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Twisted bilayer BC3: Valley interlocked anisotropic flat bands
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Here we propose BC3, a graphene derivative that has been synthesized, as a platform to realize exotic quantum
phases by introducing a moiré pattern with mismatched stacking. In twisted bilayer BC3, it is shown that a
crossover from two-dimensional to quasi-one-dimensional (quasi-1D) band structure takes place with the twist
angle as a control parameter. This is a typical manifestation of the guiding principle in van der Waals stacked
systems: The quantum interference between Bloch wave functions in adjacent layers has a striking effect on the
effective interlayer tunneling. Interestingly, quasi one dimensionalization happens in a valley-dependent manner.
Namely, there is interlocking between the valley index and the quasi-1D directionality, which makes BC3 a
plausible candidate for valleytronics devices. In addition, the strongly correlated regime of the valley interlocked
quasi-1D state reduces to an interesting variant of the Kugel-Khomskii model where intertwined valley and spin
degrees of freedom potentially induce exotic quantum phases. Notably, this variant of the Kugel-Khomskii model
cannot be realized in conventional solids due to the threefold valley degeneracy.
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I. INTRODUCTION

Nanoscale moiré patterns in van der Waals (vdW) het-
erostructures [1] with small interlayer mismatches are cur-
rently attracting much attention as a key to manipulate
electrons artificially. A typical setup to realize a tunable
moiré pattern is a bilayer system with angle misalignment
between the layers, known as a twisted bilayer system [2–23].
A moiré-patterned bilayer system is featured by its position
dependence of the relation between two layers, which induces
position dependence of the effective interlayer tunneling and
the electrostatic potential from the partner layers. Generically,
spatial profiles of the tunneling and electrostatic potential
affect the motion of electrons, allowing us to control the
electronic band structures by modulating the moiré pattern,
say, by changing the twist angle.

Regarding spatial profiles of the interlayer tunneling, the
quantum interference between the Bloch wave functions in the
two layers plays an essential role [24]. Notably, if the focused
state has finite lattice momentum in each layer, the spatial
profile of the effective tunneling may not follow the crystalline
symmetry of the underlying lattice due to the interference
effects, which potentially leads to interesting phenomena such
as anisotropic band flattening. In this perspective, a mul-
tivalley system, which is featured by degeneracy between
the states with different momenta, is an interesting building
block for twisted bilayers. The valley degrees of freedom are
well defined and practically conserved if the moiré pattern is
smooth enough for electrons to suppress the intervalley scat-
tering with large momentum transfer. If we can manipulate
an electronic structure of a multivalley twisted bilayer in a
valley-dependent manner, it paves a way to build moiré-based
valleytronics [25] devices.

Amongst two-dimensional (2D) atomic layer materials,
graphene derivatives are interesting and important in the vdW

heterostructure framework. One example is monolayer BC3,
where a quarter of the carbon atoms in graphene are replaced
by boron atoms in an arrangement depicted in Fig. 1(a). This
structure preserves the space group symmetry of graphene but
forms a 2 × 2 supercell. This BC3 monolayer sheet has been
synthesized on the NbB2(0001) surface [26,27], and some ex-
perimental characterizations have been worked out [28,29]. It
is predicted to be a 2D semiconductor, i.e., the first-principles
calculation shows a band gap at the Fermi energy [30–36].
Notably, the conduction bottom is at the M point, showing
anisotropic electronlike parabolic band dispersion. There are
three symmetrically related M points in the Brillouin zone
due to the space group symmetry of this system, which means
that monolayer BC3 is a three-valley system. Having multiple
valleys on high-symmetry points in the Brillouin zone makes
BC3 a promising candidate for realizing valleytronics with the
vdW heterostructure framework.

In this paper, electronic properties of twisted bilayer BC3

are investigated. For this purpose, we build two types of effec-
tive models, a tight-binding model and a continuum model,
to have clear and intuitive understanding of the results by
comparison. The parameters required in the effective models
are fixed within the local approximation, which stands on the
fact that the atomic structure in a slightly twisted bilayer is
locally well approximated by the one in an untwisted bilayer
system with in-plane displacement. Since the first-principles
calculations can be applied on the untwisted bilayer without
huge computational costs, it is used to fix the parameters in
the effective models (see Fig. 3 for the strategy to derive the
effective models). It is revealed that both the tight-binding
model and the continuum model consistently show valley-
dependent anisotropic band flattening, in which originally
2D band dispersion is squeezed into a quasi-one-dimensional
(1D) one with valley-dependent dispersive directions upon
twist. This valley interlocking quasi-1D dispersion indicates
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FIG. 1. (a) Schematic picture for the crystal structure of mono-
layer BC3. The monolayer lattice constant a0 is 5.167 Å. The C-C
and B-C distances are 1.420 and 1.563 Å, respectively. (b) and
(c) Schematic illustrations of the in-plane displacement τ for the
untwisted case (b) and the position-dependent τ(r) for the twisted
case (c).

valley-dependent transport, which makes twisted bilayer BC3

useful for valleytronics devices. Having the valleytronics ap-
plication in mind, we also discuss possible valley selection by
linearly polarized light.

In addition to the band dispersion manipulation at the non-
interacting level, the strongly correlated regime of the twisted
bilayer BC3 is also investigated. It is shown that the strong
coupling limit of the three-valley effective model at the filling
of one electron per moiré unit cell leads to a three-orbital
variant of the Kugel-Khomskii model, in which a character-
istic valley-spin coupling gives rise to quantum phases with
intertwined valleys and spins. Notably, a model with the same
symmetry as this generalized Kugel-Khomskii model cannot
be realized in a conventional solid, due to the threefold valley
degeneracy at the small angle limit where the valley degrees
of freedom decouple.

The paper is organized as follows. First, we introduce ef-
fective models and explain how to fix the required parameters
within the local approximation. Next, crystalline and elec-
tronic structures for monolayer and bilayer systems are shown
in order. Then, we discuss the valley selection by linearly
polarized light and provide analysis in the strongly correlated
regime before the summary and final discussion.

