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Competing correlated insulators in multiorbital systems coupled to phonons
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We study the interplay between electron-electron interaction and a Jahn-Teller phonon coupling in a two-
orbital Hubbard model. We demonstrate that the e-ph interaction coexists with the Mott localization driven by
the Hubbard repulsion U , but it competes with the Hund’s coupling J . This interplay leads to two spectacularly
different Mott insulators, a standard high-spin Mott insulator with frozen phonons which is stable when the
Hund’s coupling prevails, and a low-spin Mott-bipolaronic insulator favored by phonons, where the characteristic
features of Mott insulators and bipolarons coexist. The two phases are separated by a sharp boundary along which
an intriguing intermediate solution emerges as a kind of compromise between the two solutions.
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I. INTRODUCTION

Electron-phonon (e-ph) coupling and electron-electron
(e-e) repulsion are the key interactions determining the prop-
erties of electrons in solids. Their relative importance can vary
significantly across different classes of materials, often lead-
ing to the neglect of one or the other in theoretical treatment.
On the other hand, it is nowadays clear that the interplay
between e-e and e-ph interaction plays an important role in
a wide class of materials, from colossal magnetoresistance
manganites [1] to different families of high-temperature su-
perconductors [2–12].

A wide majority of studies of the interplay between the two
interactions is based on a single-band Hubbard-Holstein (HH)
model featuring an on-site Hubbard repulsion and a coupling
between the local electron density and phonons [13–41]. The
simplicity of the HH model may lead one to identify it as the
paradigm to study the two interactions, but this expectation
is somewhat misleading, i.e., that the properties of this model
are not as generic as expected. Indeed, in the HH model the
phonons give rise to a frequency-dependent local attraction
which has the same form of the Hubbard repulsion. Thus, the
two interactions directly compete and the physics is essen-
tially controlled by the comparison of the coupling strengths.
The only nontrivial interplay arises because the U term is
instantaneous and the phonon term is retarded [17]. A richer
outcome can be realized in single-band systems considering
nonlocal e-ph couplings which compete less directly with the
repulsion [42–47].

On the other hand, a single-band model is not adequate for
a large number of correlated materials. Multiorbital models
with e-e interaction have been widely investigated recently,
emphasizing the nontrivial role of the Hund’s coupling in the
physics of strong correlations and its relevance for different
materials [48,49].

In this work we extend the study of the interplay between
e-e correlations and e-ph coupling to multiorbital systems

by solving a two-orbital model including e-e interaction,
parametrized by the Hubbard U and the Hund’s coupling J ,
and a Jahn-Teller (JT) e-ph mode. Using dynamical mean-
field theory (DMFT) [50] we focus on the different strongly
correlated phases originating from the interplay of these two
interactions.

This study is not designed to model any specific material,
but rather to identify general phenomena characterizing e-ph
interaction in correlated materials, similarly to studies of the
role of the Hund’s coupling in models [48] which have been
instrumental to understand their role in iron-based supercon-
ductors [51] and ruthenates [52]. In the same spirit, the present
results can be of direct relevance for a wide class of materi-
als where JT phonons and e-e interactions are both relevant,
including, among others, fullerides [9,16,53,54], manganites
[1,55], chromates [56,57], and magic-angle twisted bilayer
graphene [58].

Our results show that the JT phonon mode cooperates
with the Hubbard interaction, but it competes with the Hund’s
exchange J . The prevalence of either the Hund coupling or JT
e-ph coupling favors different strongly correlated Mott-like
phases with remarkably distinct properties, i.e., a high-spin
Mott insulator and a low-spin Mott-bipolaronic state where
phonon fingerprints and Mott physics coexist. Finally, we
identify a hybrid Mott insulator resulting from a perfect bal-
ance between the effects of the e-ph and the Hund’s couplings.

