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The theoretical scattering cross section of electron energy loss spectroscopy (EELS) is essentially given by
−Im ε−1(k, ω) with the energy loss h̄ω and the momentum transfer h̄k. The macroscopic dielectric function
ε(k, ω) can be calculated from first principles using time-dependent density-functional theory. However, exper-
imental EELS measurements have a finite k resolution or, when operated in spatial resolution mode, yield a
k-integrated loss spectrum, which deviates significantly from EEL spectra calculated for specific k momenta.
On the other hand, integrating the theoretical spectra over k is complicated by the fact that the integrand varies
over several (typically six) orders of magnitude around k = 0. In this article, we present a stable technique for
integrating EEL spectra over an adjustable range of momentum transfers. The important region around k = 0,
where the integrand is nearly divergent, is treated partially analytically, allowing an analytic integration of the
near divergence. The scheme is applied to three prototypical two-dimensional systems: monolayers of MoS2

(semiconductor), hexagonal BN (insulator), and graphene (semimetal). Here, we are confronted with the added
difficulty that the long-range Coulomb interaction leads to a very slow supercell (vacuum size) convergence. We
address this difficulty by employing an extrapolation scheme, enabling an efficient reduction of the supercell size
and thus a considerable speedup in computation time. The calculated k-integrated spectra are in very favorable
agreement with experimental EEL spectra.
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I. INTRODUCTION

In electron energy loss spectroscopy (EELS) [1,2], a beam
of electrons passes through a thin sample. By interacting with
the electrons and ions in the sample material, the electrons
can lose energy and may be deflected from the direction of
incidence in a way that is characteristic of the medium. The
energy loss, measured in the form of a spectrum, contains
a wealth of information about the excitation properties of
the sample material, combined with the ability of atomic
resolution using scanning transmission electron microscopy
(STEM) [3].

Transmission EELS measurements can be performed in
spatial and momentum resolution. Due to the Heisenberg
uncertainty principle, improving either of the two is always
at the expense of the other [4]. To measure the momentum,
one places the electron detector at an angle from vertical
incidence, which allows the lateral momentum transfer of the
scattering process to be recorded together with the loss spec-
trum. When performing an EELS experiment without special
focus on the momentum resolution, on the other hand, a large
aperture is used in the experimental setup so that multiple
momentum transfers are included in the loss spectrum [5].
For spatial resolution, a pixelated detector is used recording a
spectrum at each pixel in real space. We note that an averaging
over a region in reciprocal space may be needed also in the
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momentum resolution mode, as the resolution in momentum
is strongly limited by the experimental setup, typically to
0.1 Å−1 [6].

On the theoretical side, it has been known for a long time
[7,8] that electron energy loss spectra can be obtained from the
imaginary part of the inverse macroscopic dielectric function
−Im ε−1(k, ω), where h̄ω is the energy loss and h̄k is the
momentum transfer. The macroscopic dielectric function can
be calculated reliably with its full k and ω dependence from
time-dependent density-functional theory (TDDFT) or, if the
exchange-correlation kernel is neglected, from the random-
phase approximation.

Ab initio theoretical calculations can serve as an important
tool to interpret the loss spectra measured in experiment,
for example, to relate the spatially resolved loss spectra to
particular atomic arrangements at the position of the beam
focus. With all ingredients of the theoretical scattering cross
section known in principle, it seems straightforward to carry
out the necessary k integrations of the loss spectra numer-
ically. However, as a matter of fact, a reliable integration
technique is still missing, arguably due to the fact that the
integrand varies over several orders of magnitude around
k = 0 for typical experimental electron velocities of 30 to
300 keV (corresponding to 30%–80% of the velocity of light).
We fill this gap by presenting a reliable integration scheme,
in which the integrand is written as two terms in the impor-
tant region around k = 0, an analytic one and the rest. The
(near) divergence of the integrand is confined to the analytic
term, which can be integrated straightforwardly. The rest is
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nondivergent and shows a smooth behavior, enabling a nu-
merical integration on a relatively coarse k grid.

We apply the integration scheme to monolayers of proto-
typical two-dimensional materials: semiconducting MoS2, in-
sulating hexagonal boron nitride, and semimetallic graphene.
Focus is laid on MoS2, a member of the family of transition
metal dichalcogenides, which has attracted a lot of attention in
recent years due to its remarkable electronic, optoelectronic,
spintronic, and valleytronic properties.

Most electronic-structure codes rely on periodic boundary
conditions. However, a monolayer is infinite only in two di-
mensions but finite in the third. This difficulty is usually met
by introducing supercells, i.e., large three-dimensional unit
cells, that contain additional several nanometers thick vacuum
separating the monolayers to reduce the unwanted layer-layer
interaction. The larger the vacuum size (the supercell), the
better the layers are decoupled.

The drawback is, of course, that large supercells are com-
putationally demanding. This is particularly problematic in
linear response theory, where the long-range Coulomb in-
teraction can lead to very slow convergence with respect to
the supercell size, and even more so in a situation where
the unit cell is also large in the other two directions. Mono-
layers with defects are such a case. For example, defects
in transition-metal dichalcogenides are of current interest, as
they can trap excitons, which facilitate single-photon emission
[9,10]. Especially for small or vanishing momentum transfers,
calculations can become prohibitively expensive in this case.

A possible solution is to artificially truncate the Coulomb
interaction in the out-of-plane direction [11], thus effectively
decoupling the layers and eliminating the unwanted interlayer
screening. However, this technique has been shown to lead
to bad k-point convergence [12,13]. In another approach,
image-charge models are employed to subtract screening ef-
fects of the repeated slabs [14]. Tancogne-Dejean [15] and
coworkers formulated a selected-G approach, which is based
on a particular choice of plane waves (G vectors) in the basis
for the dielectric function and which was recently applied to
EELS [16].

