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Exploring dynamical quantum phase transitions in a spin model with deconfined
critical point via the quantum steering ellipsoid
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The dynamical quantum phase transition (DQPT), which is featured by the nonanalytic behavior of the
Loschmidt rate function in the real time evolution, has attracted substantial attention as a valuable theoretical
concept for characterizing nonequilibrium states of quantum matter. Although the link between the DQPT and
many physical concepts has been established, a thorough understanding of this transition still calls for more
studies. In this paper, from the perspective of the quantum steering ellipsoid (QSE), we investigate the DQPTs
supported in a one-dimensional spin chain with a deconfined quantum critical point by using the global subspace
expansion time-dependent variational principle algorithm. For the quench from the valence-bond-solid phase
to the ferromagnetic phase, we find a clear correspondence between the vanishing of the QSE volume and the
occurrence of the DQPT. For the quench in the opposite direction, however, the QSE exhibits a rather complicated
behavior during the time evolution. We also calculate the quantum entanglement and quantum coherence in the
quench processes to unveil the change of the quantum correlations encoded in the QSE picture. These findings
could offer a fascinating possibility of revealing DQPTs in a geometrically discernible manner.

DOI: 10.1103/PhysRevB.107.085130

I. INTRODUCTION

With the high degree of experimental control in current
ultracold-gas and condensed-matter settings [1–4], the study
of nonequilibrium quantum many-body dynamics has been
possible and attracted great attention among theorists and
experimentalists. A natural focus of such experiments is the
concept of dynamical quantum phase transitions (DQPTs)
[5–7], which appear in the quench dynamics of a quantum sys-
tem generated by the abrupt change of some global parameters
in the Hamiltonian. Since the seminal work elaborating on this
concept in the quantum transverse-field Ising model [6], theo-
retical studies demonstrating the relationship between DQPTs
and other physical concepts like universality, order parame-
ters, and topology [8–23], as well as pioneering experiments
achieving DQPTs in ionic and atomic platforms [24,25], have
made significant progress. In a common definition, DQPTs
are signified by the nonanalyticities in the form of kinks in the
Loschmidt rate function [6,7]

λ(t ) = − lim
N→∞

1

N
ln |l (t )|2, (1)

in which N is the system size and l (t ) = 〈ψ (t )|ψ (0)〉 is
the Loschmidt amplitude that measures the overlap be-
tween the initial state |ψ (0)〉 and the time-evolved state
|ψ (t )〉 = exp(−iHt )|ψ (0)〉 with H the quench Hamiltonian.
Although the Loschmidt rate function is a reliable indi-
cation of DQPTs, it provides limited insight into the rich
phenomenology associated with the nonequilibrium quantum
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many-body dynamics. It still calls for further research from
different perspectives to reveal more aspects of DQPTs, which
is vital in elucidating the fundamental mechanism of quantum
many-body systems in quench dynamics.

On the other hand, the deconfined quantum critical point
(DQCP) is an intriguing concept that was initially proposed
to support a direct continuous phase transition between a
valence-bond-solid (VBS) phase and an antiferromagnetic
Néel phase in two-dimensional (2D) quantum Heisenberg
magnets with incompatible order parameters [26], which is
forbidden by the Landau-Ginsberg-Wilson theory [27,28].
The DQCP theory was presented by showing that the predom-
inant fluctuating modes near the critical point are deconfined
spinons and emergent gauge fields; the VBS and Néel or-
der parameters are composites of these deconfined degrees
of freedom rather than fundamental objects themselves [29].
While elaborate effort has been put into the study of possible
2D lattice models [30–40], it remains disputed whether the
relevant phase transitions are continuous or weakly first order.
In contrast, recent theoretical and numerical studies [41–46]
strongly suggested an analog of the DQCP in a 1D spin
chain. This allows us to investigate the DQPT concept in the
context of DQCP with powerful matrix-product-state (MPS)
techniques [47–49].

Prior research on the DQPT in the 1D DQCP model mainly
focused on the Loschmidt rate function and dynamical order
parameters [50]. However, little is known about the under-
lying mechanism of these DQPTs or their relation to other
physical quantities. Over the past several years, a convenient
concept in quantum information, the quantum steering ellip-
soid (QSE) [51], has been developed to describe two-qubit
states. Its geometric properties can reflect many much-studied
quantum correlations, such as quantum discord [51–53],
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quantum entanglement [54,55], and Einstein-Podolsky-Rosen
steering [56,57]. Recently, it was demonstrated that QSE
could characterize equilibrium quantum phase transitions in
a geometric way [58]. Therefore, extending this approach to
the nonequilibrium case is a possible research topic of interest.
On the other hand, quantum entanglement has been employed
to study a wide range of quantum many-body problems [59],
especially the possibility of classifying DQPTs in the low-
entanglement regime [18]. As a visualization tool encoding
two-qubit quantum correlations, QSE can be a potential in-
dication of DQPTs and provides a different perspective for
nonequilibrium quantum many-body dynamics. Relevant ex-
periments may be implemented using some well-developed
techniques [60].

