
PHYSICAL REVIEW B 107, 085126 (2023)

Fluctuating intertwined stripes in the strange metal regime of the Hubbard model
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Strongly correlated electron systems host a variety of poorly understood correlations in their high-temperature
normal state. Unlike ordered phases defined by order parameters, regions of the normal state are often defined
through unconventional properties such as strange metallic transport or spectroscopic pseudogaps. Charac-
terizing the microscopic correlations in the normal state is necessary to elucidate mechanisms that lead to
these properties and their connection to ground-state orders. Here we establish the presence of intertwined
charge and spin stripes in the strange metal normal state of the Hubbard model using determinant quantum
Monte Carlo calculations. The charge and spin density waves constituting the stripes are fluctuating and short
ranged; yet they obey a mutual commensurability relation and remain microscopically interlocked, as evidenced
through measurements of three-point spin-spin-hole correlation functions. Our findings demonstrate the ability
of many-body numerical simulations to unravel the microscopic correlations that define quantum states of matter.
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The concept of intertwined orders is commonly used to
characterize states within the pseudogap regime of the cuprate
phase diagram [1,2]. A well-known example is that of stripe
order, unidirectional spin and charge density waves that are
most prominent at low temperatures around p = 1/8 hole
doping [3–6]. In La-based cuprates [7,8] and in simulations
of the Hubbard model [5], spin and charge stripes are inter-
locked. Regions of high hole concentration are aligned with
antiferromagnetic phase reversals. Stripe order is well known
to interact closely with superconductivity, as evidenced by 1/8
anomalies in cuprate experiments [9] and by nearly degenerate
ground-state energies in Hubbard model calculations [5,10].
The close interplay of spin and charge orders and their com-
petition with superconductivity are believed to be hallmarks
of the pseudogap regime.

The majority of recent progress in solving the Hubbard
model has targeted ground-state properties [11–17]. Studies
at finite temperature have found fluctuating spin and charge
stripes [6,18,19], but their interplay, doping dependence, and
placement in the broader phase diagram have not been ex-
plored thoroughly. Our calculations of the Hubbard model
demonstrate interlocked spin and charge stripes at tempera-
tures above the onset of the pseudogap, in the strange metal
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regime characterized by T -linear resistivity [20,21]. The wide
range of doping where we find stripes corroborates a grow-
ing number of experimental studies finding charge stripes in
optimally doped and overdoped cuprates [22–30].

Our results are based on unbiased determinant quantum
Monte Carlo (DQMC) simulations [31,32] conducted with
very large sample sizes. Typical simulations involve ∼1010

measurements, allowing for small stochastic errors (∼10−6)
despite the presence of a fermion sign problem. The principal
observables we compute to investigate stripes in the Hubbard
model are the charge and spin susceptibilities at zero fre-
quency, defined as

χc(r) =
∫ β

0
dτ 〈nr(τ )n0〉 − 〈nr〉〈n0〉, (1)

χs(r) =
∫ β

0
dτ

〈
mz

r(τ )mz
0

〉
, (2)

where nr = nr↑ + nr↓ and mz
r = 1

2 (nr↑ − nr↓) are the charge
and spin densities on site r. These quantities can be computed
directly with DQMC, without the need for analytic continua-
tion, so that our results are numerically exact.

Figure 1(a) displays the spin and charge susceptibilities as
functions of r for a 12 × 4 rectangular cluster with periodic
boundary conditions at doping p = 1/8. The spin suscepti-
bility is plotted with a staggering factor [χ∗

s (r) = χs(r) ×
(−1)rx+ry ] to highlight deviations from commensurate anti-
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(a)

(b)

FIG. 1. Stripes in spin and charge susceptibilities. (a) and
(b) Spin susceptibility χs(r) and charge susceptibility χc(r) at zero
frequency in the Hubbard model. The spin susceptibility is plotted
with a staggering factor for clarity [χ∗

s (r) = χs(r) × (−1)rx+ry ]. Pa-
rameters are U/t = 6, t ′/t = −0.25, T/t ≈ 0.22, p = 0.125. Cluster
size is (a) 12 × 4 and (b) 8 × 8. + and − signs indicate correlations
that are nonzero by at least two standard errors. Green dashed lines in
(a) denote the antiphase domain walls of spin stripes. The diamond
patterns of modulation in (b) indicate a superposition of stripes along
x and y directions.