We solve the problem alternatively by employing a super-
cell extrapolation scheme, which was derived in Ref. [17]
for the investigation of coupled electronic-lattice motion in
2D systems. We put it here to good use for our k-integration
algorithm applied to monolayers. In this scheme, one makes
use of a mixed representation in reciprocal space (parallel to
the layers) and real space (perpendicular to the layers). In this
way, it is possible to separate the total density response into
intra- and interlayer parts. One can then take the supercell
limit (infinite layer distance) and so derive an extrapolation
formula for the dielectric function. This formula turns out
to significantly reduce the necessary vacuum size needed
for convergence, thus strongly alleviating the computational
burden.

The paper is organized as follows. In Sec. II, we recapit-
ulate the theoretical derivation of the differential scattering
cross section of EELS. In Sec. III, the integration over the
momentum transfers is discussed and an integration technique
is formulated. The integrand contains the k and ω dependent
dielectric function, which we calculate from first princi-
ples using the random-phase approximation as explained in

Sec. IV. Section V deals with the supercell convergence,
which is particularly slow for small momentum transfers. The
extrapolation formula, which accelerates the supercell conver-
gence significantly, is introduced and discussed in Sec. VI.
A short derivation is deferred to the Appendix. In Sec. VII,
we discuss details of the calculations. Illustrative results are
presented in Sec. VIII and compared to experimental spectra.
Finally, we give a summary in Sec. IX.

II. ELECTRON ENERGY LOSS SPECTRUM

We briefly recapitulate the theoretical derivation of the
scattering cross section of EELS. We choose here a semi-
classical derivation [2], in which the relevant quantities have
a simple physical interpretation. (See Ref. [18] for a fully
quantum mechanical derivation.) The electron beam given
by the current j(r, t ) experiences a decelerating field E(r, t )
created by the electrons of the material. The loss of electric
power per unit volume at point r and time t is given by

L(r, t ) = E(r, t )j(r, t ). (1)

We consider an electron beam at normal incidence. The coor-
dinate system is oriented such that x and y axes are parallel
to the sample slab, so the beam electrons are traveling in the
z direction. The energy loss per unit path length is w(z) =∫

dx dy
∫

dt L(r, t ). Fourier-transforming t → ω and x, y →
k‖ yields

w(z) = 1

8π3

∫
d2k‖

∫ ∞

0
dω[E∗(k‖, z; ω)j(k‖, z; ω) + c.c.].

(2)
The loss per unit length can also be expressed with the differ-
ential scattering cross section

w(z) =
∫

d2k‖
∫ ∞

0
dω h̄ω

∂3P

∂2k‖∂ω
, (3)

giving

∂3P

∂2k‖∂ω
= 1

8π3h̄ω
[E∗(k‖, z; ω)j(k‖, z; ω) + c.c.]. (4)

We now assume that the electron beam interacts with the ma-
terial, for example, by inducing a plasmon excitation. Let vpl

be the velocity component in the direction of the momentum
of the excitation. Due to the negative electron charge −e, the
corresponding component of the current jpl = −vpleδ(r − vt )
points in the opposite direction. The electron is here treated
as a point charge traveling at the velocity v. The Fourier
transform is jpl = −2πvpleδ(ω − kzv). We define h̄k to be the
momentum gained by the deflected electron. The wave vector
k is antiparallel to the excitation momentum. For the large
velocities used in transmission electron microscopes (TEMs),
the energy loss is predominantly caused by the change in
velocity in the z direction. Then, the Hamilton equation
∂E/∂ p = v and �p = h̄kz together with the above delta func-
tion reveal h̄ω as the energy loss. This is an important result
as it shows that the momentum loss in the z direction is fully
determined by the energy loss and the initial electron velocity.
We can also Fourier-transform to the (k‖, z; ω) representation,
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which gives

jpl(k‖, z; ω) = −e
ω

v
√

k2
‖ + (ω/v)2

eiωz/v, (5)

where we have used vpl/v = kz/k and k =
√

k2
‖ + (ω/v)2.

The electric displacement field D created by the electron ful-
fills ∇D = 4πeδ(r − vt ). Fourier transformation in the same
way as above for the component in the direction of the plas-
mon momentum yields the decelerating field

Epl(k‖, z; ω) = 4πe

iε(k, ω)

1

v
√

k2
‖ + (ω/v)2

eiωz/v, (6)

where we have introduced the dielectric function by
ε(k, ω)E(k, ω) = D(k, ω). Combining Eqs. (4)–(6) finally
gives the differential scattering cross section as

∂3P

∂2k‖∂ω
= − e2

π2h̄

1

v2k2
Im ε−1(k, ω) (7)

with k2 = k2
‖ + (ω/v)2.

III. MOMENTUM INTEGRATION

In an EELS experiment, the differential scattering cross
section is measured as a function of frequency ω (or energy
h̄ω). If the detector is placed at different angles from normal
incidence, one can also record EELS spectra for different
in-plane wave vectors k‖. For fixed k‖, there are formally
two ω-dependent functions that contribute to the spectrum,
the imaginary part of the inverse macroscopic dielectric func-
tion Im ε−1(k, ω) and the prefactor 1/k2 = 1/[k2

‖ + (ω/v)2].
The dielectric function is responsible for the spectral features
(peak structure) of the spectrum, whereas the second term
merely acts as a weight function, giving low energies a higher
weight than higher energies, without altering the overall peak
structure. All this explains why −Im ε−1(k, ω) is commonly
regarded as giving the theoretical EELS spectrum.

However, the prefactor 1/k2 = 1/[k2
‖ + (ω/v)2] does play

an important role in the momentum-integrated spectrum, as
its k‖ dependence governs the relative importance of different
k‖ vectors. To further assess its role, it is helpful to estimate
the orders of magnitude of the different quantities. At an
energy loss of 6 eV and an electron velocity of 30% of the
speed of light (typically used in a TEM for a thin speci-
men), the momentum transfer in the z direction is quite small,
kz = ω/v = 0.01 Å−1. Thus, one would expect the prefactor
to be approximately ω independent, 1/[k2

‖ + (ω/v)2] ≈ 1/k2
‖ ,

unless the in-plane momentum transfer k‖ is in the order of
magnitude of 0.01 Å or smaller. To a first approximation,
one may then be led to neglect ω/v altogether (as it is much
smaller than k‖ nearly everywhere in the Brillouin zone) and
retain only 1/k2

‖ when performing the k‖ integration. How-
ever, since the k‖ integration is over a two-dimensional sheet
in reciprocal space, the prefactor 1/k2

‖ would always make the
integral diverge. As a consequence, we cannot neglect ω/v

despite its seeming insignificance, as it makes the integrand
around k‖ = 0 and, thus, the integrated values finite.