In this paper, motivated by the inspiration mentioned
above, we use the QSE to study the DQPTs supported in
the 1D DQCP chain proposed in Ref. [41]. We have con-
sidered two types of quench protocols by making use of the
global subspace expansion time-dependent variational prin-
ciple (GSE-TDVP) algorithm [61]. For the quench from the
VBS phase to the FM phase, a straightforward correspon-
dence between the behavior of the QSE and the DQPT can
be observed. Specifically, the QSE changes successively from
an origin-centered sphere to a prolate ellipsoid, and then to a
needle at the critical dynamical time. However, the situation
is much more complicated for the quench in the opposite
direction as the QSE exhibits rather complex behavior. At last,
we have also explored the change of the quantum correlations
during the time evolution, which provides a more physical
understanding of the QSE picture. Our findings indicate that
the QSE concept can reveal the DQPTs in the 1D DQCP
model from a geometric standpoint, which is impossible with
conventional approaches.

The rest of the paper is organized as follows. In Sec. II, we
first present a formal description of the model under study, and
give a concise review of the QSE framework. The numerical
findings and relevant discussions are then exhibited in Sec. III.
Finally, the main results are summarized with a conclusion in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Quantum steering ellipsoid

Before the discussion of our main results, it is helpful to
describe the QSE framework [51] briefly here. Generally, any
two-qubit quantum state ρ shared by Alice and Bob can be
expanded in the Pauli basis as

ρ = 1

4

3∑
μ,ν=0

�μνσ
μ ⊗ σ ν, (2)

with �μν = Tr[ρ(σμ ⊗ σ ν )], σ 0 the 2 × 2 identity matrix,
and σμ,ν �=0 standard Pauli matrices. The matrix � can be
divided into a block form

� =
(

1 bT

a T

)
, (3)

where a and b are Bloch vectors of the reduced states of
Alice and Bob, respectively; T is the corresponding correla-
tion matrix. By performing a positive operator valued measure

(POVM) on Bob’s qubit, one can “steer” Alice’s qubit to an
appropriate state, named the steered state (see Appendix A).
Considering all potential local measurements performed by
Bob, the set of Alice’s steered states {a} then constitutes Al-
ice’s QSE in the 3D Euclidean space, denoted by EA, centered
at

c = a − T b
1 − b2

. (4)

The orientation and the lengths of Alice’s steering ellipsoid
semiaxes si = √

qi are given by the eigenvectors vi and eigen-
values qi of the ellipsoid matrix (I is the 3 × 3 identity matrix)

Q =
(

T − abT

1 − b2

)(
I + bbT

1 − b2

)
(T T − baT). (5)

In general, Alice’s QSE EA and Bob’s QSE EB are not identi-
cal. To obtain EB, we just replace a with b, b with a, and T with
T T in Eq. (4) and Eq. (5). The geometric data (EA, a, b), where
EA = (c, Q), provide a faithful representation of two-qubit
quantum states. Besides, the volume of the steering ellipsoid
is a fundamental property that captures a substantial fraction
of nontrivial quantum correlations [51]. The volume of Alice’s
QSE can be calculated by

V = 64π

3

| det ρ − det ρTB |
(1 − b2)2

, (6)

where b is the norm of the Bloch vector b, and ρTB denotes
the partial transpose of the quantum state ρ with respect to
Bob. Since the steering ellipsoid is constrained to lie within
the Bloch sphere, its volume value can never exceed Vmax =
4π/3. The upper bound is achieved if and only if Alice and
Bob share a pure entangled two-qubit state [51]; the steering
ellipsoids of such states coincide with the Bloch sphere.

The fundamental advantage of the QSE is that both the
intensity and type of quantum correlations can be reflected in
related geometric properties, such as the shape and volume of
the steering ellipsoid, which are independent of the reference-
basis choice. Here, we mention some specific connections
between the QSE and quantum correlations. It has established
that a state is separable if it obeys a “nested tetrahedron”
condition [51]. As a generalization of the Bloch sphere for
single-qubit states to the description of two-qubit states, QSE
has also been used to study the geometric representation of
entanglement witness [55].

Inspired by these pioneering works, in this paper, we aim
to explore the possibility of visualizing DQPTs by making
use of the QSE. Furthermore, the dynamical behaviors of
other relevant quantum information concepts, such as quan-
tum entanglement and quantum coherence, are also examined
similarly; this can be a valuable supplement to the QSE pic-
ture.