ferromagnetism. In both the spin and charge susceptibilities,
periodic modulations are visible along the long direction of
the cluster, indicating the presence of short-ranged fluctuating
stripes. The charge modulation has a shorter correlation length
and a period that is approximately half of that of the spin
modulation, consistent with a stripe pattern where antiphase
domain walls in the spin density coincide with regions of
increased hole density [33,34]. The pattern of modulation in
the spin susceptibility is identical to that in the equal-time
(τ = 0) spin correlation function (Figs. S1 and S2), analyzed
previously in Ref. [6]. By contrast, the stripe modulations
in the charge susceptibility are not visible in the equal-time
charge correlation function [19], at the temperatures attainable
in our simulations. This distinction is related to the fact that
high-energy incoherent excitations contaminate the equal-
time correlation function more than the static susceptibility,
as emphasized in Ref. [3].

We have checked that the finite-size cluster does not
have a notable impact on the properties of the stripe pattern
(Figs. S1–S3). We focus on 12 × 4 cluster results in Figs. 1(a)
and 2 as the larger average fermion sign associated with
smaller cluster size enables us to more clearly resolve modula-
tions in the charge susceptibility. We consider an 8 × 8 cluster
in Fig. 1(b). Here, modulations are again visible in both the
spin and charge susceptibilities, with negative regions along

the diagonal directions. This pattern is precisely expected
from a superposition of horizontal and vertical stripes. Our
analysis indicates that the stripe modulations seen for the
12 × 4 cluster are not artifacts of limited system size. The
doping dependence of the spin and charge susceptibilities is
shown in Fig. 2. In Figs. 2(a)–2(c), we plot the suscepti-
bilities for hole doping concentrations of p = 0.1, 0.15, and
0.2. Modulations are present, indicating fluctuating spin and
charge stripes for all three doping levels. The period of the
modulation decreases with increased hole doping. This is
also clearly reflected in momentum-space susceptibilities. In
Fig. 2(d), the spin susceptibility splits from a single peak at
(π, π ) [i.e., (0.5, 0.5) in reciprocal lattice units] to two in-
commensurate peaks with increased hole doping. The data are
well fit with periodic Lorentzian functions (see Supplemen-
tal Material Sec. C [35]). Similarly, the charge susceptibility
[Fig. 2(e)] splits away from q = (0, 0) as hole doping in-
creases and rises uniformly owing to the increased metallicity
of the doped system. For hole doping 0.1 � p � 0.2 we ob-
tain excellent fits to χc(q) with periodic Lorentzian functions
plus a constant background. In Fig. S5(b), we check that
the charge susceptibilities are indeed peaked close to (0,0)
or (π, 0), rather than near (π, π ) as in the noninteracting
model. This indicates that the fluctuating stripes we observe
are unrelated to Fermi surface effects such as nesting and
cannot be captured by weak-coupling approaches such as the
random phase approximation (RPA).

From our fits to χs(q) and χc(q), we extract the spin and
charge incommensurabilities, defined as the separation of the
incommensurate peaks from the commensurate wave vectors
[(0,0) for charge and (π, π ) for spin]. Figure 2(f) plots the spin
and charge incommensurabilities against doping. The spin
incommensurability is very close to half the charge incom-
mensurability through the range of doping 0.1 � p � 0.2,
indicating that the stripes are mutually commensurate. Both
increase monotonically with hole doping, with a stripe filling
in between half filled (dashed line) and fully filled (dotted
line).