II. MODEL AND SOLUTION

We consider a two-orbital Hubbard model with two degen-
erate bands described by a semicircular density of states with
half-bandwidth D,

D(ε) = 2

πD2

√
D2 − ε2, |ε| < D, (1)

which is realized on a Bethe lattice.
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The e-e interaction is

He−e =U
∑

i,a

nia↑nia↓ + (U − 3J )
∑

i,a<b, σ

niaσ nibσ

+ (U − 2J )
∑

i,a �=b

nia↑nib↓, (2)

where i, a and b, σ are respectively site, orbital, and spin
indices. This popular form of the interaction can be seen as
a Kanamori model without spin-flip and pair-hopping terms
[59,60]. A dispersionless mode of frequency ω0 is coupled
with the difference in the occupation between the two orbitals,
i.e., the orbital polarization:

He−ph = g
∑

iσ

(ni1σ − ni2σ )(a†
i + ai ) + ω0

∑

i

a†
i ai. (3)

This term corresponds to one of the two JT modes of a
two-orbital eg manifold (usually referred to as Q3 and corre-
sponding to an orthorhombic distortion which makes the z axis
inequivalent to the xy plane). We did not include the other JT
mode to keep the number of parameters relatively small, while
the Holstein coupling is expected to reproduce the single-band
results [61,62].

We set the density to half filling n = 2 for which the inter-
actions can have qualitative effects, e.g., the e-e interaction
can lead to a Mott insulator. We define λ = 2g2/ω0 as the
strength of the phonon-induced attraction.

We solve the model using DMFT, which maps the lat-
tice problem onto a quantum impurity model subject to a
self-consistency condition which contains the information on
the lattice model. In our model, since the e-ph coupling and
the bare phononic Hamiltonian are local, the impurity model
also includes a phononic term on the impurity site, while
the bath remains purely fermionic [63]. DMFT allows for a
nonperturbative solution treating the two interaction terms on
the same footing without assuming any hierarchy between the
different energy scales of the problem. We solve the impurity
model at T = 0 using exact diagonalization [64–66] after a
truncation of the impurity model to a small number of levels,
that we typically take as Nl = 8, and to a limited number
of phononic levels, that we typically fix to Nph

max = 25. The
convergence with respect to these parameters has been tested
as discussed in the Supplemental Material [60]. We do not
allow for any broken-symmetry solution, including charge-,
spin-, and orbital-ordering and superconductivity. This choice
allows us to identify the intrinsic correlation effects resulting
from the various interactions and their interplay.

We characterize the metal-insulator transitions using the
quasiparticle weight Z which measures the degree of metallic-
ity of the system, the intraorbital double occupation 〈nim↑nim↓〉
with m = 1, 2 and the local magnetic moment measured by
〈S2

z 〉 = 〈(∑m Sz im)2〉. All quantities do not depend on the site
index i that we drop in the following. We also monitor the
phonons via the number of excited phonons Nph = 〈a†a〉 and
the phonon distribution function P(X ) which measures the
quantum amplitude that the phonon displacement operator
assumes a value X .

Our model depends on four independent parameters U/D,
J/D, λ/D, and ω0/D. In the following we will keep the ratios
U/J and λ/J constant when considering J > 0, while we

FIG. 1. Approach to the bipolaronic-Mott insulator for J =
0. (a)–(d) Evolution of Z , 〈nin↑nin↓〉, 〈S2

z 〉, and 〈nph〉 as a func-
tion of λ for three different values of U/λ and ω0/D = 0.4. (e)
Evolution of the phonon distribution function P(X ) across the metal-
insulator transition for U/λ = 2 compared with that of an uncoupled
phonon �0.

vary the e-e interaction strength U/D. This choice mimics
the effect of pressure and chemical substitution that change
the hopping while leaving the local interactions less affected.
We take the ratio ω0/D as an independent variable in order to
measure the effect of the degree of adiabaticity (retardation)
of the e-ph coupling.

III. RESULTS

We start our discussion from the limit J = 0. In Fig. 1 we
report various quantities as a function of λ and three values
of U/λ. For U = 0 we have pure e-ph interaction. Increasing
λ leads to a reduction of the quasiparticle weight Z (enhance-
ment of the effective mass), Fig. 1(a), that eventually vanishes
for λ � 0.4 signaling a metal-insulator transition. The intraor-
bital double occupancy, Fig. 1(b), evolves toward 0.5 while
the squared magnetic moment, Fig. 1(c), falls toward zero. We
conclude that we reached an insulating state where every site
has two electrons on one of the two orbitals, while the other
is empty. Half of the sites have two electrons on orbital 1, the
other half on orbital 2. The number of phonons, Fig. 1(d), in
the ground state increases sharply as the insulating state is ap-
proached. Importantly, the phonon distribution function P(X ),
Supplemental Material [60] Fig. 2(e), is centered around X =
0 in the whole metallic region, but it turns into a bimodal
with maxima at ±X0 �= 0 at the transition, testifying that the
insulator is the two-orbital realization of a bipolaronic state
[67,68] where every lattice site has a finite distortion, half with
one sign and half with the other. The sites where orbital 1 (2)
is doubly occupied have a negative (positive) distortion. The
picture does not depend qualitatively on ω0/D, as we show in
the Supplemental Material [60].
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FIG. 2. Approach to the high-spin Mott insulator for zero or
small λ. (a)–(d) Evolution of Z , 〈nm↑nm↓〉, 〈S2