II. METHODS

A. Local approximation

To build effective models for analyzing the electronic
structure of BC3, we mostly rely on the local approximation
[37]. In the local approximation, we make full use of the
fact that a crystal structure of a twisted bilayer is locally
well approximated by its untwisted counterpart for small twist
angles. The untwisted bilayers can be analyzed without huge
computational resources, since the unit cell size is conserved
in untwisted cases.

One of the important parameters to characterize a given
untwisted bilayer is an in-plane displacement τ of the up-
per layer relative to the lower layer [Fig. 1(b)]. Then, the
essence of the moiré structure is the position dependence of
τ. In the case of a twisted bilayer, τ depends on the position

as [38]

τ(r) = 2 sin
φ

2
ẑ × r, (1)

where φ is a twist angle, ẑ is a unit vector perpendicular
to the 2D system, and r is an in-plane position measured
from the rotation center [see Fig. 1(c)]. When τ(r) for two
different positions, say, r′ and r′′, differ only by a lattice vector
n1a1 + n2a2 (where ni are integers and ai are unit vectors of
the monolayer), r′ and r′′ are identified in terms of the moiré
pattern, giving us unit vectors for the moiré pattern Li as

Li = ẑ × ai

2 sin φ

2

. (2)

Then, writing a spatial position as r = r1L1 + r2L2 and in-
troducing τi(r) as τ(r) = τ1(r)a1 + τ2(r)a2, Eq. (1) results in
[24,37]

τi(ri ) = −ri. (3)

This means that scanning over the moiré unit cell corresponds
to scanning over all possible τ in the monolayer unit cell.

When the electronic structure of each layer is effectively
approximated by a single band model, the most important
effect of constructing a bilayer is interlayer tunneling, which
generically lifts the band degeneracy caused by layer dou-
bling. Specifically, τ dependence of the splitting (and the
shift of the average energy) of the target band gives important
information. For untwisted bilayers, energy splitting and shift
can be derived for each momentum k in the original Brillouin
zone, since the unit cell size is conserved. For later use, we
write this τ-dependent splitting and shift as 2�k(τ) and εk(τ),
respectively.

Generically, the position dependence of τ induces the po-
sition dependence of the interlayer distance, or corrugation
[39]. In the small (but not too small) twist angle limit, this
position dependence of the interlayer distance is expected to
be captured by the τ dependence of the interlayer distance
in the untwisted bilayers. Taking this approximation, in the
following, we first derive the τ-dependent interlayer distance
dz(τ) and use that information to investigate the electronic
properties. If the twist angle is too small, each layer can
experience in-plane distortions, but this is beyond our current
scope.

B. Effective models

As we have noted, we are going to build two complemen-
tary effective models for BC3, a tight-binding model and a
(k · p)-type continuum model. Let us start by introducing a
monolayer tight-binding model, which involves π electrons,
or pz orbitals of B and C atoms. Although we have two species
of the pz orbitals, from B or C, there is only one orbital per
site, allowing us to identify the site index and the orbital index.
Then, the Hamiltonian for the monolayer tight-binding model
is written as

HTB
mono =

∑
i j

ti jc
†
i c j, (4)
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where ci (c†
i ) is the annihilation (creation) operator for the ith

site. Since a unit cell contains eight sites (six C atoms and two
B atoms), this results in an eight-band model.

Assuming a very simple form of interlayer hoppings, we
can lift this monolayer tight-binding model to a bilayer tight-
binding model as

HTB =
∑
i jα

[ti jc
†
iαc jα + tinter(ri − r j )c

†
iαc jᾱ], (5)

where ri is the position of the ith site and α specifies the
layer (upper or lower) with ᾱ denoting the opposite layer of
α. Here, our simple assumption is that the interlayer hopping
only depends on the relative position between the two sites.
We even neglect the difference between the atom species B
and C, but later it turns out to be sufficient for our purpose.
Formally, Eq. (5) can be used for both the twisted and the
untwisted bilayers, but of course the position of each site is
different for the two cases, resulting in different periodicity.

For the (k · p)-type continuum model, we focus on the
conduction bottom at the Mi point. For the valley Mi, the
monolayer continuum Hamiltonian becomes

H (i)
mono(k) = ε0 + h̄2

2m‖

(
(k − κi ) · e‖

i

)2 + h̄2

2m⊥
(k · e⊥

i )2, (6)

where κi is the momentum for the Mi point and e‖,⊥
i are

unit vectors parallel and perpendicular to κi. Because of the
symmetry at the M points, the relevant mass tensor is fixed by
two parameters, m⊥ and m‖.

The continuum Hamiltonian for the untwisted bilayers for
the Mi valley can now be written as [38,40]

H (i)(k, τ ) =
(

H (i)
mono(k) + Uk(τ) Vk(τ)

(Vk(τ))† H (i)
mono(k) + Uk(τ)

)
, (7)

which is valid for k ∼ κi. Here, Vk(τ) represents the interlayer
tunneling, while Uk(τ) is contributed from the electrostatic
potential from the partner layer and the multiband effects
such as virtual hopping to the other bands. Both Vk(τ) and
Uk(τ) depend on k and τ. Since the energy eigenvalues of
Eq. (7) are

E (i)
± (k, τ ) = H (i)

mono(k, τ ) + Uk(τ) ± |Vk(τ)|, (8)

Vk(τ) and Uk(τ) can be related to the energy split 2�k(τ) and
shift εk(τ) as [37]

�κi (τ) = |Vκi (τ)|, εκi (τ) = ε0 + Uκi (τ). (9)

Lastly, the continuum Hamiltonian for the twisted bilayers
can be written as [2,5,7]

H (i) =
(

H (i)
+ (−i∇) + U (i)(r) V (i)(r)

(V (i)(r))† H (i)
− (−i∇) + U (i)(r)

)
,

(10)

where H (i)
± is H (i)

mono rotated by ±φ/2. In order to take account
of the spatial dependence of U (i)(r) and V (i)(r), k in H (i)

mono
is replaced by −i∇. The remaining task is to fix U (i)(r) and
V (i)(r). In the twisted bilayer, the large-scale moiré pattern
indicates that the Brillouin zone is folded into a small moiré
Brillouin zone, and if we further limit ourselves to a small en-
ergy range, it typically turns out that the target state is mostly