We want to note that the experimental momentum resolu-
tion is typically limited to about 0.1 Å−1 [6], implying that the

experimental spectrum should be understood as a spectrum
integrated over a respective range of k‖ even in the case
of momentum resolution. In the following, we consider the
opposite case of an EELS experiment operated in spatial res-
olution mode, which requires a k‖ integration over a complete
two-dimensional plane in reciprocal space.

When integrating over momentum transfers k‖,

P′(ω) = − e2

π2h̄v2

∫
Im[ε−1(k, ω)]

k2
‖ + (ω/v)2

d2k‖, (8)

special care has to be taken for the region around k‖ = 0
for two reasons. First, as we will see later on, the supercell
convergence for small (or vanishing) k‖ is very slow. Second,
the loss function [Eq. (7)] varies over several orders of mag-
nitude in this region due to the prefactor, as discussed above.
To treat this important region as accurately as possible, we
split the integrand into two parts, P′(ω) = P′

1(ω) + P′
2(ω), a

(simplified) nearly divergent one,

P′
1(ω) = − e2

π2h̄v2

∫
k‖<kc

Im[k̂T
‖ ε−1(ω)k̂‖]

k2
‖ + (ω/v)2

d2k‖, (9)

which is integrated analytically, and the remainder,

P′
2(ω) = − e2A

π2h̄v2

∑
k‖ 	=0

Im[ε−1(k, ω)]

k2
‖ + (ω/v)2

, (10)

which behaves smoothly around k‖ = 0 and which can be
integrated efficiently on an equidistant two-dimensional mesh
of k points.

The integration area of Eq. (9) is circular with radius kc and
the center at k‖ = 0. The radius is chosen such that the disk
area equals the area A per mesh point of Eq. (10), so A = πk2

c .
Furthermore, it has been taken into account in Eq. (9) that
the inverse dielectric function at k = 0 is a tensor quantity,
here indicated by a boldface ε−1, with two distinguishable
entries, in-plane ε−1

‖ and out-of-plane ε−1
⊥ . With k̂Tε−1(ω)k̂ =

[k2
‖ε

−1
‖ (ω) + (ω/v)2ε−1

⊥ (ω)]/k2 and polar coordinates, Eq. (9)
can be expressed with the help of two analytic functions

P′
1(ω) = − e2

π h̄v2

{
Im

[
ε−1
⊥ (ω) − ε−1

‖ (ω)
]

f1

(
ω

vkc

)

+ Im ε−1
‖ (ω) f2

(
ω

vkc

)}
(11)

with

f1(x) = 1

x2 + 1
, (12)

f2(x) = ln

(
1 + 1

x2

)
. (13)

It is important to note that the final expression depends
on the full dielectric tensor. The out-of-plane component of
the dielectric tensor becomes important for small momentum
transfers, small electron velocities, or high energies. Combin-
ing this analytic solution with the summation over multiple
momentum transfers [Eq. (10)] on an evenly distributed mesh
yields the k-integrated EELS spectrum Eq. (8). Numerical
results will be presented in Sec. VIII.

085132-3



ROST, BLÜGEL, AND FRIEDRICH PHYSICAL REVIEW B 107, 085132 (2023)

IV. RANDOM-PHASE APPROXIMATION

The dielectric function can be calculated from linear re-
sponse theory using time-dependent density-functional theory
(TDDFT) [19,20]. Neglecting the exchange-correlation kernel
of TDDFT corresponds to the random-phase approximation
[21,22]. This is the approach that we employ in the present
work. It will turn out to be well suited for our purpose. In the
random-phase approximation (RPA), the microscopic dielec-
tric function is given by

ε(r, r′; ω) = δ(r − r′) −
∫

v(r − r′′)P(r′′, r′; ω)d3r′′,

(14)
with the polarizability

P(r, r′; ω) = 2
occ∑
n

unocc∑
n′

ϕ∗
n (r)ϕn(r′)ϕn′ (r)ϕ∗

n′ (r′)

×
[

1

ω + εn − εn′ + iη
− 1

ω − εn + εn′ − iη

]
.

(15)

Here, {ϕn(r), εn} is a complete set of Kohn-Sham eigenso-
lutions and η is a positive infinitesimal. The Bloch vector
is suppressed for simplicity. Furthermore, we assume a non-
spin-polarized system, hence the factor 2 instead of an explicit
spin summation.

Equation (14) gives the microscopic dielectric function,
whereas the dielectric function of Eqs. (6) and (7) is the
macroscopic one. In a plane-wave representation, the latter
can be obtained from the former by [21,23]

ε(k, ω) = 1

ε−1
00 (k, ω)

, (16)

where

εGG′ (k, ω) = 1

V

∫∫
e−i(k+G)rε(r, r′; ω)ei(k+G′ )r′

d3r d3r′

(17)
is the plane-wave representation of the microscopic function.
The prefactor 1/V originates from the normalization of the
plane waves ei(k+G)r/

√
V with the supercell volume V . We

note that we do not employ a plane-wave representation in
our computational approach but a representation in the mixed
product basis [24]. However, apart from a trivial difference in
basis indices, the formulas are analogous to the plane-wave
case. For simplicity, we therefore adopt a plane-wave formu-
lation here and in the following.