z 〉, and 〈nph〉 as a
function of U/D for two distinct values of λ/U and ω0/D = 0.4.
(e) Evolution of the phonon distribution function P(X ) across the
metal-insulator transition for λ/U = 0.2 compared with that of an
uncoupled phonon �0.

We now switch on the U repulsion, while keeping J = 0.
Since the ratio U/λ is kept constant, U increases when we
increase λ. Remarkably, even if we consider a sizable U larger
than λ [U/λ = 2 and 5 in Figs. 1(a)–1(e)], the picture obtained
for λ = 0 is not destroyed. Indeed all the observables follow
the same qualitative behavior of U = 0. Even more surpris-
ingly the Hubbard repulsion favors the bipolaronic transition,
which takes place for smaller λ as U/λ increases. This is
in sharp contrast with the results for the Hubbard-Holstein
model, for which a large U completely quenches phononic
effects [17]. This unexpected result can be easily understood
noticing that for J = 0 the interaction is U/2

∑
i n2

i (with ni =∑
aσ niaσ ) which simply selects configurations with doubly

occupied sites, i.e., configurations where the local occupation
equals the average, without any preference for the internal
arrangement between the orbitals. If we denote by |n1, n2〉
configurations with na electrons in the orbital a = 1, 2 we
have that |0, 2〉 and |2, 0〉, which are favored by the phonons
and characterize the bipolaronic state, are also compatible
with the effect of U . This in turn helps the e-ph coupling to
filter out configurations with different local occupation. Thus,
Mott localization and bipolaron formation work in synergy to
stabilize a low-spin Mott-bipolaronic insulator. Such a state
cannot be realized in a single-band model where Mott and
bipolaronic insulators are mutually exclusive.

The inclusion of the Hund’s coupling changes the picture
by favoring high-spin configurations and disfavoring double
occupation of the same orbital. In Fig. 2 we show the same
quantities as in 1 for fixed ratio J/U = 0.25, comparing the
results for λ = 0 with those for λ/U = 0.2. Without e-ph
coupling we recover a two-component Hubbard model. In
this case, increasing U induces a Mott transition signaled
by a vanishing Z , Fig. 2(a). The presence of J makes the
Mott insulator high spin. For density-density interaction, the
Mott insulator mainly features configurations with S = 1 and
Sz = ±1, completely different from those characterizing the
bipolaronic insulator discussed above. Accordingly, when Z

vanishes, the intraorbital double occupation tends to zero,
Fig. 2(b), while the magnetic moment increases toward 1,
Fig. 2(c).

The inclusion of a moderate e-ph coupling (λ/U = 0.2)
does not alter the picture besides a small increase of the criti-
cal interaction strength for the Mott transition. The number of
excited phonons, Fig. 2(d), is very small and eventually drops
to zero approaching the Mott insulator despite the increasing
e-ph coupling. The phonon distribution, Fig. 2(e), remains
centered around X = 0 and is barely distinguishable from
that of uncoupled phonons. In other words the presence of J
completely quenches the phonon degrees of freedom at least
for these parameters.

We have shown that the competition between λ and J can
lead to two completely different strongly correlated phases
for large U . In the absence of J we find a low-spin Mott-
bipolaronic state, while the prevalence of J over λ leads to
a high-spin Mott state without phononic signatures. This con-
firms the expectation that a JT phonon mode only competes
with the Hund’s coupling [9,11,12], while its effect can coex-
ist with Mott localization. We can understand and rationalize
this result by integrating out the JT mode. This leads to a
retarded (frequency-dependent) e-e interaction

U e−ph(ω) = ω0g2(n1 − n2)2

ω2 − ω2
0

. (4)

In the antiadiabatic limit ω0 � D this becomes a static effec-
tive interaction

U eff = − λ

2
(n1 − n2)2 = −λ

∑

i,a

nia↑nia↓

+ λ
∑

i,a<b, σ

niaσ nibσ + λ
∑

i,a �=b

nia↑nib↓. (5)