FIG. 2. Schematic illustrations of interference effects. As an ex-
ample, we think of the case where the in-plane momentum gives a
stripelike + and − phase pattern in the Bloch wave function (a).
When one of the layers is shifted in the lateral direction by half a
unit cell length (b), the closely packed chain of atoms has phase
alternation along the chain, canceling out interlayer tunneling due
to the quantum interference, but when the shift direction is vertical
(c), no strong cancellation of interlayer tunneling occurs.

contributed from a small region around a certain momentum
in the original Brillouin zone. In our case, Eq. (6) suggests that
κi is regarded as the “certain momentum.” Then, a possible
approximation is to set

U (i)(r) = Uκi (τ(r)), V (i)(r) = Vκi (τ(r)). (11)

Note that the position dependence is included through the
spatial dependence of τ under the twist.

Combining Eqs. (9) and (11), we can fix U (i)(r) by εκi (τ).
On the other hand, �κi (τ) can fix Vκi (τ) only up to the phase
ambiguity, and therefore, in practice, we derive an approxi-
mate Vκi (τ) using the tight-binding model. Specifically, using
the Bloch wave function ψκi (r) for the target band obtained in
the tight-binding model, we use [10,15,38,41–43]

Vκi (τ) = e−iκi·τ
∑

i j

ψ∗
κi

(ri )tinter(ri − r j − τ )ψκi (r j ), (12)

which corresponds to the interlayer tunneling calculated at the
lowest order in tinter(r).

Equation (12) tells us that the quantum interference associ-
ated with spatial structures of Bloch phase has a striking effect
on the tunneling amplitude [24,40]. Let us see this through a
schematic model in Fig. 2. This is a stack of two layers, and
we assume that each layer has in-plane momentum giving a
stripelike Bloch phase pattern [Fig. 2(a)]. Then, consider that
we introduce a half-unit-length shift between layers in the lat-
eral [Fig. 2(b)] and vertical [Fig. 2(c)] directions. In Figs. 2(b)
and 2(c), we see closely packed chains of atoms lying laterally
and vertically, respectively. In the case of the lateral shift
[Fig. 2(b)], each of the closely packed chains of atoms shows
phase alternation along the chain, leading to the suppressed
interlayer tunneling due to the quantum interference. On the
other hand, in the case of the vertical shift [Fig. 2(c)], the
closely packed chains of atoms do not show phase alternation
along the chains, indicating that no significant quantum inter-
ference is in effect. After applying the mapping between the
τ dependence and the r dependence in the moiré pattern, the
difference between the lateral and the vertical shifts generates
a quasi-1D pattern in the effective tunneling amplitude. This
is the mechanism behind the anisotropic band flattening in
twisted bilayer BC3 shown below.
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FIG. 3. Schematic illustration of the theoretical framework. The
gray (white) boxes are for the models with (without) moiré su-
perstructure. The blue boxes denote the quantities derived in the
numerical calculation. The red box shows the empirically given func-
tion where the required parameters are chosen to optimize �TB(τ ).
The labels ‘1’ to ‘9’ correspond to ‘procedure 1” to “procedure 9” in
the main text.

C. Theoretical and numerical scheme

Our scheme to fix the required parameters in each of the
effective models is summarized in Fig. 3. We start with ap-
plying the first-principles density functional theory (DFT) on
monolayer BC3 (“ab initio DFT” in Fig. 3). We first per-
form the lattice relaxation to obtain the crystalline parameters
for the monolayer. Then, we derive the maximally localized
(MaxLoc) Wannier functions to obtain the monolayer tight-
binding model (procedure 1 in Fig. 3). The effective mass
used in the continuum model can be derived from the band
structure obtained either in DFT or in the tight-binding model
(procedure 2 in Fig. 3).

For the bilayers, we start with deriving dz(τ) by DFT
(procedure 3 in Fig. 3; see Appendix B for details). Using
the obtained dz(τ) as an input, we calculate εκi (τ) and �κi (τ)
by DFT (procedure 4 in Fig. 3) as references for the follow-
ing analysis. A tight-binding model for the untwisted bilayer
(“bilayer tight-binding” in Fig. 3) requires in-plane hopping
parameters and reasonable tinter(r) (procedure 5 in Fig. 3),
and a reasonable choice is made by calculating εκi (τ) and
�κi (τ) within the tight-binding model [εTB

0 (τ) and �TB(τ)
in Fig. 3] and adjusting tinter(r) to have consistency between
�TB(τ) and �DFT(τ) (procedure 6 in Fig. 3). The adjusted
tinter(τ) is plugged into Eq. (12) to have Vκi (τ) (procedure 7 in
Fig. 3), and the (k · p)-type continuum model for the twisted
bilayer (“moiré bilayer k · p”) is obtained using the derived ef-
fective mass and Vκi (τ) (procedure 8 in Fig. 3). Alternatively,
the adjusted tinter(r) is transported to the tight-binding model
for twisted bilayers (“moiré bilayer tight-binding” in Fig. 3)
through Eq. (5) (procedure 9 in Fig. 3). We can cross-check
the results under moiré structures by comparing the moiré
bilayer tight-binding model and the moiré bilayer k · p model.

III. RESULTS

A. Monolayer

Let us start with the crystal structure analysis. The crystal
structure of BC3 [see Fig. 1(a)] is fixed by three parameters:
the in-plane lattice constant a0, the C-C distance dC-C, and the
B-C distance dB-C. They are obtained as a0 = 5.167 Å, dC-C =

FIG. 4. (a) Unit cells and Brillouin zones with (orange) and with-
out (cyan) a moiré superlattice for BC3. These are shown to see the
angle and directions, i.e., the actual sizes are very different for unit
cells and Brillouin zones with and without moiré superstructures.
(b) Band structure obtained with the first-principles method (gray
lines), and band structure for the monolayer tight-binding model
derived by the maximally localized Wannier function method (green
lines).