Here, we adopt the concurrence as the measure of two-
qubit entanglement [62],

EC(ρi,i+1) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (7)

where λm denote the eigenvalues of ρi,i+1ρ̃i,i+1 arranged in
descending order with ρ̃i,i+1 = (σ y

i ⊗ σ
y
i+1)ρ∗

i,i+1(σ y
i ⊗ σ

y
i+1)

the time-reversed density matrix. Since the concurrence is ap-
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plied on two lattice sites, it can only unveil the local structure
of the entanglement stored in the system. In contrast, multi-
partite entanglement gives a more comprehensive description
of the entanglement distribution across different parties of
the system and, therefore, merits additional investigation [59].
Based on a general monogamy inequality obeyed by the en-
tanglement of formation Ef for an arbitrary N-qubit state, a
computable measure of the multipartite entanglement, named
residual entanglement, can be defined accordingly by [63]

τ ≡ E2
f (ρA1|A2...AN ) −

N∑
i �=1

E2
f (ρA1Ai ), (8)

where Ef (ρA1|A2...AN ) represents the entanglement in the par-
tition A1|A2 . . . AN , and Ef (ρA1Ai ) quantifies the one in the
bipartite system A1Ai. The residual entanglement τ can be
understood as the quantum entanglement that is not stored in
spin pairs. In general, the calculation of τ relies on the specific
choice of a target site, e.g., the A1 in Eq. (8). In our case,
however, this choice is unimportant due to the translation and
parity symmetries. While QSE can be extended to multiqubit
cases [51,64], it is noted that residual entanglement bears no
direct connection to the QSE used in our work (which is
defined for two-qubit states); therefore, τ can behave very
differently from the above quantities and deserves an inde-
pendent exploration.

Finally, as another key concept in quantum mechanics,
quantum coherence has been considered a vital resource in
quantum communication [65]. In some cases, quantum coher-
ence could be a faithful diagnostic for equilibrium quantum
phase transitions [66–68]. Here, we specifically use the l1-
norm coherence [69] (in a fixed reference basis),

Cl1 (ρ) =
∑
i �= j

|ρi j |, (9)

which is just the sum of the off-diagonal element magnitudes
of the density matrix, to aid the understanding of our QSE
results.

B. One-dimensional spin-1/2 model
with deconfined critical point

In the present work, we consider the recently proposed 1D
incarnation of DQCP in a spin-1/2 chain described by the
Hamiltonian [41,42]

H =
N∑

i=1

(− Jxσ
x
i σ x

i+1 − Jzσ
z
i σ z

i+1

+ Kxσ
x
i σ x

i+2 + Kzσ
z
i σ z

i+2

)
, (10)

with σα
i (α = x, z) the Pauli matrices on the ith lattice site

and N the chain length; Jx � 0, Jz � 0, and Kx � 0, Kz � 0
are coupling constants for nearest and next-nearest neighbors,
respectively. With fixed parameters Jx = 1 and Kx = Kz =
1/2, the system undergoes a phase transition from a VBS
dimerized phase breaking the translation symmetry to another
FM phase breaking the Z2 on-site symmetry by increasing
Jz through the critical point Jc

z ≈ 1.465. Existing large-scale
simulation works have supported this phase transition to be

an analog of the DQCP in 1D case by performing conven-
tional finite-size scaling analyzes [42,43,45]. While the static
aspects of this DQCP model have brought fruitful results,
its relevant dynamical behaviors have also shown many in-
teresting physics [46,50,70], one of which is the possibility
of supporting DQPTs between two quantum phases break-
ing very different symmetries [50]. By adopting the QSE
approach, we aim to provide a different perspective for the
DQPTs realized in this DQCP model; a general discussion
about the relationship between the QSE and DQPT is, how-
ever, beyond the scope of this paper and needs future studies.

Unless otherwise specified, the quench process is car-
ried out by rapidly adjusting the nearest-neighbor coupling
Jz from an initial value J ini

z to another final value Jfin
z with

fixed Hamiltonian parameters Kx = Kz = 1/2 and Jx = 1. The
time evolution driven by the quench Hamiltonian H (Jfin

z ) is
performed by the GSE-TDVP algorithm [61], which shows
slower bond-dimension growth compared with the conven-
tional TDVP [71,72] (also see Appendix B). In the MPS
framework, the time-evolved quantum state |ψ (t )〉 will be
described as

|ψ (t )〉 =
∑

σ

Tr
(
Aσ1

1 · · · AσN
N

)|σ1, . . . , σN 〉, (11)

where Aσi
i are matrices with appropriate bond dimensions

(the explicit time-dependence of A matrices are omitted here
for simplicity). For the results shown in this work, the QSE
method will be applied on one of the dimerized bonds of the
1D DQCP model (in the VBS region). To obtain the two-qubit
reduced density matrix associated with the dimerized bond
(i, i + 1) appearing in the QSE calculation, we trace out the
qubits other than the ith and (i + 1)th qubits by