For periodic systems, the polarizability of Eq. (15) can
be written as a Fourier transform PGG′ (k, ω). Its head ele-
ment P00(k, ω) can be shown to be proportional to k2 for
k ∼ 0. This factor cancels when multiplying with v(k) =
4π/k2 in (the Fourier-transformed) Eq. (14). In addition, the
polarizability exhibits an angular dependence around k = 0
in reciprocal space; i.e., limk→0 P00(k, ω)/k2 depends on the
direction k̂ from which k = 0 is approached. This angular
dependence transfers to the dielectric function, which, at k =
0, can be formulated in vector form by ε(k, ω) ∼ k̂Tε(ω)k̂.
In the present 2D systems, the 3 × 3 dielectric tensor has

the form

ε(ω) =
⎛
⎝ε‖(ω) 0 0

0 ε‖(ω) 0
0 0 ε⊥(ω)

⎞
⎠. (18)

The structural anisotropy of the 2D systems is thus reflected
in their dielectric properties. The “inverse” tensor ε−1(ω)
used in Sec. III is to be understood as the tensor approxi-
mating k̂Tε−1(ω)k̂ ≈ 1/[k̂Tε(ω)k̂], which, in an anisotropic
system, does not simplify to ε−1(ω) = [ε(ω)]−1 [24]. Here,
“approximating” means that the left-hand side is identical to
the right-hand side up to second order in the components of k̂.

To explain that in more detail, consider both sides to be
expressed exactly in terms of spherical harmonics,

∞∑
l=0

l∑
m=−l

ε−1
lm (ω)Ylm(k̂) =

⎡
⎣ 2∑

l ′=0

l ′∑
m′=−l ′

εl ′m′ (ω)Yl ′m′ (k̂)

⎤
⎦

−1

,

(19)
with suitable coefficients ε−1

lm (ω) and εl ′m′ (ω). The latter
coefficients are known; the former are unknown. Multi-
plying with the expression in the square brackets, using
Ylm(k̂)Yl ′m′ (k̂) = ∑

l ′′,m′′ Glm,l ′m′,l ′′m′′Yl ′′m′′ (k̂) with the Gaunt
coefficients Glm,l ′m′,l ′′m′′ = ∫

Ylm(�)Yl ′m′ (�)Y ∗
l ′′m′′ (�)d�, and

equating the resulting coefficients yields a system of linear
equations, which can be solved for the unknown coefficients
ε−1

lm (ω), of which only the coefficients for l � 2 are relevant
for the approximation. In practice, the l summation in Eq. (19)
must be truncated, and its upper bound becomes a conver-
gence parameter.

V. SUPERCELL CONVERGENCE

The SPEX code [24] employs periodic boundary condi-
tions in all three spatial directions. While the 2D translational
periodicity of an infinite monolayer is thus fully incorpo-
rated, the periodicity in the third direction leads to a periodic
stacking of layers. The interlayer distance, governed by the
size of the supercell perpendicular to the layers, becomes a
convergence parameter: Results have to be converged with
respect to larger and larger interlayer spacings minimizing the
coupling between the monolayers.

In the present case, the convergence can be particularly
slow because dielectric screening is mediated by the Coulomb
interaction and is, thus, a long-range phenomenon. So, even
though the electron density falls off exponentially into the
vacuum and the orbitals of neighboring layers do not overlap,
the slow convergence due to the interlayer screening causes a
major bottleneck for EELS calculations.

Let us first make a few general observations about the
supercell convergence for the monolayer. Since the atom-thick
or few-atoms-thick monolayer keeps its thickness, the aver-
age material density decreases as we increase the supercell
size in the z direction, and the macroscopic quantities will
approach more and more their vacuum values: 1 for the di-
electric function and 0 for the polarizability. The polarizability
is the independent-particle density response function giving
the linear change of the electronic density with respect to
changes in the effective potential. Clearly, the less electron
density there is on average, the smaller its average response.
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In the supercell limit, it reduces to zero. As a consequence,
the macroscopic inverse dielectric function becomes 1 and its
imaginary part zero. This leads to a curious situation in which
the supercell size needs to be converged to eliminate interlayer
interactions, but, in doing so, the EELS signal disappears [see
Eq. (7)]. A way of resolving this issue is to remember that
the supercell limit is somewhat unphysical in its own right.
It would presuppose an infinite laboratory or, equivalently,
a sample of vanishing thickness. (No wonder then that the
signal disappears.) The sample is atomically thin, but it does
have a finite size, thick enough to be measured. To make the
supercell convergence meaningful, one should thus scale the
theoretical spectrum by the supercell size, e.g., by its height
L. Also note that this scaling eliminates the normalization
factor 1/V (up to prefactors) in the matrix representation of
P [analogous to Eq. (17)]. The normalization factor is respon-
sible for the vanishing spectrum. In fact, spectra scaled in this
way do converge. Of course, this issue is nothing new and
has already been discussed before. Another way of looking at
it is to remember that, as we increase the supercell size, the
momentum grid gets denser and denser. It is then clear that,
when, in the supercell limit, the momenta lie infinitely close to
each other, an experiment cannot pick out a particular crystal
momentum out of a continuity of uncountably many momenta
but would include all momenta within a small but finite region
in reciprocal space around a given crystal momentum. The
density of the momenta scales with the supercell volume V
(or height L), thus canceling the factor 1/V .

If one assumes the scaled head of the polarization matrix
p(k, ω) = L · P00(k, ω) to be approximately independent of
the interlayer distance (which is a good approximation), then
taking the supercell limit of the scaled imaginary part of the
inverse macroscopic dielectric function yields (in simplified
notation)

− lim
L→∞

L · Im ε−1 = − lim
L→∞

Im
L

1 − vP

= − lim
L→∞

v Im p

[Re(1 − vp/L)]2 + [Im(vp/L)]2

= −v Im p = lim
L→∞

L · Im ε, (20)

giving the interesting result that the EELS spectrum
(−Im ε−1) of 2D systems equals the absorption spectrum
(Im ε) in the supercell limit [25]. We can thus use either of
the two expressions. For example, we may choose the one that
converges fastest.

The speed of convergence of −L · Im ε−1(k, ω) with re-
spect to the supercell size depends on the lateral component
of the Bloch vector k‖. The inverse dielectric function con-
verges much faster for large k‖ than for small or vanishing k‖.
This qualitative behavior is easily understood. The component
k‖ in ε−1(k, ω) gives the periodicity of the induced charge
density and thus of the screening field within the layers. In
the case of large k‖ and correspondingly short wavelengths,
the induced electron density in the layer quickly oscillates
between + and − charges so that the induced potential falls
off quickly into the vacuum. The neighboring layers will
hardly “feel” this potential, and this effective decoupling of
the interlayer screening enables a fast supercell convergence.