1.420 Å, and dB-C = 1.563 Å, respectively, consistent with
previous experimental [26] and theoretical studies [31,32,34–
36,44–46].

The electronic band structure obtained by DFT with the
above crystal parameters is shown as the gray lines in
Fig. 4(b). There is a band gap at the Fermi energy (indicated
as the horizontal dashed line), and the conduction bottom,
on which we are going to focus, is located at the M point
showing the electronlike parabolic dispersion. At the K point,
we find a Dirac cone above the Fermi energy inherited from
the pristine graphene. All of these features are consistent
with previous theoretical studies [30–32]. (Note that both the
Heyd-Scuseria-Ernzerhof functional [33,34,36] and the one-
shot GW approximation [35] give a larger band gap, but still
the band shapes are similar to the Perdew-Burke-Ernzerhof
generalized gradient approximation (PBE-GGA) results.) As
a technical note, we set the zero of energy at the energy of the
Dirac cone center for the monolayer throughout the paper.

Next, we build a tight-binding model with eight pz orbitals,
six on C atoms and two on B atoms, using the WANNIER90
package [47,48] (procedure 1 in Fig. 3; see Appendix C for
details). The band structure of the obtained monolayer tight-
binding model is shown by the green lines in Fig. 4(b). It
shows a good match to the DFT band structure near the Fermi
energy, including the structure around the conduction bottom
at the M point, which is of interest to us.

From the calculated band structure, the effective mass re-
quired for the continuum models can also be derived: m‖ and
m⊥ are obtained by estimating the curvature of the band at
the conduction bottom at the M point (procedure 2 in Fig. 3).
The results are m‖ = 1.36me and m⊥ = 0.15me, where me

is the bare electron mass, which is consistent with previous
work [35].

B. Untwisted bilayer

To build models for bilayers, we start with deriving the τ

dependence of the interlayer distance (procedure 3 in Fig. 3).
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FIG. 5. Band structures for untwisted bilayers with selected τ

obtained by the first-principles method. The horizontal dashed line
represents the original Fermi level. (a), (b), (c), (d), (e), and (f) corre-
spond to (τ1, τ2) = (0, 0), (1/2, 0), (2/3, 1/3), (1/3, 1/3), (0, 1/3),
and (0, 1/2), respectively.

For this purpose, we use DFT and employ the rigid-layer
approximation where the interlayer distance for each τ is
determined by minimizing the total energy while the crys-
talline parameters for each layer are frozen. Note that the
full lattice relaxation does not fit our purpose, since it au-
tomatically chooses stable (or metastable) τ, preventing the
scan over all possible τ. It turns out that dz(τ) is satisfactorily
approximated by a simple function

dz(τ) = c1+c2( cos τ1+ cos τ2+ cos(τ1 − τ2))

+ c3( cos(τ1 + τ2)+ cos(τ1 − 2τ2) + cos(2τ1 − τ2))

+ c4( cos(2τ1)+ cos(2τ2)+ cos(2τ1 − 2τ2)), (13)

with {c1, c2, c3, c4} = {3.361 Å, 0.025 Å, 0.077 Å, 0.015 Å}.
(See Appendix B for details.)

Using dz(τ) as the interlayer distance for each τ, we
inspect the τ dependence of the electronic band structure
focusing on how the interlayer tunneling modifies the band
structure. Figure 5 shows the band structures of monolayers
(the gray lines) and bilayers (the purple lines) for the selected
τ obtained within DFT. (For some τ, the bilayer band struc-
tures can be found in the literature [32,35].) The bands are
split and shifted in the bilayers with τ dependence. In our
analysis, the τ dependence of the split and the shift of the
conduction bottom at the M point is important. The split is ex-
tracted as �DFT

κi
(τ) = (E2(κi, τ ) − E1(κi, τ ))/2 while the shift

is extracted as εDFT
κi

(τ) = (E1(κi, τ ) + E2(κi, τ ))/2, where
E1(κi, τ ) and E2(κi, τ ) are the energies of the lowest and the
second lowest conduction band at the Mi point, respectively
(procedure 4 in Fig. 3). �DFT

κ1
(τ) and εDFT

κ1
(τ) for the M1

point are plotted in Figs. 6(a) and 6(b) by the purple dots.
For �DFT

κ1
(τ), we also show its contour plot on the τ space

in Fig. 6(c). Because of the interference between the Bloch
wave functions in the upper and the lower layers, there ap-
pears a characteristic quasi-one-dimensional dip structure in
�DFT

κ1
(τ). The direction of the quasi-1D dip depends on the

valley, i.e., �DFT
κi

(τ) for the M2 (M3) point is obtained by rotat-
ing �DFT

κ1
(τ) in Fig. 6(c) by 60◦ (120◦). This valley-dependent

quasi-1D structure plays a crucial role in the later discussions.

FIG. 6. (a) and (b) Interlayer-coupling-induced (a) gap �(τ )
and (b) mean energy shift ε0(τ). The results obtained by the
first-principles method (DFT) and by the tight-binding model with
empirical interlayer hopping (TB) are compared. We choose the
parameters in the empirical interlayer hopping to match �DFT(τ )
and �TB(τ ), and (a) shows that the choice is reasonable. εDFT

0 (τ )
and εTB

0 (τ ) are similar in shape, but with a bit different energy scale.
(c)–(e) Contour plots for (c) �DFT(τ ), (d) �TB(τ), and (e) |Vκ1 (τ )|.