ρi,i+1 =
∑

σ

∑
σ ′

[
Tr

(
Aσ1

1 · · · AσN
N

)
Tr

(
A

σ ′
1

1 · · · Aσ ′
N

N

)†

×
∏

k �=i,i+1

δσkσ
′
k

]
|σi, σi+1〉〈σ ′

i , σ
′
i+1|. (12)

The convergence of the algorithm is examined in Appendix C;
the relevant parameters concerning the simulation are also
given therein. The calculations are mainly implemented by
using the ITensor Library [73] with periodic boundary con-
ditions.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the DQPT supported in the 1D DQCP chain
will be explored with the QSE concept. In a previous work
[50], it was observed that the DQCP model (10) can exhibit
DQPTs for quenches from a VBS state to a FM state and vice
versa. While the Loschmidt rate λ(t ) and dynamical order
parameters D(t ) have provided convincing evidence for the
existence of DQPTs, there are still some remaining questions.
First, in Ref. [50], it established an exact mapping between
the quench from the Majumdar-Ghosh (MG) state [74,75]
to the FM state in the DQCP chain and the one from the
paramagnetic state to the classical Ising state in the quantum
transverse-field Ising model by considering λ(t ) and D(t ).
This means that we cannot efficiently distinguish these two
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FIG. 1. The time dependence of (a) the rescaled Loschmidt rate
function λ(t/t c

1 ) and (b) the rate function λ(t ) for the quench from
J ini

z = 1 to Jfin
z = 10, 30, 60 with N = 96. (c) The rescaled rate func-

tion λ(t/t c
1 ) of different system sizes N = 528, 480, 384, 288, 192

from top to bottom for the quench ending up with Jfin
z /Jx = 300  1.

(d) Power-law scaling of the first critical time t c
1 (Jfin

z ) with respect
to Jfin

z .

cases by simply monitoring λ(t ) and D(t ). Second, the choice
of the dynamical order parameter depends on the problem un-
der study and requires prior knowledge about the initial state.
This approach will meet difficulties when the definition of
the dynamical order parameter is ambiguous. We will address
these issues with the QSE concept in the following.

A. Quench from the VBS phase to the FM phase

First, we investigate the quench of the DQCP chain (10)
from the VBS phase to the FM phase. For the sake of sim-
plicity, we set the initial state to be the MG state (J ini

z = 1)
and then study the quench dynamics of different Jfin

z . The
simulation results of the Loschmidt rate function λ(t ) are
shown in Fig. 1(b). It is found that λ(t ) exhibits periodic
peaks during the time evolution; the nonanalyticities in the
form of kinks indicate the occurrence of DQPTs at critical
times t c

n = t c
1 (2n + 1) with t c

1 the position of the first peak
[see Fig. 1(c)]. Differently from the analytical calculations
performed in Ref. [50] by ignoring Jx, Kx, and Kz terms, our
numerical simulations have retained these omitted terms. This
difference can be unveiled by graphing λ(t/t c

1 ) of different Jfin
z

in one plot. It is obvious from Fig. 1(a) that the rescaled criti-
cal time t c

n/t c
1 deviates gradually from the prediction (2n + 1)

made in Ref. [50] as the decrease of Jfin
z . Despite this imper-

fection, the first occurrence of the DQPT seems insensitive
to Jfin

z as an excellent data collapse can be achieved for the
time range t/t c

1 ∈ [0, 2]. Furthermore, the first critical time
t c
1 shows a power-law behavior with respect to Jfin

z , which
is characterized by an exponent α. From an algebraic fit to
t c
1 (Jfin

z ) ∼ [Jfin
z ]−α in Fig. 1(d), we find α = 1.070(4) com-

patible with the relation t c
1 ∝ 1/Jfin

z derived in Ref. [50]. Our
findings are consistent with previous results and confirm the
existence of DQPTs for the quench from the VBS phase to the
FM phase.

Having explored the DQPT using the conventional ap-
proach, λ(t ), we now illustrate how the QSE can reveal
DQPTs in a geometric way. For the VBS-to-FM quench, the
initial state is set to the MG state ({| ↑〉i, | ↓〉i} is the eigenba-
sis of the Pauli operator σ z

i ) [74,75]

|D〉 =
N/2⊗
m=1

|↑〉2m−1|↑〉2m + |↓〉2m−1|↓〉2m√
2

. (13)

The fundamental strategy is then to indicate the DQPT
through changes in the form and volume of the QSE during
the time evolution.

