 −1 ) is equivalent to Hermitian matrix (0 λ

λ 0).
Namely, there always exists the similarity transformation R,
therefore, R(0 λ

λ 0)R−1 = ( 1 λ − 1
λ + 1 −1 ).

APPENDIX D: CALCULATION OF CHERN NUMBER

The Chern number is given by the surface integral

Nα = 1

2π

∫
S
Fα, (D1)

where Fα = −itr(PαdPα ∧ dPα ) is the Berry curvature of α

band, α = ± and ∧ denotes wedge product. Operator Pα =
|Ψ R

α 〉〈Ψ L
α | is the spectral projector on the α band and the inte-

gration is carried out with respect to closed surface, enclosing
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N
S

S
S

N

S

S

S

FIG. 4. Gauge on the integration sphere (left) and division of the
sphere into three regions along the exceptional lines (right).

the Weyl point. Equation (D1) is completely equivalent to
Eq. (14) from main text. We spit Eq. (D1) into two parts

Nα = 1

2π

(∫
SC

Fα +
∫

SR

Fα

)
, (D2)

where surface domains SC and SR correspond to complex and
real spectra (see Fig. 4). The region of the real spectrum

consists of northern (N) and southern parts (S): SR = N
SR + S

SR.
Therefore the integral includes three terms

Nα = 1

2π

(∫
SC

Fα +
∫

N
SR

Fα +
∫

S
SR

Fα

)
. (D3)

Next, we use Stoke’s theorem to go from integration of Berry
curvature to integration of Berry connection. However, before
doing this, it is necessary to correctly select the gauge of the
eigenfunctions for the north and south poles. This gauge is

important for regions
N
SR and

S
SR, at the same time for region

SC, we can choose any gauge. To use the Stokes theorem,
we break the sphere along the exceptional lines, as shown in
Fig. 4 (left). According to Stoke’s theorem the Chern number
is defined as follows: ∫

S
F =

∫
∂S
A, (D4)

where ∂S is the boundary of S and A is Berry connection. In
our case ∂S = l1,2 (see Fig. 2). In spherical coordinates, for
the Berry connection along the exceptional lines, we have

A±
1,2 = i〈�L

±|d|�R
±〉θ→χ0,π−χ0 = i〈�L

±|∂ϕ|�R
±〉θ→χ0,π−χ0 dϕ

(D5)
where θ = χ0 corresponds to exceptional line l1 and θ =
π − χ0 corresponds to exceptional line l2. Now, splitting the
sphere as shown in Fig. 4 (right), we have

N± = 1

2π

[∫
l1

AN −
∫

l1

AS

]
θ=χ0

+ 1

2π

[∫
l2

AS −
∫

l2

AS

]
θ=π−χ0

=
∫ 2π

0

dϕ

2π

[
i

〈
N

Ψ L±

∣∣∣∣∣∂ϕ

∣∣∣∣∣
N

Ψ R±

〉
− i

〈
S

Ψ L±

∣∣∣∣∣∂ϕ

∣∣∣∣∣
S

Ψ R±

〉]
θ=χ0

= ±
∫ 2π

0

dϕ

2π
= ±1. (D6)

Thus the Chern number remains nonzero and integer despite
the fact that the Hamiltonian is non-Hermitian.
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