For the bilayer tight-binding model, the intralayer hopping
ti j has already been derived, and the remaining task is to de-
termine the interlayer hopping tinter(r). In this paper, a simple
form,

tinter(r) = h0 exp

(
−2d0(rz − d0)

r2
0

)
exp

(
− r2

x + r2
y

r2
0

)
, (14)

is assumed where d0 = dz(0). We set r0 and h0 as 2.0 Å and
0.30 eV, respectively. Just as in the case of DFT, we derive the
split �TB

κi
(τ) and the shift εTB

κi
(τ) by the energies of the lowest

and the second lowest conduction band at the Mi point in the
tight-binding model. �TB

κ1
(τ) and εTB

κ1
(τ) for the M1 point are

plotted in Figs. 6(a) and 6(b) by the green dots. Also, Fig. 6(d)
shows the contour plot of �TB

κ1
(τ). As Figs. 6(a)–6(d) show,

�TB
κi

(τ) well compares with �DFT
κi

(τ), despite the simple form
of tinter(r). Since the parameters are chosen to have a good
match between �TB

κi
(τ) and �DFT

κi
(τ), we find some quantita-

tive difference for εκi (τ). However, the overall structures, or
the qualitative features, of the τ dependence are common to
εTB
κi

(τ) and εDFT
κi

(τ).
Once the interlayer hopping tinter(r) is fixed, it is possible

to have Vκi (τ) through Eq. (12). Figure 6(e) is the contour plot
of |Vκ1 (τ)| in the τ space, which shows a satisfactory match
to Fig. 6(d). The reason for the satisfactory but imperfect
matching is that Eq. (12) is derived at the lowest order in
tinter(r). The previous theory on symmetry-based constraints
on Vk(τ) [24,40] guarantees that Vκ1 (τ) vanishes at the points
marked by white crosses in Fig. 6(e).

C. Twisted bilayer

Using εTB
κi

(τ) and Vκi (τ) obtained in the previous section,
U (i)(r) and V (i)(r) in the continuum Hamiltonian (10) are
fixed through Eqs. (9) and (11). The energy band structure for
this continuum model can be calculated by the plane wave ex-
pansion method. The obtained band dispersions for φ = 7.34◦
and 5.09◦ are shown in Figs. 7(a) and 7(d), respectively. In the
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FIG. 7. Band structures for twisted bilayer BC3. The path on
which the band structures are drawn is shown as an inset in (a).
The twist angle is 7.34◦ for (a)–(c) and 5.09◦ for (d) and (e).
(a) and (d) are obtained with the bilayer k · p model. In (a) and
(d), the purple lines are from the original M1 point showing a sig-
nature of anisotropic band flattening, while the gray lines are from
the original M2 and M3 points. (b) and (e) are obtained with the moiré
tight-binding model, and (c) is from the large-scale DFT calculation
performed using the OPENMX package. (f) The Fermi surfaces of the
lowest energy band at half filling for the twist angle 7.34◦. As in the
case for the band structures, the purple lines are contributed from the
M1 valley, while the gray lines are contributed from the M2 and M3

valleys.

continuum model, each valley can be treated separately, and
the purple lines are from the M1 valley, while the gray lines
are contributed from the M2 and M3 valleys. Focusing on the
purple lines, the low energy bands are dispersive in the 1-2
or 3-4 direction, but flat in the 1-4 or 2-3 direction. That is,
we find valley-dependent anisotropic band flattening. Naming
the dispersive direction the easy direction (since the elec-
trons can move in this direction easily), the valley-dependent
anisotropic band flattening is rephrased as the valley depen-
dence of the easy direction. This valley-dependent quasi-1D
feature is also seen in the isoenergy contour (Fermi energy)
shown in Fig. 7(f). Considering the fact that V (i)(r) looks like
the 90◦ rotated image of Vκi (τ) due to the action of τ(r), the
1-2 and 3-4 direction corresponds to the direction in which
V (i)(r) only weakly vary, while the 1-4 and 2-3 direction cor-
responds to the direction in which V (i)(r) strongly vary. This
confirms the naive expectation that V (i)(r) act as a potential
for electrons.

Then, for each valley, the system is regarded as a set of 1D
channels aligned with the nanometer-scale spacing. Under the
magnetic field, this in principle can host novel phases such as
the fractional quantum Hall states discussed in the context of
the coupled wire construction, depending on the interchannel
interaction.

The electronic structure of the twisted bilayers can also be
analyzed using the moiré tight-binding model. The Hamilto-
nian is Eq. (5), with the position of the pz orbitals determined
taking account of the relative angle mismatch and the cor-
rugation dz(τ(r)). Figures 7(b) and 7(e) show the calculated
band structures for φ = 7.34◦ and 5.09◦, respectively. These
angles are chosen so that the periodicity of the microscopic

structure exactly matches the periodicity of the moiré pattern.
In the moiré tight-binding description, the contributions from
all three valleys, M1 to M3, come at once and are not strictly
separable. Comparing Figs. 7(a) and 7(b) [or Figs. 7(d) and
7(e)], we can see that some degeneracies that originated from
the decoupled valleys in the continuum model are lifted by
the intervalley coupling in the tight-binding model. However,
the band structures in the continuum model and the tight-
binding model share the qualitative features. We expect that
the intervalley coupling is rapidly killed in the small angle
limit, because it requires a large momentum transfer, while the
spatial dependence of the moiré pattern is relatively smooth.
As we have noted, Eq. (12) is an approximation for the inter-
layer tunneling evaluated only up to the first order in tinter(r),
and this is a possible source of the qualitative discrepancy
between the continuum model and the tight-binding model
other than the intervalley coupling.

In the case that the twist angle is relatively large, it is
possible to apply the first-principles method on the large moiré
unit cell. To handle the large moiré unit cell, here we em-
ploy the OPENMX package instead of the QUANTUM ESPRESSO

package. Figure 7(c) shows the band structure for φ = 7.34◦
obtained using the same atomic coordinates as its moiré bi-
layer tight-binding counterpart. Now, we can see that the
three approaches, the effective continuum model, the effective
tight-binding model, and the large-scale DFT give not exactly
the same, but consistent, band structures, which is remarkable
considering the simplicity of the assumed tinter(r).

It is worth noting that the twist angle being much larger
than the magic angle of graphene (∼1◦) is sufficient to induce
strong (anisotropic) band flattening here. Roughly speaking,
a moiré pattern sets the length scale L. Within the local ap-
proximation, the interlayer tunneling V (r), which essentially
works as a potential, is scale invariant. On the other hand, the
kinetic energy term scales as 1/L for the linear dispersion
case of graphene while it scales as 1/L2 for the parabolic
dispersion case here. This means that the potential term easily
gets dominant over the kinetic term at smaller L (i.e., larger
twist angle) for twisted bilayer BC3.