As seen in Fig. 2, since the initially dimerized bond is
one of the maximally entangled Bell states, the QSE at time
t/t c

1 = 0 is an origin-centered sphere as expected, coinciding
with the Bloch sphere. Here, the two-qubit state that enters
the QSE method is associated with the central odd bond of
the model. It is noted that the QSEs E2m−1 and E2m associated,
respectively, with the (2m − 1)th and 2mth sites are identical
during the time evolution due to the parity symmetry of the
model (10) and the MG state (13). Hereafter, the subscript
will be omitted if not necessary. As the quench continues into
the region 0 < t/t c

1 < 1, E begins to shrink, but the vertical
axis stays unchanged, leading to a radially aligned ellipsoid.
Specifically, the QSE at the critical time has the form of a
needle distinguishing itself from other states. After evolving
beyond the critical time, the needle-shaped ellipsoid goes
through the prolate ellipsoid back to a sphere. Consequently,
we can obtain a clear correspondence between the QSE form
and the VBS-to-FM DQPT; it suggests that the QSE is a
powerful visualization tool for general quench dynamics.

FIG. 2. The time evolution of the QSE for the quench from J ini
z = 1 to Jfin

z = 300 in the 1D DQCP model. As depicted, the QSE changes
from an origin-centered sphere at t/t c

1 = 0 to an ever-shrinking radially aligned ellipsoid within 0 < t/t c
1 < 1, and then to a needle at the first

critical time t/t c
1 = 1. Here, the orientation and the lengths of ellipsoid semiaxes are given by the eigenvectors and eigenvalues of the ellipsoid

matrix (5). The system size is N = 96.
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FIG. 3. Time evolution of the quantities defined in Sec. II, in-
cluding (a) three semiaxes si=1,2,3, (b) the volume V of the QSE,
(c) the quantum coherence Cl1 , (d) the concurrence EC on the odd and
even bonds, and (e) the residual entanglement τ , for the VBS-to-FM
quench in the DQCP model (10). The relevant parameters set here
are the same as in Fig. 2.

To provide a more quantitative perspective for the DQPT
and help the understanding of the QSE picture, we also cal-
culate the time evolution of the quantities defined in Sec. II.
First, we focus on the quantities related directly to the QSE,
i.e., its semiaxes si and volume value V . It is evident from
Figs. 3(a) and 3(b) that the semiaxes s1, s2 and the volume V
display periodic behaviors consistent with the QSE picture in
Fig. 2; the vanishing points of s1, s2 and V can estimate the
DQPT critical times since the QSE is a radial line there.

Further motivated by the connection between the QSE
and other quantum information concepts (see Sec. II), we
additionally calculate the concurrence EC, the coherence Cl1 ,
and the residual entanglement τ in Figs. 3(c), 3(d), and 3(e),
respectively. Note that all the quantities are computed with the
reference basis {| ↑〉, | ↓〉}⊗N . It is observed that the bipartite
entanglement and coherence of the odd bond (2m − 1, 2m)
both reach their maximum exactly as the volume reaches
its maximum, while τ is close to zero. The results indicate
that the entanglement of the initial state is mainly stored in
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FIG. 4. (a) DQPTs in the Loschmidt rate function λ(t ) for the
quench from the FM state to the VBS state of Jfin

z = 1.0, 0.7, 0.4.
Here, the chain length is 96. (b) Loschmidt rate function λ(t ) in the
vicinity of the critical time for the quench ending up with Jfin

z = 1.
The results are shown for system sizes N = 96, 192, 288, 384 from
bottom to top. (c) The rapid convergence of the finite-size critical
time [determined by the local maximum of λ(t ) in (b)] with respect
to N .

odd bonds, i.e., dimers in the MG state (13). It is interesting
that, as time increases, the entanglement of the even bond
(2m, 2m + 1) remains at zero, implying the robustness of the
VBS dimer pattern throughout the quench process. Moreover,
there is a periodic change in the entanglement distribution dur-
ing the time evolution. To clarify this observation, we display
the results of the two terms on the right-hand side of Eq. (8)
in Fig. 3(e) separately. As the critical time is approached, the
entanglement stored in spin pairs, which is characterized by∑

i �=1 E2
f (ρA1Ai ), transfers gradually to entanglement shared by

at least three sites (the increase of τ ). It suggests that the
quench dynamics in the 1D DQCP chain can be a natural
candidate for entanglement switches.