The mutual commensurability of the spin and charge
stripes strongly suggests, but does not prove, that doped holes
reside near antiphase domain walls. It is known that modifying
the chemical potential on a column can pin the location of
antiphase domain walls [36], and conversely that including
a staggered magnetic field on a column can induce a static
charge stripe modulation [19]. However, whether spin and
charge stripes are pinned to each other while still fluctuating
is unknown. To resolve this question and probe the relation
between fluctuating spin and charge stripes, we consider the
3-point spin-spin-hole correlation function

〈
mz

rmz
0hr′

〉
, (3)

where hr′ = cr′↑c†
r′↑cr′↓c†

r′↓ ensures the presence of a hole on
site r′. In Fig. 3(a) we first plot 〈mz

rmz
0〉〈hr′ 〉 to demonstrate

how the 3-point correlation function would appear if spin
and charge were entirely decoupled. By translation symme-
try, 〈hr′ 〉 is a constant, and Fig. 3(a) thus simply shows the
spin correlation function. Figure 3(b) shows the full 3-point
correlation function, with the axes and letter “h” indicating
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Doping dependence of spin and charge stripes. (a), (b), and (c) Staggered spin susceptibilities and charge susceptibilities for
dopings 0.1, 0.15, and 0.2, respectively, on a 12 × 4 cluster with parameters U/t = 6, t ′/t = −0.25, T/t ≈ 0.22. (d) and (e) Momentum-space
susceptibilities for spin and charge, respectively, for various doping concentrations. Solid lines indicate fits to periodic Lorentzian functions
(see Supplemental Material Sec. C [35]). No stripes are present at p = 0.05, and the Lorentzian fit to χc(q) is poor and not shown. (f) Spin
and charge incommensurabilities as a function of doping, obtained from fits to the momentum-space susceptibilities. Dashed and dotted lines
indicate q = p and q = p/2, corresponding to the spin incommensurabilities of half-filled and filled stripes, respectively. CDW, charge density
wave; SDW, spin density wave; rlu, reciprocal lattice units.

(a)

(b)

FIG. 3. Holes pin antiphase domain walls. (a) Uncorrelated value
〈mz

rmz
0〉〈hr′ 〉 demonstrating expectations if spin and charge were de-

coupled. As in Figs. 1 and 2, a staggering factor (−1)rx+ry is included
for clarity. (b) Full spin-spin-hole correlation function 〈mz

rmz
0hr′ 〉

indicating spin correlations in the presence of a hole. The location
of the hole on r′ is indicated by the letter “h.” The antiphase domain
walls (green dashed lines) move as r′ is varied. Parameters are
U/t = 6, t ′/t = −0.25, p = 0.125, T/t = 0.22. Additional plots for
other locations of the hole may be found in Fig. S8.

the coordinates of r and r′, respectively. In these 3-point
correlation functions, it is clear that while the periodicity
of spin stripes is unaffected, there is a strong tendency for
the antiphase domain walls to lie adjacent to the hole. This
establishes definitively that although both the spin and charge
stripes seen in Figs. 1 and 2 are short ranged and fluctu-
ating, they remain microscopically interlocked. This close
interplay between fluctuating spin and charge stripes in our
finite-temperature calculations indicates that the notion of in-
tertwined orders is not unique to the pseudogap regime of the
phase diagram.

In the data presented thus far, we have focused on results
at a temperature T/t ≈ 0.22, near the lowest accessible in
our simulations due to the fermion sign problem. In Fig. 4,
we discuss the evolution of the strength of the fluctuating
stripes with temperature and doping. We consider the value
of the spin and charge susceptibilities at the nearest vertical
neighbor, χs(r = ŷ) and χc(r = ŷ), as simple estimates of the
magnitude of the fluctuating stripes (see Supplemental Mate-
rial Sec. A 5 [35]). The doping and temperature dependence
of χc,s(r = ŷ) is plotted in Fig. 4(a). For doping concentra-
tions or temperatures where χc(r = ŷ) < 0, the patterns in
the charge susceptibility do not resemble stripes (Fig. S6).
We observe that the spin stripes weaken monotonically with
increasing doping and increasing temperature, but the charge
stripes display a nonmonotonic doping dependence with a
maximum at p = 1/8. This peak is highly reminiscent of 1/8
anomalies in cuprate superconductors, where charge stripes
have also been observed to have maximal strength at p = 1/8,
with a concomitant suppression of superconductivity. The
broad peak at p = 1/8 is also reminiscent of a similar peak
seen in a q = 0 nematic susceptibility reported previously for
the Hubbard model [37].
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(a) (b)