D. Valley selection

As the valley-dependent anisotropic band flattening is
promising for valleytronics applications, it is interesting to
manipulate the valley population by external perturbations.
Here, we show that linearly polarized light can induce valley
population imbalance.

For simplicity, we compute the optical conductivity of the
monolayer using the monolayer tight-binding model. The real
part of the optical conductivity is computed as

Re σμμ(ω) =
∑

k

(
ξ

μμ

k (ω) − ξ
μμ

k (0)
)
, (15)

with

ξ
μμ

k (ω) = −e2

ω

∑
αβ

∣∣ṽμ

k,αβ

∣∣2
( f (Ekα ) − f (Ekβ ))δ

(ω − (Ekα − Ekβ ))2 + δ2
, (16)

where ṽ
μ

k,αβ
is the μ component of the velocity operator in the

band diagonal basis and Ekα is the band energy. To see the
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FIG. 8. Momentum dependence of (a) �xx (ω, k) and
(b) �yy(ω, k) at h̄ω = 1.5 eV.

valley dependence, we focus on the integrand �μμ(ω, k) ≡
ξ

μμ

k (ω) − ξ
μμ

k (0). Figure 8 shows the k dependence of the ob-
tained �μμ(ω, k) for ω = 1.5 eV. Since we are now handling
the monolayer model, the Brillouin zone is the original one,
not the moiré Brillouin zone. Figures 8(a) and 8(b) are results
for the cases with the light polarized in the x and y directions,
respectively. The M2 valley is bright in Fig. 8(a), while the M1

and M3 valleys are bright in Fig. 8(b), which clearly indicates
the valley-dependent response. The symmetry analysis within
DFT reveals that the irreducible representations for the highest
energy valence band and the lowest energy conduction band
at the M point are B3g and B1u, respectively. This explains
the valley dependence in Fig. 8, since the function represen-
tations of B3g and B1u are yz and z, respectively. Note that the
DFT results indicate that the monolayer BC3 has an indirect
band gap with the valence top at the � point contributed by
the σ band, while the σ electrons are not included in our
tight-binding model. Another note is that the standard DFT
underestimates the gap size as we have noted and ω, to induce
the valley imbalance, has to be adjusted to the experimental
gap size.

E. Strongly correlated regime

The purple lines in Figs. 7(a) and 7(d) show that the lowest
energy band in the effective continuum model is isolated from
the other band. Here, we try to have an effective descrip-
tion of this specific band focusing on the strongly correlated
regime. Due to the threefold valley degeneracy, we will end up
with a three-orbital Hubbard model, where each orbital shows
quasi-1D features associated with the valley-dependent easy
direction. A similar model appeared in a previous study of
generic twisted bilayers [24], leading to an interesting variant
of the Kugel-Khomskii model in the strongly correlated limit.
In the following, we derive the Kugel-Khomskii-like model
for twisted bilayer BC3.

Let us start with deriving a Hubbard model, which requires
basis orbitals as well as hopping integrals and interaction
parameters between them. For the basis orbitals and hoppings,
we derive Wannier functions for the lowest energy band in
the effective continuum model for each valley. This Wannier
function should have a length scale of the moiré pattern rather
than the scale of the atomic orbitals. The obtained Wannier
functions (see Appendix D for the derivation) for the lowest
energy bands in the M1, M2, and M3 valleys at φ = 5.09◦
are shown in Figs. 9(a)–9(c), where the sum of the charge
densities on both layers is plotted. They are well localized in
the region where |Vκi (τ(r))| is large, and are elongated in the
corresponding easy directions.

FIG. 9. (a)–(c) Wannier functions for the lowest band in the
bilayer k · p model at θ = 5.09◦. (a), (b), and (c) are for the valleys
from the original M1, M2, and M3 points, respectively. The overlaid
gray lines denote the contours of |V (r)|. (d) Definitions of the se-
lected hopping integrals in the tight-binding model for the lowest
band in the bilayer k · p model. The case of the M1 valley is shown
as an example. The background color map represents the contours
of |V (r)|. (e) Angle dependence of the selected hopping integrals.
(f) Nested network structure for the t‖1-only model. Three networks
shown by the solid, dashed, and dotted lines are decoupled with
each other in terms of the hopping. If we further truncate the off-site
Hubbard interactions, we can independently treat the three networks.
(g) Schematic description of the ingredients in the minimal Hub-
bard model for one of the three networks. There are three orbitals,
originally from the three valleys, and they hop in three different
directions.

The major hoppings for the orbital from the M1 valley are
illustrated in Fig. 9(d). (The same thing for M2 or M3 can be
obtained by rotating the picture appropriately.) As it should
be, the major hoppings are along the easy direction. The major
hoppings as functions of the twist angle are shown in Fig. 9(e).
The smallness of |t⊥1| signals the quasi-1D feature. Also, t‖2

is significantly smaller than t‖1, and thus keeping only t‖1 is a
reasonable approximation. In this approximation, each orbital
forms a 1D chain only with the nearest-neighbor hopping,
where the hopping direction depends on the orbitals. Note that
if we turn off t⊥1 (and the other hoppings not along the easy
direction), the system is decoupled into three nested triangular
networks as is illustrated by the solid, dashed, and dotted lines
in Fig. 9(f).

Now, let us move on to the electron-electron interaction
terms, focusing on the on-site Coulomb repulsion between
the Wannier orbitals for simplicity. The on-site interaction still
preserves the decoupled nature of the three nested networks.
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FIG. 10. Valley-dependent spin-spin coupling. When the same
orbitals are aligned in the corresponding dispersive direction, it
generates standard (super)exchange coupling (a). Otherwise, no spin
exchange is generated (b).

Because of the elongated shapes of the Wannier functions
[Figs. 9(a)–9(c)], the distinction between the intraorbital in-
teraction U and the interorbital interaction U ′ is important. A
rough estimation of U and U ′ is given by [15]

Uαα′ = 1

(2π )2

∫
d2qρα,qVqρα′,−q, (17)

with U = Uαα and U ′ = Uαα′ (α 	= α′). Here, Vq is the Fourier
components of the (screened) Coulomb interaction, and ραq is
the sum of the charge densities in the upper and the lower
layer for the orbital α.