Using the QSE concept, we have unveiled the DQPT for
the VBS-to-FM quench in the 1D DQCP chain. Now we can
explain how the QSE can address the issues raised at the
beginning of the section. First, in our paper, the application
of the QSE concept on two nearest-neighbor sites is quite
simple and requires no prior knowledge of the initial state or
the quench Hamiltonian. Therefore, the QSE can be a con-
venient tool in the study of other DQPTs. Second, as shown
in Ref. [50], there is an exact mapping between the quench
from the MG state to the FM state in the DQCP model and the
one from the paramagnetic state to the classical Ising state
in the transverse field Ising chain, and the Loschmidt rate
function cannot efficiently distinguish these two cases. This
task can be accomplished by employing the QSE concept. As
the two nearest-neighbor sites in the paramagnetic state are
just a product state, the evolution of the QSE will start from
a single point on the Bloch sphere, which is distinct from the
case in Fig. 2.

B. Quench from the FM phase to the VBS phase

We shall finally present the results for the quench from
one of the doubly degenerate FM states to the VBS state.
Figure 4(a) shows the time dependence of λ(t ) for quenches
that end up with Jfin

z = 1.0, 0.7, 0.4. In contrast to the VBS-
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FIG. 5. The time evolution of the QSE for the quench from the FM state (polarized along the negative z axis) to the MG state in the
1D DQCP chain. Since the initial state at t = 0 is a product state with b = 1, the corresponding E consists of a single point on the Bloch
sphere. Therefore, the dynamic of the QSE is drawn from the pseudoinitial state at t = 0.01 with b �= 1. Here, the orientation and the lengths
of ellipsoid semiaxes are given by the eigenvectors and eigenvalues of the ellipsoid matrix (5). The critical time t c = 0.765 is obtained from
Fig. 4(c).

to-FM quench discussed earlier, the time evolution of the
Loschmidt rate function is nonperiodic here. However, we can
still observe a nonanalytic structure of λ(t ) in a short timescale
[see Fig. 4(b)], supporting the existence of a DQPT during
the time evolution. For the sake of simplicity, hereafter, we
will only focus on the case of Jfin

z = 1. Figure 4(c) shows the
finite-size effect of the critical time as a function of the chain
length. It is clear that the pseudocritical time converges to its
true value very fast, and the chain of length 200 can represent
the thermodynamic limit faithfully. Here we have provided a
more detailed study of the Loschmidt rate function compared
with previous work [50], especially the convergence of the
critical time and the robustness of the DQPT for different Jfin

z .
In Fig. 5, we continue to investigate the dynamics of the

QSE to unveil more aspects of the DQPT. The illustration of
the dynamical shape of the QSE is associated with the central
odd bond. Note that Eqs. (4), (5), and (6) are well defined only
if b �= 1; for the initial state |ψ (0)〉 = ⊗N

i=1 | ↓〉i, however, we
find that b = 1, and E consists of a single point sitting on the
Bloch sphere. Therefore, steering ellipsoids are only drawn

t
0.0

0.5

V

(a)

t
0.0

0.5

s i

(b)s1 s2 s3

0.5 1.0 1.5 2.0 2.5
t

0.00

0.25

0.50

|c|

(c)

FIG. 6. (a) The volume V , (b) the semiaxes si of the QSE, and
(c) the distance of the ellipsoid center from the origin |c| for the FM-
to-MG quench. The vertical dashed line indicates the critical time t c.
The relevant parameters set here are the same as in Fig. 5.

for t > 0 in Fig. 5. Following the quench evolution, more
complicated steering ellipsoid dynamics emerge, as shown
explicitly in Figs. 5 and 6. At the same time, the volume of
the steering ellipsoid decreases monotonically with increasing
time [Fig. 6(a)], implying the loss of the quantum correlation;
the semiaxes si display a rather complex behavior featured by
avoided crossings [Fig. 6(b)]. The crossings provide a reliable
indication for the abrupt change of the ellipsoid orientation
(the direction along the longest semiaxis) during the time
evolution. Moreover, there may be a relationship between the
DQPT and the crossing of the shortest two semiaxes from
Fig. 6(b) since the DQPT happens just after the crossing.
Similar observations have also been made for the case of
Jfin

z = 0.7 and 0.4 (the data are not displayed here); however,
the underlying connection is still unclear and requires future
studies. In Fig. 6(c), we finally plot the distance of the ellip-
soid center from the origin |c|, which decays very quickly to a
small value, implying that the QSE will eventually stay in the
vicinity of the origin.

t
0.00

0.25

0.50

C
l1

(a)

t
0.0

0.1

0.2

E
C

(b)

0.0 0.5 1.0 1.5 2.0 2.5
t

0.0

0.5

1.0

τ

(c)