FIG. 1. Illustration of a monolayer with periodic images for a
supercell of height L with the components of the dielectric tensor ε‖
and ε⊥ as well as the model parameters εeff and deff.

Conversely, for small wave vectors, the convergence of
−L · Im ε−1(k, ω) can be very slow. As we have seen in
Sec. II, the low-k contributions get a weight of 1/k2 and
are therefore particularly important for the k‖-integrated
EELS spectrum. We have to make sure that all contributions
ε−1(k, ω) are sufficiently converged before performing the k‖
integrations and summations of Eqs. (10) and (11).

Let us now have a closer look at the limit k → 0. It is
instructive to investigate this limit with the help of a model of
repeated homogeneous dielectric slabs as illustrated in Fig. 1.
The model has only three parameters: the layer distance L
(measured from center to center), the effective layer thickness
deff , and the effective dielectric constant εeff of the slabs. The
atomistic layer structure is superimposed on the slabs in Fig. 1
only for illustrative purposes. The parameter L corresponds to
the supercell height and is thus not a free parameter. At first,
it seems that the parameter deff cannot be clearly determined
from the atomistic model used in the ab initio calculations,
since the electron density falls off exponentially on either side
of the layer. So, there is no abrupt drop of the electron density,
which would be required for a unique definition of deff . The
same holds for εeff .

However, we can determine these model parameters from
the following two equations based on effective medium
theory [26]:

ε−1
⊥ = deff

L
ε−1

eff + L − deff

L
, (21)

ε‖ = deff

L
εeff + L − deff

L
, (22)

with the two components of the dielectric tensor ε‖ and ε⊥ cal-
culated from first principles (see Sec. IV). The equations can
be motivated from basic summation rules of capacitances.
In the perpendicular direction, the layers act as capacitors
connected in series. The total capacitance in this case is
the reciprocal value of the sum of reciprocal values of all
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capacitances. Likewise, the second equation corresponds to
capacitors connected in parallel, in which case the total ca-
pacitance is simply the sum of all capacitances. Expressing
the capacitances with the model parameters leads to Eqs. (21)
and (22).

The parameters deff and εeff determined from Eqs. (21) and
(22) turn out to be approximately independent of the layer
distance L and can thus be regarded as material parameters.
In the case of a multilayer slab, one can still define deff

and εeff , which then reflect the combined effect of all layers.
Equation (20) has taught us that −L · Im ε−1

‖ and L · Im ε‖
converge to the same limit. We can now check which se-
ries converges faster for the present case of k → 0. Using
Eq. (22), it is straightforward to show that it is the latter series:
limL→∞ L · Im ε‖ = deff Im εeff . So, for large k‖, −L Im ε−1

‖
converges faster, whereas for vanishing k‖, L Im ε‖ converges
faster. (Interestingly, the opposite is true for ε⊥.) Clearly, for
k‖ vectors in between, neither of the two series will converge
quickly. In this general case, we can make use of an extrapo-
lation formula, which will be discussed in the next section and
which does not rely on any model parameters.

VI. SUPERCELL EXTRAPOLATION FORMULA

Since the supercell convergence can become very costly,
in particular for intermediate k‖, we employ here an extrap-
olation formula, which was derived in Ref. [17]; see our
Appendix here. The extrapolation formula aims at extrapo-
lating from the repeated slab system (Fig. 1) to the monolayer
including the effects of momentum transfer. This will allow
for a very fast convergence with respect to the interlayer
distance in the repeated slab system and therefore enable us
to use a minimal amount of vacuum in between the layers and
so reduce the computational effort.

We quote the supercell extrapolation formula of Ref. [17]
and then show that it reproduces the series in the two special
limits discussed in the previous section. For completeness, a
derivation is sketched in the Appendix. The formula gives the
L-scaled imaginary part of the inverse macroscopic dielectric
function extrapolated to the supercell limit L → ∞,

− lim
L→∞

L Im ε−1(k‖, ω; L) ≈ −Im
L

1
ε−1

00 (k‖,ω;L)−1
+ k‖L

ek‖L−1

,

(23)
where we have explicitly included L as an argument in
ε−1(k‖, ω; L), the inverse macroscopic dielectric function
calculated in a supercell with height L. It is important to
understand that the limit L → ∞ is only taken on the left-hand
side, whereas the right-hand expression is determined from re-
sults of a supercell calculation with finite L. So, for each L, we
get a different extrapolated macroscopic dielectric function.
The corresponding series for larger and larger L converges
rapidly for each k‖, as will be shown in the following.

Let us first consider the two cases k‖ → 0 and k‖ → ∞.
In the latter, the second term in the denominator of the right-
hand side vanishes. Due to the exponential function, this term
becomes negligible already for intermediate to large k‖. One
thus obtains the series −L Im ε−1(k‖, ω; L) on the right-hand

side. In the limit k‖ → 0, the second term in the denominator
becomes unity, yielding the series L Im ε(k‖, ω; L). So, the
extrapolation formula in Eq. (23) indeed reproduces the two
series we identified in Sec. V as the fastest convergent ones in
the two limiting cases.

The extrapolation formula generally yields rapidly con-
vergent series for all k‖. Figure 2 shows, from left to right,
the loss spectrum −Im ε−1(k‖, ω; L), the absorption spectrum
Im ε(k‖, ω; L), and the extrapolated spectrum according to
Eq. (23) for the four wave vectors k = 0, k = 0.04 Å−1, k =
0.12 Å−1, and k = 0.20 Å−1 from top to bottom. The spec-
tra were calculated with supercells of different heights from
12.3 Å to 123 Å; see legend inset. The top left and bottom
middle panels demonstrate the fast convergence for the two
special cases discussed in the previous section. The extrapo-
lated spectra presented in the right column exhibit consistently
fast convergence for all wave vectors. In fact, in each panel on
the right, there are six curves for the six different supercell
heights L, but they are all nearly identical and practically lie
on top of each other.