Since the three nested networks are decoupled, we pick
one of them from now on. Then, the effective Hubbard model
becomes

H = t‖1

∑
rσ

3∑
μ=1

c†
r+eμ,μσ cr,μσ + H.c. + U

∑
r

3∑
μ=1

nr,μ↑nr,μ↓

+ U ′ ∑
r,σσ ′

∑
μ<μ′

nr,μσ nr,μ′σ ′ , (18)

where the orbital components and the definition of eμ are
schematically illustrated in Fig. 9(g). Expanding in terms of
t‖1/U and t‖1/U ′ to the lowest order (strongly correlated limit)
at 1/6 filling, this Hamiltonian reduces to a variant of the
Kugel-Khomskii model [49–51]

H = J
∑

r

3∑
μ=1

(
Sr+eμ

· Sr − 1

4

)
τ̃

(μ)
r+eμ

τ̃ (μ)
r

− J ′ ∑
r

∑
μ 	=μ′

(
τ̃

(μ′ )
r+eμ

τ̃ (μ)
r + τ̃

(μ′ )
r−eμ

τ̃ (μ)
r

)
, (19)

with J = 4t2
‖1/U , J ′ = t2

‖1/U ′, and τ̃ (μ) being a 3 × 3 matrix
in the orbital space defined as (τ̃ (μ) )i j = δi jδiμ. In going from
Eq. (18) to Eq. (19), it is important to note that the exchange is
restricted by the orbital character, because an orbital only hops
in its corresponding easy direction. For instance, when two
orbitals are aligned as in Fig. 10(a), we expect textbook an-
tiferromagnetic exchange interaction between the local spins
[52]. On the other hand, when two orbitals are aligned as in
Fig. 10(b), no spin exchange occurs. Namely, the up spin at the
left site can hop to the right site, but the down spin at the right
site cannot hop to the left site due to the orbital-dependent
1D nature. In the case of the original Kugel-Khomskii model
[49–51], the orbital shapes account for the switching of the
spin exchange, while here, the valley-dependent anisotropy
accounts for the switching, showing the uniqueness of BC3.

In Eq. (19), there is no term causing the orbital flip, which
means that the orbital degrees of freedom are regarded as
classical, allowing us to derive some eigenstates analytically.
One example is a state with the ferro-orbital order (FOO),

FIG. 11. (a)–(c) Selected eigenstates of Kugel-Khomskii-like
model. (a) Ferro-orbital order (FOO). (b) Fully antiferro-orbital order
(FAOO). (c) Dimer covering (DC). (d) Estimation of the Hubbard
parameters U and U ′ by the Wannier function, compared with the
bandwidth W = 4t‖1.

where all the sites are in the same orbital state [Fig. 11(a)].
The Hamiltonian (19) indicates that the Heisenberg interac-
tion (J term) works only in the easy direction of the selected
orbital. Then, the FOO state is equivalent to the collection of
the decoupled Heisenberg chains, and the lowest energy with
FOO is obtained by the ground-state energy of the Heisenberg
chain as [53]

EFOO
per site ∼ −0.69J. (20)

Note that this state is nematic, since Fig. 11(a) preserves the
lattice translation symmetry but breaks the rotation symmetry.
Another example is a state with the fully antiferro-orbital
order (FAOO) depicted in Fig. 11(b). With this configuration,
there are no active J bonds, and the energy is obtained from
counting the active J ′ bonds, resulting in

EFAOO
per site = −2J ′. (21)

This state has a macroscopic number of degeneracy. Namely,
any M1 and M2 orbitals in the state of Fig. 11(b) can be
replaced by M3 orbitals without energy cost, as far as the in-
troduced M3 orbitals induce no ferro-orbital coupling. The last
example is a state with the dimer covering (DC) [Fig. 11(c)].
In this configuration, all the sites are paired to dimers by the J
term, and the lowest energy with DC order is obtained by the
energy of the spin singlet, resulting in

EDC
per site = −J/2 − J ′. (22)

This state also has macroscopic degeneracy, which can be
checked by inserting M3 dimers in Fig. 11(c). For both
the FAOO and DC states, the macroscopic degeneracy will
be lifted by quantum fluctuation induced by, for instance, the
ring exchange that is derived as a higher-order correction to
Eq. (19), and this will possibly lead to exotic quantum phases.

From the definitions of J and J ′, we have EDC
per site < EFOO

per site

for U > U ′. We also have EDC
per site < EFAOO

per site for U < 2U ′,
while EDC

per site > EFAOO
per site for U > 2U ′, i.e., there should be

phase transitions controlled by U ′/U .
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Now, let us estimate U and U ′ by Eq. (17) with special
attention to the ratio between U and 2U ′. For Vq, we use

Vq = 2πk0e2

ε̄q
tanh(qdgate), (23)

where k0 = 1/(4πε0) and ε̄ = ε/ε0. This is for the case
that the Coulomb interaction is screened by metallic gates
above and below the system located dgate off from the system
[54–56]. Note that dgate sets a length scale to the Coulomb
interaction. In reality, we have to take care of all possible
sources of screening, but here, for simplicity, we stick to
Eq. (23) and treat ε as an adjustable parameter.

The Hubbard parameter U and 2U ′ computed with ε̄ = 10
and dgate = 5 nm are plotted as a function of the twist angle
in Fig. 11(d), together with the estimated bandwidth W =
4|t‖1|. U and U ′ decrease much more slowly than W as the
twist angle gets smaller, giving rise to a strongly correlated
regime. Notably, there is a crossing between U and 2U ′. As
Figs. 9(a)–9(c) show, the Wannier functions are elongated
in the corresponding easy directions. In evaluating U ′, the
two Wannier functions are misaligned, and thus U ′ is more
sensitive to the length scale change than U , which explains
the angle dependence of 2U ′/U .