FIG. 7. The dynamics of (a) the quantum coherence Cl1 , (b) the
concurrence EC, and (c) the residual entanglement τ in the 1D DQCP
chain for the FM-to-MG quench. The vertical gray dashed line indi-
cates the critical time t c. The relevant parameters set here are the
same as in Fig. 5.
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As before, now, we turn to examine the evolution of the
quantum correlations in the quench dynamics. It is found from
Figs. 7(a) and 7(b) that the quantum coherence Cl1 and con-
currence EC both experience rapid growth at the early stage of
the FM-to-VBS quench and reach the maximums separately.
This observation seems to conflict with the monotonically
decreasing of the ellipsoid volume V [Fig. 6(a)]. We note,
however, that there are three geometric contributions to the
correlations between qubits [51]: the distance |c|, the volume
V , and the alignment of the ellipsoid relative to the radial
direction. While the volume indicates a loss of the correla-
tion, the involvement of the latter two contributions can still
support an enhancement of the correlations. As time increases,
the volume contribution becomes dominant; the concurrence
drops quickly to the zero value, and the coherence decays
slowly to an equilibrium value with an oscillatory behavior.
The results give a more physical understanding of the QSE
picture illustrated in Fig. 5. At last, as shown in Fig. 7(c), the
residual entanglement τ shows a monotonic growth before
attaining a plateau near the DQPT. Although the quantities
explored here cannot determine the critical time of the DQPT,
they give additional insight into the underlying physical mech-
anisms in the vicinity of the DQPT under study.

IV. CONCLUSION

In this work, intending to unveil how the QSE concept can
characterize the DQPTs, we focused on the quench dynamics
in a 1D spin chain with a DQCP. Assisted by the recently
developed GSE-TDVP algorithm, this goal has been refined
to study the relationship between the geometric properties
of the QSE and the quench crossing the deconfined critical
point in the present model. Moreover, different measures of
quantum correlations, i.e., the concurrence, the l1-norm co-
herence, and the residual entanglement, were also examined
to supplement the QSE picture. It has demonstrated that the
QSE can efficiently capture the DQPTs and determine the
critical dynamical time when the system is quenched from
the MG state to the FM state. As depicted in the main text,
the QSE changes from a Bloch sphere to a prolate ellip-
soid, particularly at the critical dynamical time, to a needle
distinguishing itself from other states. For the quench from
the FM state to the MG state, however, the QSE exhibits a
more complicated behavior. While the connection between the
QSE and the DQPT is unclear in this situation, together with
the computed measures of quantum correlations, the results
still uncover some underlying physics near the DQPT. These

0 1 2 3 4 5 6
t/tc

1

0.0

0.2

0.4

λ
(t

/t
c 1)

Dmax = 500

Dmax = 400

Dmax = 300

FIG. 8. The convergence of the GSE-TDVP simulation with re-
spect to the MPS bond dimension Dmax by observing the Loschmidt
rate function λ(t ) in the quench dynamics (J ini

z = 1 → Jfin
z = 60).

Here, the time step is 10−5 and the chain length is 528.

findings indicate that the QSE concept can reveal DQPTs and
associated quantum correlations of the present model in a
geometrically discernible manner.

As the application of the QSE relies on no prior knowledge
of the initial state or the model under study, we anticipate that
the QSE can provide a convenient tool for the visualization of
general nonequilibrium quantum many-body dynamics such
as many-body localization [76] or quantum time crystals [77].
Our work also provides some insight into the nonequilibrium
experiments using QSE. Given that DQPTs are assumed to
occur at absolute-zero temperatures, which are difficult to ac-
complish experimentally, there may be a discrepancy between
theory and experiment regarding the detection of DQPTs. For-
tunately, the validation of QSE was illustrated experimentally
[60]. Thus, we can expect that revealing DQPTs through QSE
established here could be verified experimentally in the near
future.
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APPENDIX A: CONSTRUCTION OF QSE

We provide here further details about the construction of
the steering ellipsoid. First, we express POVM elements in
the Hilbert-Schmidt space. When Bob does a measurement
on his qubit, each measurement outcome can be associated
with a POVM element M = {M} with M � 0. Generally,
M can be assigned to a Hermitian operator and thus can
be written as M = ∑3

μ=0 Xμσμ, where Xμ = Tr(Mσμ) are
components of the real four-component vector in row form
X = (1, X k ) with X k = (X1, X2, X3). The post-measurement
state of Alice is steered to ρA = TrB[ρAB(I ⊗ M )]. Direct
calculation shows that, combined with Eqs. (2) and (3), ρA

can be given in the four-vector formalism as 1
2�X with prob-

ability 1
2 (1 + b · X T

k ). Taking into account all possible local
measurements by Bob, the set of Alice’s steered states can be
geometrically represented by the set of Bloch vectors [51]

EA =
{

a + T X k

1 + b · X k
: |Xk| � 1

}
, (A1)

which can be proven to form an ellipsoid in the 3D Euclidean
space. The ellipsoid given by (A1) is the so-called “steering
ellipsoid.”