FIG. 4. Doping and temperature dependence of stripe intensity. (a) Staggered spin [χ∗
s (r = ŷ)] and charge [χc(r = ŷ)] susceptibilities

at the y neighbor, as a function of doping for different temperatures. Lines are guides to the eye. (b) Schematic temperature-doping phase
diagram drawn using data from (a). The yellow-green background corresponds to χ∗

s (ŷ), indicating local antiferromagnetic (AFM) correlations
throughout the temperature doping ranges. Darker colors indicate larger magnitude. The blue region indicates positive χc(ŷ), and the color
intensity corresponds to the value of the susceptibility. Cubic spline interpolation is applied to data points in the temperature-doping grid to
obtain smoothly varying color intensity. The dashed gray line indicates the approximate crossover temperatures of the pseudogap regime, T ∗,
estimated by locating the temperatures that maximize the spin (Pauli) susceptibilities or Knight shift for various dopings (Fig. S7).

Both spin and charge stripes grow in intensity as tempera-
ture decreases. While there is no sharp definition for the onset
temperature of fluctuating stripes, given their short-ranged
nature, we generally find that modulations indicative of charge
stripes have their onset at lower temperatures than spin stripes.
Our findings are summarized in a temperature-doping “phase
diagram” in Fig. 4(b), where the color intensity corresponds to
the magnitude of χs(r = ŷ) in the yellow-green background,
on top of which a blue region around p = 1/8 corresponding
to χc(r = ŷ) is overlaid. In general, we find that incommensu-
rate spin correlations indicative of spin stripes become visible
below roughly T/t ≈ 0.6. Charge stripes become visible at
lower temperatures, for instance, T/t ≈ 0.5 at p = 1/8 (see
Supplemental Material Sec. D [35] and Refs. [6,19,38]).

We emphasize that the clear and robust signatures of in-
terlocked spin and charge stripes occur at temperatures well
above the onset of the pseudogap. The pseudogap crossover
temperature T ∗ is estimated by the peak in the Knight shift
χs(q = 0, ω = 0) as a function of temperature (see Supple-
mental Material Sec. E [35]). T ∗ for different doping is plotted
in Fig. 4(b). As T ∗ decreases with increased hole doping, we
cannot explore the behavior of fluctuating stripes below the
pseudogap onset temperature within unbiased DQMC simu-
lations. Nevertheless, we find strong signatures of fluctuating
spin and charge stripes over a significant range of hole doping,
thus demonstrating that the pseudogap is not a prerequisite
for intertwined orders. In fact, the temperatures and dop-
ing levels at which our simulations are conducted lie in the
strange metal regime of the phase diagram, as supported by
previous DQMC calculations of the Hubbard model finding
large, T -linear resistivity [21]. Our findings motivate further
studies and analysis of theories connecting fluctuating stripes
to strange metallic transport [39–42].

The presence of stripes in the strange metal regime is
further substantiated by a number of recent x-ray scattering
experiments finding scattering from fluctuating charge density

waves in optimally and overdoped cuprate compounds at tem-
peratures approaching room temperature [22–29]. A recent
detailed analysis of La1.8−xEu0.2SrxCuO4 (Eu-LSCO) [29]
showed a nearly temperature-independent integrated intensity
of the charge scattering peak over range of doping 0.1 � p �
0.2, indicating that the amplitude of the charge order has its
onset above experimentally accessible temperatures and that
stripes persist well into the strange metal. Interestingly, the
same study suggests decoupling of spin and charge stripes
at elevated temperatures, with a charge ordering wave vector
that decreases with increasing doping, highly reminiscent of
the behavior of Y- and Bi-based cuprates. These differences
are not captured in the Hubbard model and point toward the
importance of effects beyond the local Hubbard interaction,
including electron-phonon coupling, long-range Coulomb in-
teractions, and effects of the oxygen orbitals that are not fully
contained in a single-band model. Nevertheless, the concor-
dance of our numerical results on the simplified Hubbard
model and recent experimental works [22–30] finding stripes
beyond the pseudogap regime highlights the importance of
fluctuating stripes over a larger region of the phase diagram
than previously considered. Their existence over wide ranges
of doping and temperature is evidence of their relevance to all
electronic properties of cuprates. Our findings call for further
investigations of intertwined order in other strongly correlated
materials and strange metals.

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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