VII. COMPUTATIONAL DETAILS

In Sec. VIII, we present the k‖-integrated EELS spectra
Eq. (8) as obtained from Eqs. (10) and (11). It turns out that
the terms in Eq. (10) fall off rapidly with k‖ (note the factor
1/k2), which allows us to neglect contributions of large k‖.
For the present materials, it is found that momentum transfers
only within the first 2D Brillouin zone need to be considered
(or even fewer). We employ an evenly distributed mesh across
the 2D Brillouin zone for the k‖ summation of Eq. (10), taking
advantage of the crystal symmetries by further restricting
the k‖ points to the irreducible wedge of the 2D Brillouin
zone.

There are two parameters in Eq. (10) that are not fun-
damental physical or mathematical constants. First, A is the
reciprocal area per k‖ point (total area covered by the mesh
divided by the number of mesh points). Second, v is the speed
of the incoming electrons. Here, we use v = 80 keV for all
materials, which is a typical speed used in TEM experiments
on monolayer systems. The parameter A also appears implic-
itly in the relation A = πk2

c for the reciprocal cutoff radius kc

of Eq. (11).
For reasons discussed in Sec. V, Eq. (8) would vanish in the

supercell limit (L → ∞) unless scaled with the layer distance
L. We therefore include the factor L and make use of Eq. (23)
to extrapolate Eq. (10) to infinite layer distances. For the di-
electric tensor components in Eq. (11), the fastest converging
series are the absorption spectrum L Im ε‖(ω; L) for the paral-
lel component, corresponding to the long-wavelength limit of
Eq. (23), and (unaltered) −L Im ε−1

⊥ (ω; L) for the component
perpendicular to the layers. The tensor components and the
macroscopic inverse dielectric function ε−1(k‖, ω; L) needed
for Eq. (23) are evaluated using the RPA [Eq. (15)] com-
bined with the inversion of the microscopic dielectric matrix
εGG′ (k, ω; L) in order to include local-field effects.

The prefactor of Eq. (8) would merely scale the spectra by a
constant e2/(π2h̄v2) and is therefore neglected. Together with
the scaling factor L, the spectra have thus the formal unit of
length.
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FIG. 2. Scaled EEL spectra (−L Im ε−1, left column), absorption spectra (L Im ε, middle column), and extrapolated spectra [Eq. (23), right
column] for several momentum transfers k‖ and layer distances (supercell heights) L from supercell calculations of a MoS2 monolayer. The
extrapolated spectra exhibit a very fast convergence with respect to L for all k‖.

The Kohn-Sham eigensolutions of Eq. (15) are calcu-
lated with FLEUR [27], an implementation of density-
functional theory (DFT) based on the full-potential linearized
augmented-plane-wave (FLAPW) method. We employ the
exchange-correlation energy functional in the parametrization
of Perdew and coworkers [28] (PBE). The RPA polarizability
[Eq. (15)] is subsequently constructed with SPEX [24], an
all-electron GW code that employs the same LAPW basis set
and a mixed product basis to represent two-particle quantities
such as the polarizability P(r, r′; ω) and the microscopic di-
electric function ε(r, r′; ω) [Eq. (14)]. The microscopic and

macroscopic dielectric functions are related according to
Eqs. (16) and (17).

The scheme is applied to three monolayer systems,
semiconducting MoS2, insulating hBN, and semimetallic
graphene. We employ the experimental lattice constants of the
layered bulk systems, a = 3.15 Å [29], a = 2.504 Å [30], and
a = 2.462 Å [31], for MoS2, hBN, and graphene, respectively.
The boron nitride and graphene monolayers are atomically
thin, while the molybdenum disulfide monolayer consists of
a Mo layer sandwiched between two S layers. Here, we adopt
the bulk structure but allow for a relaxation of the sulfur
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layers in the perpendicular direction up to a residual force of
5 × 10−2 eV/Å. The relaxed positions of the sulfur layers are
at c(1/4 − z) and c(z − 1/4) relative to the Mo layer with the
bulk lattice constant c = 12.3 Å and the internal coordinate
z = 0.124, in very good agreement with the experimental and
theoretically optimized structure of the bulk phase [32].

The DFT calculations are carried out on grids of
10 × 10 × 1 (14 × 14 × 1) k points for MoS2 (hBN and
graphene) monolayers. The LAPW plane-wave cutoff is set
to 4.1 a.u. (4.5 a.u.). The maximal muffin-tin l-quantum
number is ten for molybdenum and eight for sulfur. For the
second-row elements boron, carbon, and nitrogen, we have
consistently used a maximal l-quantum number of six. To treat
the semicore 4s and 4p states, we employ local orbitals with
the respective orbital characters in the molybdenum muffin-tin
spheres.

The polarizability [Eq. (15)] involves a summation over
occupied and unoccupied states as well as over k points.
Here, we have employed a grid of 12 × 12 × 1 (42 × 42 × 1)
k points for MoS2 (hBN and graphene) monolayers and the
tetrahedron method [33] to interpolate between the k points.
The band summations comprise 190 bands for all materials.
A fine frequency (ω) mesh between 0 and 2 hartree has been
employed with an increment of 0.005 hartree and a total num-
ber of 401 frequency mesh points. We show a smaller range
(0 to 30 eV) in the diagrams.

For the summation in Eq. (10), we find that the k‖-point set
should have the point density of an equidistant 100 × 100 grid
of the 2D Brillouin zone, but, as the integrand falls off quickly
with k‖, we do not always need to include all 100 × 100
points. For example, for hBN and graphene, we can trun-
cate the set to 20 × 20 while leaving the k-point density
unchanged. In addition, spatial and time-reversal symmetry
is exploited to reduce the number of k points.

The Kohn-Sham DFT band gap is adjusted with a scissor
operator to align with the experimental band gap (onset of
EEL spectra) to address the well-known underestimation of
the band gap of Kohn-Sham DFT.