Next, as an example of the procedure, we outline in more
detail how to construct a specific QSE. Consider a two-qubit
system in a pure state [78]

|ψAB〉 = 1√
2

(|ψ0〉A| ↓〉B + |ψ1〉A| ↑〉B), (A2)

where |ψ0〉A = (| ↓〉 + | ↑〉)/
√

2 and |ψ1〉A = 4/5| ↓〉 +
3/5| ↑〉. Let qubit A pass through a quantum channel with
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Kraus operators

A1 = | ↓〉〈↓ | + 1√
2
| ↑〉〈↑ |, A2 = 1√

2
| ↓〉〈↑ |. (A3)

The output state of the channel is described by

ρAB =
2∑

i=1

(Ai ⊗ I)|ψAB〉〈ψAB|(Ai ⊗ I)†

=

⎛
⎜⎜⎜⎜⎜⎝

3
8

11
20

√
2

1
4
√

2
3

20

11
20

√
2

41
100

1
5

3
√

2
25

1
4
√

2
1
5

1
8

3
20

√
2

3
20

3
√

2
25

3
20

√
2

9
100

⎞
⎟⎟⎟⎟⎟⎠. (A4)

Then the Bloch vectors a, b, and correlation matrix T can be
given by

a = Tr(ρAB · σ ⊗ I) =
(

49

50
√

2
, 0,

57

100

)T

,

b = Tr(ρAB · I ⊗ σ) =
(

7

5
√

2
, 0, 0

)T

,

T = Tr(ρAB · σ ⊗ σ ) =

⎛
⎜⎜⎝

7
10 0 1

50
√

2

0 1
10 0

2
√

2
5 0 − 7

100

⎞
⎟⎟⎠. (A5)

Substituting the above equations into Eq. (4), we find that the
center of EA is at the point c = (0, 0, 1/2)T. From Eq. (5), we
obtain the lengths of EA’s semiaxes s2

1 = s2
2 = 1/2, s2

3 = 1/4,
which are the eigenvalues of matrix Q. Under these condi-
tions, the equation of the quantum steering ellipsoid EA in the
coordinate frame (x, y, z) takes the form

2(x2 + y2) + 4
(
z − 1

2

)2 = 1. (A6)

APPENDIX B: THE GSE-TDVP ALGORITHM

This Appendix briefly describes the GSE-TDVP algo-
rithm used in our numerical simulation. Prior research has
established that the TDVP method based on the Lie-Trotter
decomposition of the tangent space projector [71,72] can
sometimes fail due to the loss of the orthogonality or the
formation of excessively highly entangled states [49]. These
issues have recently been overcome by an improved scheme,
i.e., the GSE-TDVP [61]. The essential modification is the
enlargement of the tangent space before each time-evolution
step using global Krylov vectors. Specifically, in the simu-
lation performed in the main text, the basis set of the state
|ψ (t )〉 at time t is extended first by the Krylov subspace of
order k,

Kk (H, |ψ (t )〉) = span{|ψ (t )〉, H |ψ (t )〉, . . . , Hk−1|ψ (t )〉},
(B1)

before evolving to the time t + �t . For a small time step �t ,
by writing the time evolved state as

|ψ (t + �t )〉 = exp(−iH�t )|ψ (t )〉 =
∞∑

l=0

(−i�t )l

l!
Hl |ψ (t )〉,

(B2)

we can expect that a relatively small value of the order k in
Eq. (B1) should be sufficient to efficiently represent the state
|ψ (t + �t )〉. In practice, the extension of the basis set is done
by carrying out singular value decompositions with truncation
error εM . Besides, when applying the matrix product operator
H iteratively on |ψ (t )〉, we choose a suitable truncation cutoff
εK and a maximum MPS bond dimension Dmax to control the
rapid growth of the bond dimension of Hl |ψ (t )〉. The full
description and benchmark analysis of the algorithm can be
found in Ref. [61].

APPENDIX C: CONVERGENCE
OF THE GSE-TDVP RESULTS

In the main text, the GSE-TDVP simulation was imple-
mented with the parameter setting k = 3, εM = 10−12, εK =
10−12, and Dmax = 500. In Fig. 8, we show the convergence of
the Loschmidt rate function λ(t ) with respect to Dmax for the
quench from J ini

z = 1 to Jfin
z = 60 with time step �t = 10−5.
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