IV. DISCUSSION

To summarize, twisted bilayer BC3 is predicted to show
valley-dependent anisotropic band flattening. This is an
almost ideal realization of the notion that the quantum inter-
ference between Bloch wave functions in two layers leads to
interesting band engineering in twisted bilayers. The valley-
dependent anisotropic band flattening should be promising for
valleytronics, and it is shown that the linearly polarized light
induces valley imbalance.

Our analysis itself gives an important perspective on the
theoretical and computational methodology for moiré sys-
tems. Namely, the current analysis serves as a working
example of the cycle described in Fig. 3, where the intuitive
understanding is available and the computational burden is
avoided by the local approximation.

We also find a three-orbital Kugel-Khomskii-like model
in the strongly correlated regime. The threefold degeneracy,
originating from the suppressed intervalley scattering, is dif-
ficult to realize in conventional 2D materials, since there is
no three-dimensional irreducible representation in 2D space
groups (without the spin-orbit coupling), which highlights the
uniqueness of BC3. Indeed, some interesting eigenstates are
derived, pointing towards exotic quantum phases. In a generic
perspective, it is worth noting that not only U/W , but also
U ′/U can be controlled by the twist angle. This opens up a
rich avenue to explore interesting quantum phases in multi-
valley moiré systems.

Regarding a quasi-1D state in twisted bilayers, there is
an experimental report of a quasi-1D state in twisted bilayer
tungsten ditelluride [57], and there is a theoretical prediction
in twisted bilayer GeSe [58]. As we have just stated, the
uniqueness of BC3 over those former examples is a manifes-
tation of the quantum interference and the Kugel-Khomskii
model in the strongly correlated regime.

We would like to close the paper with a comment on
the experimental realization. The monolayer BC3 itself has
already been synthesized [26]. Yet it can be a big challenge
to apply the van der Waals stacking technique to this specific
system. However, witnessing the rapid advances in the field,
it will be realized in the near future.
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APPENDIX A: TECHNICAL NOTES
ON THE FIRST-PRINCIPLES CALCULATIONS

The first-principles calculations are performed mostly us-
ing the QUANTUM ESPRESSO package [59,60] with the required
pseudopotentials from PSLIBRARY [61,62]. Only on one oc-
casion, where we compare the band structures with moiré
patterns obtained in the effective models and in the first-
principles calculations, we employ the OPENMX package
[63–66] in which the order-N calculations are implemented.
Whenever the crystal structures are relevant [the lattice relax-
ation and the derivation of dz(τ)], rev-vdW-DF2 is used as
a functional [67,68] to take into account the van der Waals
interaction. In other cases, including the cases where the
OPENMX package is employed, we use the PBE-GGA func-
tional [69] for simplicity. In the crystal structure optimization,
the atomic coordinates in the unit cell and the in-plane lattice
constant are relaxed until the computed forces on each atom
and the in-plane cell pressure go below 1.0 × 10−5 Ry/bohr
and 5.0 × 10−2 kbar, respectively.

APPENDIX B: DERIVATION OF THE
INTERLAYER DISTANCE

As we have noted, dz(τ) is derived by maximizing the
layer-layer binding energy with the crystalline parameters for
each layer frozen. In practice, we set the period in the z direc-
tion to 40 Å and use the total energy for layer spacing dz = 20
Å at τ = 0 as a reference energy to extract binding energy.
(Note that τ dependence is negligible at dz = 20 Å.) Then,
we plot the total energy as a function of the layer spacing for
each τ and find minima by fitting to [70]

Etotal(dz ) = α exp ( − β(dz − dz0)) − γ (dz0/dz )4.5. (B1)

The fitting results for the selected τ are shown in Fig. 12(a),
and the contour plot of the obtained dz(τ) is shown in
Fig. 12(b) with the label “DFT.” The exponent of the last
term in Eq. (B1) could be adjusted to have better fittings,
but Fig. 12(a) suggests that the long-tail behavior has a
limited effect on the determination of the energy minimum.
It turns out that dz(τ) is satisfactory approximated by a
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FIG. 12. (a) Interlayer distance dependence of the binding en-
ergy for selected τ = τ1a1 + τ2a2. The optimized layer distance for
each τ dz(τ ) is fixed by the binding energy minimum. (b) dz(τ )
obtained in the first-principles calculation (DFT) and corresponding
smooth fit. The cyan hexagon denotes the unit cell.

simple function,

dz(τ) = c1+c2( cos τ1+ cos τ2+ cos(τ1 − τ2))

+c3( cos(τ1+τ2)+ cos(τ1 − 2τ2)+ cos(2τ1 − τ2))

+c4( cos(2τ1)+ cos(2τ2)+ cos(2τ1 − 2τ2)), (B2)

with {c1, c2, c3, c4} = {3.361 Å, 0.025 Å, 0.077 Å, 0.015 Å},
whose contour plot is shown in Fig. 12(b) with the label
“smooth fit.” We can see that this function nicely compares
with the DFT result.

APPENDIX C: CONSTRUCTING WANNIER FUNCTIONS
FOR A MONOLAYER

The Wannier functions for the bands near the Fermi energy
in monolayer BC3 are derived using the WANNIER90 package
[48]. Specifically, we build a tight-binding model for π elec-
trons, and for this purpose, we put eight pz-like orbitals on the
six C sites and the two B sites in the unit cell as an initial guess
for the Wannier functions. We set the inner energy window,
which selects an energy range where the DFT band structure is
faithfully reproduced by the tight-binding model, from −2.07
to 1.63 eV.

APPENDIX D: CONSTRUCTING MOIRÉ SCALE
WANNIER FUNCTIONS TO ACCESS THE STRONGLY

CORRELATED REGIME

The Wannier function for the lowest energy band in the
continuum model for the twisted bilayer BC3 is derived by
projecting a candidate wave function to the subspace spanned
by the lowest energy band, as is done in preparing an ini-
tial guess in the well-known algorithm for the maximally
localized Wannier function [47]. In our case, since the low-
est energy band is well separated from the other bands, this
“initial guess” is already well localized if we choose a proper
candidate wave function, and we will use it as a Wannier
function. In practice, a Gaussian function whose decay length
is |Li|/10 placed at the unit cell center is used as a candidate
function for both the upper and the lower layer but with the
opposite sign.
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