VIII. RESULTS

Figure 3 illustrates the impact of the extrapolation formula
[Eq. (23)] on the k‖-integrated EEL spectrum for the MoS2

monolayer. The red and blue curves show the respective spec-
tra with and without making use of the extrapolation formula.
The spectra differ substantially below 8 eV, where the blue
spectrum (without extrapolation) is missing a lot of intensity.
Note that the blue curve corresponds to summing the spectra
in the first column of Fig. 2, which show a particularly bad
supercell convergence for small momentum transfers. Due to
the factor 1/k2, it is precisely the small momentum transfers
that play an important role for the k‖-integrated spectrum.
Their slow supercell convergence has thus a detrimental ef-
fect on the results. Comparing the missing intensity with the
absorption spectrum (orange line), which corresponds to the
extrapolated EEL spectrum for k = 0, corroborates that the
underconverged partial spectra are responsible for the missing
intensity in the blue curve.

As an alternative to the extrapolation formula, one can,
of course, employ very large supercells. This solves the

FIG. 3. k‖-integrated EELS for a MoS2 monolayer with and
without extrapolation (red and blue lines). The absorption spectrum
Im ε‖(ω) (k = 0) is shown as well (orange line). For all calculations
a layer distance (supercell height) of 24.6 Å is used.

aforementioned problem, too, but at the price of a high com-
putational cost. Figure 4 presents two theoretical EEL spectra:
the red one is calculated with the extrapolation formula, the
dashed blue one without but with an enlarged supercell height
of 123 Å (up to a momentum transfer of 0.23 Å−1 and 36.9 Å
elsewhere). Both curves are practically on top of each other,
thus highlighting the advantage of the extrapolation scheme
due to the significantly smaller computational cost.

Figure 4 also contains the experimental EEL spectrum as
a black dashed line. It agrees very favorably with the theo-
retical spectra, in particular when compared to the absorption
spectrum of Fig. 3, which lacks a lot of intensity for energies
above 5 eV. This intensity thus stems from the contribu-
tions of larger momentum transfers, showing the importance
of the k‖ integration. We note that excitonic effects, which
predominantly affect the peak structure at the low-energy
onset of the spectra, are neglected in the RPA. Due to the
large energy range, modifications due to excitonic contribu-
tion would hardly be noticeable, however. Figure 5 presents
the theoretical and experimental EEL spectra for a hexagonal
boron nitride monolayer. The calculations are done for a layer
distance of 50.35 Å (4 bulk unit cells). The boron nitride
monolayer is insulating with a large experimental band gap
of about 6.1 eV [36]. Kohn-Sham DFT with PBE for the
exchange-correlation functional underestimates the band gap
and yields 4.67 eV. As before, the theoretical spectrum has
been aligned with the experimental spectrum to account for
this band-gap underestimation.

Similar to the case of MoS2, the absorption spectrum of
hBN (Fig. 5, orange curve) lacks intensity in the broad peak
between 12 and 25 eV in comparison to the experimental
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FIG. 4. Comparison of k‖-integrated EEL spectra for MoS2 us-
ing a layer distance of 123 Å (blue) as well as using a distance of
24.6 Å and the extrapolation formula (red). An excellent agreement
between the two theoretical curves (the latter at a considerably lower
computational cost) and a very good agreement to the experimental
spectrum is observed. Experimental EELS data [34] are shown in
black. Reproduced by kind permission of John Wiley and Sons.

FIG. 5. Comparison of theoretical (red line) and experimental
EEL spectra (black dashed line) for monolayer hBN [35]. The ab-
sorption spectrum Im ε‖(ω) (k = 0) is shown in addition (orange
line).

FIG. 6. Same as Fig. 5 for graphene [37]. Reproduced by kind
permission of Elsevier.

spectrum, in particular for higher energies so that the peak
appears blueshifted. This is also observed in graphene.

The red line shows the k‖-integrated spectrum. It is evi-
dent that the k‖ integration makes up the missing intensity
so that the resulting spectrum ends up very close to exper-
iment. Closer inspection shows that the intense peak at the
low-energy onset (between 5 and 8 eV) exhibits a somewhat
different shape in the theoretical spectrum compared to the
experimental one. This is likely caused by the neglect of
excitonic effects in the theory, which should predominantly
affect the low-energy part of the spectrum. Due to the large
band gap and the low screening, excitons in hexagonal boron
nitride monolayers have a large binding energy.

Finally, after two monolayer systems with an energy gap,
we present results for a monolayer of semimetallic graphene
in Fig. 6. The graphene monolayer is placed in a supercell with
a height of 50.95 Å. The EEL spectrum calculated without k‖
integration (orange line), which, in the monolayer limit, corre-
sponds to the absorption spectrum (see Sec. V), lacks intensity
on the high-energy side of the broad peak around 15 eV.
Similar to MoS2 and hBN, this missing intensity originates
from the contribution of energy losses having finite momen-
tum transfers. These losses are all taken into account (up
to 0.5752 Å−1) with their proper weight in the k‖-integrated
spectrum, which is shown as the red solid line. In fact, very
good agreement between theory and experiment is achieved.
Notably, also the low-energy structure of the EEL spectrum
is improved. The metallic divergence of the spectrum for
ω → 0 is faithfully reproduced, not only qualitatively but
also quantitatively. The theoretical curve traces the experi-
mental one quite accurately nearly for the whole displayed
energy range, except that the sharp peak at around 4.5 eV
seen in the theoretical spectrum is smaller and broader in the
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experimental one, possibly caused by the limited energy res-
olution of the experiment, finite temperature, or defects in the
sample material.

IX. CONCLUSIONS

In this work, we have developed a technique to calculate
accurate EEL spectra from first principles using the RPA for
the polarizability. In particular, we have considered the limit
of low momentum resolution, in which case energy losses of
a large range of lateral momentum transfers are collected in
the experiment. In this sense, the technique is of particular
relevance for the measurement of spatially resolved EELS. It
has been applied to three monolayer systems, MoS2, hBN, and
graphene.

We have shown that it is possible to achieve very good
agreement between experimental loss spectra, measured in a
TEM, and the theoretical prediction if the partial spectra are
integrated over the lateral momentum transfer k‖ taking into
account the proper weights from the formula of the theoretical
differential scattering cross section. The k‖ integration is over
all relevant momentum transfers (collected in the aperture of
the experimental setup). In the present work, we consider all
momenta up to a cutoff, at which the contribution becomes
negligible.