The intraorbital repulsion is thus reduced from U to U − λ,
while the interorbital interactions are enhanced to U − 2J + λ

(opposite spins) and U − 3J + λ (parallel spins). Interest-
ingly, this opens the opportunity for an interorbital repulsion
larger than the intraorbital one, a situation which is never
found in a purely electronic model. We can expect that the
high-spin Mott insulator (bipolaronic Mott) will be realized
when the effective intraorbital (interorbital) term prevails on
the other. The boundary between the two phases can be esti-
mated as U − λ � U − 3J + λ or λ � 3

2 J .
In Figs. 3(a) and 3(b) we show DMFT results for the

region around λ/J = 3/2 with J/U = 0.2 and ω0/D = 0.4.
We see that the system evolves toward the high-spin Mott
insulator (zero double occupancy, high spin) for λ/J < 3/2,
while it converges toward the Mott-bipolaronic one (large
double occupancy, low spin) for λ/J > 3/2, in agreement
with the above estimate. Precisely at λ/J = 3/2 we find a
superposition between the two above solutions where the
observables tend to the average of the limiting insulators.
For instance, the double occupancy converges toward 1/4
while the local spin reaches 1/2. We checked that this hy-
brid Mott state features both the local configurations of the
bipolaronic insulator (|2, 0〉 and |0, 2〉) and that of the Mott
insulator (|1, 1〉) with equal weights. The nature of the hybrid
Mott insulator is further clarified by the behavior of P(X ),
Fig. 3(c). Increasing U and λ the phonons develop a trimodal
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FIG. 3. (a)–(b) Evolution of the intraorbital double occupations
(left) and local spin (right) as a function of U/D for different values
of λ/J and fixed J/U = 0.2. (c) Phonon distribution function P(X )
for λ/J = 3/2 for different U/D. (d)-(e) Evolution of Z and 〈S2

z 〉 as
function of U for different values of ω0/D with λ/J = 3/2.

distribution with maxima at X = 0 and at X = ±X0, i.e., a
superposition of the distributions of the two paradigmatic
insulators.

We notice that, unlike similar systems described by a multi-
orbital Hubbard model showing a Hund’s metal solution at the
boundary between two insulators [69,70], the hybrid solution
bridging between two paradigmatic insulators is not metallic.
The reason is that all the local configurations characterizing
the hybrid state have the same occupation and they cannot
be connected by hopping processes. We finally discuss the
role of the phonon frequency ω0, Figs. 3(d) and 3(e). Interest-
ingly the simple analytical estimate for the transition between
the insulators obtained in the antiadiabatic limit agrees with
DMFT data also down to ω0/D < 1, suggesting that retarda-
tion effects come into play only close to the limit ω0 → 0.
The hybrid insulator is indeed realized when ω0/D > 0.2. For
smaller ω0 we recover the behavior of the purely electronic
model. Finally, the critical U for the hybrid Mott state de-
creases by reducing ω0/D.

Our main conclusions can be summarized in the schematic
phase diagram of Fig. 4 in the J-λ plane (with U proportional
to J) where a metallic phase is stable when both interactions
are small (we recall that we do not consider broken-symmetry
solutions). The strong-coupling solution largely depends on
the ratio λ/J between the e-ph and the Hund’s couplings.
For small J we find a bipolaronic-Mott insulator (yellow re-

 = 3
2

METAL

HIGH-SPIN MOTT
INSULATOR

BIPOLARONIC MOTT
INSULATOR

P(
x)

P(
x)

x

x

FIG. 4. Schematic phase diagram of our model in the J-λ space.
The yellow region is the Mott-bipolaronic state, while the red region
is the high-spin Mott insulator. The blue area is the metallic solution.
Increasing ω0 the metallic region extends as shown by the arrows and
the gray dashed lines.

gion) where the Mott localization and the tendency to form
bipolarons coexist and cooperate. For small λ we have a high-
spin Mott insulator (red region) where the phonon fingerprints
are washed out by the Hund’s coupling. Setting λ/J = 3/2 we
reach a hybrid Mott insulator which shows features of both
the above insulators as shown by a peculiar trimodal phonon
distribution. Increasing the phonon frequency enlarges the
metallic region.