The k‖ integration is divided into two terms. The first
accounts for the important region around k‖ = 0, where
the integrand exhibits very large variations and can become
nearly divergent. Fortunately, the respective k‖ integral can be
carried out analytically. The second term contains the contri-
butions from all other, finite momentum transfers (|k‖| > 0),
which exhibit a smooth behavior and can thus be summed
numerically. Interestingly, the speed of the incoming electrons
in the electron beam enters as a parameter, affecting the shape
of the resulting EEL spectra.

The calculations are carried out with periodic boundary
conditions, which requires the usage of supercells to treat the
monolayer systems. The supercells have to be large perpen-
dicular to the layers to eliminate the unwanted layer-layer
interactions. It turns out that the calculations are particularly
complicated by the fact that very large supercell (or vac-
uum) sizes are required for the EEL contributions coming
from small k‖, making the calculations computationally very
demanding.

We were able to reduce the computational effort drastically
by making use of an extrapolation formula, which yields an
EEL spectrum (for a given k‖) extrapolated to infinite layer
distances from the corresponding spectrum calculated with
a finite layer distance. A very fast supercell convergence of
the extrapolated spectra is observed. With the help of the
extrapolation, we could keep the supercells very small, e.g.,
to a modest 25.6 Å distance of periodic replicas in the case of
the MoS2 monolayer, without compromising accuracy.

We have shown illustrative results for monolayers of MoS2

(small band gap), hBN (large band gap), and graphene (no
band gap) and compared them to experimental EEL spectra.
We find very good agreement in all cases. The k‖-integrated
spectra are significantly closer to experiment than the EEL
spectra calculated for k = 0. The largest difference between
theory and experiment is found in the shape of the low-energy

peak in hBN. This difference is probably due to the neglect of
excitonic effects in RPA.

The extrapolation formula may allow monolayer systems
with large 2D unit cells to be treated, enabling the calculation
of more complex systems, for example, multilayer systems
and systems with defects. Such systems are currently of par-
ticular interest, as the combination of several layers or the
introduction of defects can serve as an important tool to tailor
electric and optical properties of 2D materials.
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APPENDIX: DERIVATION OF EXTRAPOLATION
FORMULA

The supercell extrapolation formula used in the present
work is very similar to an expression derived by Nazarov et al.
[17,38] for the 2D dielectric function. In our case, however,
we need an extrapolation formula for the 3D dielectric func-
tion. Therefore, and for the sake of completeness, we present
here an alternative, slightly different derivation.

Let nG(z, k‖, ω) be the change of density in the repeated-
slabs system induced by an external perturbation. We use a
dual representation in 2D Fourier space (k‖, G) for the xy
plane (along the layers) and the real-space z coordinate (per-
pendicular to the layers). We restrict the external perturbation
to only vary along the xy plane but not along the z coordinate.
The induced potential

U ind
G (z, k‖, ω) = 2π

|q‖ + G|
∞∑

m=−∞

∫ d/2

−d/2
nG(z′, k‖, ω)

× e−|k‖+G||z−z′−mL| dz′ (A1)

created by nG(z, k‖, ω) can be approximated separately for
m = 0, i.e., the potential created by the induced density in the
central layer (placed at z = 0), and m 	= 0, the potential cre-
ated by all other layers. Here, L is the layer distance (supercell
height) and d the “physical” width of the layer. Obviously, d
is not uniquely defined. We will see later that d cancels in the
final result.

For the approximation, we consider z in the central
layer, so |z − z′| is always small (and smaller than L). With
e−|k‖+G||z−z′ | ≈ 1 and cosh (|k‖ + G||z − z′|) ≈ 1, this yields
an approximate z-independent induced potential in the layer

U ind
G (k‖, ω) = 2πd

|k‖ + G|
(

1 + 2

e|k‖+G|L − 1

)
nG(k‖, ω) (A2)
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with nG(k‖, ω) = 1
d

∫ d/2
−d/2 nG(z′, k‖, ω)dz′, the induced

charge averaged over the layer thickness.
The inverse dielectric function in the layer is

ε−1(k‖, ω; L) = δ
[
U ext

0 (k‖, ω) + U ind
0 (k‖, ω)

]
δU ext

0 (k‖, ω)

= 1 + 2πd

k‖

(
1 + 2

ek‖L − 1

)
R(k‖, ω; L)

(A3)

with the renormalized response function R(k‖, ω; L) =
δn0(k‖, ω; L)/δU ext

0 (k‖, ω) averaged over the layer. Here, we
restrict ourselves to the Fourier components G = 0. From now
on, we denote the L dependence explicitly.

The averaged response function can be expressed as

R(k‖, ω; L) = ε−1(k‖, ω; L)P(k‖, ω), (A4)

where it has been used that the polarizability P(k‖, ω) should,
to a good approximation, be independent of the layer distance.

Plugging this into Eq. (A3) leads to

ε−1(k‖, ω; L) =
[

1 − 2πd

k‖

(
1 + 2

ek‖L − 1

)
P(k‖, ω)

]−1

.

(A5)
From RPA, we can obtain the head element of the inverse

3D dielectric function

ε−1
00 (k‖, ω; L) = 1 + 4π

k2
‖

R00(k‖, ω; L) (A6)

with the head of the 3D renormalized response func-
tion R00(k‖, ω; L), which equals d

L R(k‖, ω; L). Combining
Eqs. (A4)–(A6) yields

− lim
L→∞

L Im ε−1
00 (k‖, ω; L) = −4πd

k2
‖

Im
P(k‖, ω)

1 − 2πd
k‖

P(k‖, ω)
,

(A7)
for the imaginary part of the L-scaled supercell limit, which
we now write in terms of the known function ε−1

00 (k‖, ω; L). To
this end, we again employ Eqs. (A4)–(A6) to express P(q‖, ω)
with the help of ε−1

00 (k‖, ω; L), which finally gives Eq. (23).
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