IV. CONCLUSIONS AND PERSPECTIVES

Our results highlight that the interplay between strong
electronic correlations and phonons can be subtle and mul-
tifaceted, in contrast with the HH model where the two effects
are essentially exclusive. In particular we have regimes where
the Mott transition is favored by phonons and phononic fin-
gerprints are clear in the strongly correlated metal and in the
Mott insulators, but also regimes where the effect of phonons
is completely quenched. The intermediate regime where we
have a superposition between the two insulators is particularly
intriguing even if it is found only for a specific line of the
phase diagram.

This picture has been drawn using DMFT, where the self-
energy is local. However, we do not expect nonlocal effects
to introduce important changes in our phase diagram due
to the local character of our strong-coupling solutions. In
Ref. [71] it has been indeed shown, for a Bernevig-Hughes-
Zhang-Hubbard model, that nonlocal correlation effects are
important only in the weak-coupling region, while single-site
DMFT is very close to a cluster-DMFT solution for inter-
mediate and large interactions where the phase transitions of
the model take place. Accordingly, we expect that nonlocal
correlations can be relevant in the region of small U , λ, and J
where they can affect the metallic region and lead to lattice-
dependent instabilities.

We also expect that, similarly to the Mott transition and
the bipolaronic transition, our T = 0 results will extend to a
range of temperature corresponding to a small fraction of the
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bandwidth, i.e., a hundred of kelvins if we consider the typical
scales of oxides, making them relevant for real materials.

As we mentioned in the introduction, the present work is
not meant to describe any specific material, but it is rather
used as a basic simple model in order to identify key phys-
ical phenomena to guide more realistic studies of specific
materials. Still, we can mention a few systems where the
ideas we discussed are expected to be relevant. The key
role of the competition between the Hund’s coupling and
JT phonons has already been discussed in the alkali-doped
fullerides [9,16,53,54], but the role of a finite phonon fre-
quency and its effect on the normal-state properties have
not been discussed in equal detail. Ab initio evaluations of
the various electronic and phononic parameters [11,12] have
shown that, at low energy, the electron-phonon contribution
λ is larger in strength with respect to the Hund’s coupling,
while they are both smaller than the Hubbard U . For instance,
for K3C60, U = 0.82 eV, while J = 31 meV and λ = 50 meV.
This would put the material in the metallic region close to the
λ = 3/2J line (notice however that fullerides are described by
a three-orbital model which makes a quantitative comparison
questionable).

The physics that we discussed can be relevant also for
alkaline-earth chromates ACrO3 (A = Ca, Sr, Ba) where dif-
ferent correlated phases have been observed. BaCrO3 is a
Mott insulator in which Hund’s physics and Jahn-Teller distor-
tions play a role [56], while the other two compounds appear
to be at the border between insulating and metallic states. In
particular, it has been recently proposed based on DFT+U
calculations [57] that for realistic values of U � 2 eV SrCrO3

is a correlated metal which turns insulating in the presence of a
strain which can be related to the JT splitting. In particular, in-
creasing U favors the onset of the JT distortion, in agreement
with the behavior we find in the Mott-bipolaronic state. This
confirms a scenario in which the JT distortion cooperates with
the Hubbard U stabilizing an insulator, as well as the relevance

of the Hund’s coupling and the proximity between different
states in which the interplay between the various interactions
has different outcomes.

Finally, it has been recently proposed that a valley Jahn-
Teller effect is active in magic-angle twisted bilayer graphene
(MATBG) [58] and it can coexist with Hubbard repulsion to
drive a Mott-JT insulator which bears similarities with our
Mott-bipolaronic state. In this case, a direct mapping onto our
model is not available because of the inherent difficulties to
build an effective tight-binding model. Yet, in Ref. [58] it has
been estimated that the Coulomb pseudopotential, which can
be connected with the Hubbard U , is μ∗ � 27 meV, while,
for reasonable parameters and different fillings, a ground state
stabilized by the JT coupling has an energy lower of a few eV
with respect to a different state stabilized by the Hund’s cou-
pling. This would place the material in the Mott-bipolaronic
region of our phase diagram. A closer connection is hard
to establish because of the inherent difficulties to build an
effective low-energy model for the low-energy minibands of
MATBG [72].

These are some examples that demonstrate that the physics
we revealed in our simple model can be realized in real
systems of interest. The extension of the present results to
three orbitals and/or to different phonon modes is a natural
future step of our investigation, as well as the inclusion of
material-specific features using a merger of density-functional
theory and DMFT.
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