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The one- and three-band Hubbard models which describe the electronic structure of cuprates indicate very
different values of effective electronic parameters, such as the on-site Coulomb energy and the hybridization
strength. In contrast, a comparison of electronic parameters of several cuprates with corresponding values from
spectroscopy and scattering experiments indicates similar values in the three-band and cluster model calculations
used to simulate experimental results. The Heisenberg exchange coupling J obtained by a downfolding method
in terms of the three-band parameters is used to carry out an optimization analysis consistent with J from
neutron scattering experiments for a series of cuprates. In addition, the effective one-band parameters Ũ
and t̃ are described using the three-band parameters, thus revealing the hidden equivalence of the one- and
three-band models. The ground-state singlet weights obtained from an exact diagonalization elucidates the role of
Zhang-Rice singlets in the equivalence. The results provide a consistent method to connect electronic parameters
obtained from spectroscopy and the three-band model with values of J obtained from scattering experiments,
band dispersion measurements, and the effective one-band Hubbard model.
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I. INTRODUCTION

The mechanism of high-temperature superconductivity ex-
hibited by the copper-oxide families of layered compounds
remains one of the most intriguing and challenging topics
in condensed matter physics [1], nearly 36 years after its
discovery [2]. The discovery of copper-oxide-based supercon-
ductivity led to unprecedented theoretical and experimental
efforts to understand the phenomenon. While there have been
innumerable models put forth to understand the mechanism of
high-temperature superconductivity, it still remains an open
problem. On the other hand, nearly all the models agree
that superconductivity in copper-oxide-based materials is in-
timately associated with quasi-two-dimensionality (2D) and
strong electron-electron correlations [1]. This is based on the
fact that the CuO2 planes are the main source of the elec-
tronic states which undergo the superconducting transition.
At a very broad level, the possible mechanisms discussed
in the literature span over various models including the ef-
fective one-band Hubbard model [3,4], resonating valence
bond theory [5], the three-band Hubbard model [6,7], the
t-J model [8], spin-fluctuation-driven pairing [9], marginal
Fermi liquid [10], pair density wave model [11], and electron-
phonon coupling-induced pairing which goes beyond the BCS
model [12].

The simplest parent compound La2CuO4 is a good an-
tiferromagnetic insulator and, upon hole-doping, undergoes
a transition to a dome-shaped superconducting phase with

an optimal Tc ∼ 38 K [2]. While the long-range order is
lost, La2−xSrxCuO4, as well as several other copper oxide
superconductors, continues to exhibit antiferromagnetic cor-
relations in the form of resonant modes and paramagnons in
the superconducting phase [13–15]. In fact, along with super-
conductivity, all the families of copper-oxide superconductors
also show spin- and charge-ordering phenomena [16–25]
which suggests a complex coexistence of electron-phonon
coupling, spin fluctuations, and electron-electron correlation
effects [26,27].

The basic starting point to understand cuprate properties
is often considered the 2D Hubbard model involving strong
electron-electron correlations with strong Cu-O hybridiza-
tion leading to the Zhang-Rice singlet (ZRS) ground state
(GS) [4]. It is well known and well accepted that the parent
copper-oxide materials are best described as charge-transfer
insulators in the Zaanen-Sawatzky-Allen scheme [28], where
the copper on-site Coulomb energy Ud � �, the charge-
transfer energy, and the lowest energy excitations involve the
strongly hybridized Cu 3d and O 2p ZRS states. Further, hole
doping in the parent compound results in oxygen hole carriers
retaining the ZRS character of the lowest energy excitations
[29–31].

A very important issue involves how to quantify electron-
electron correlations in any transition metal compound, in
general, and the cuprates, in particular [32,33]. Depending on
the theoretical model, the values of electron-electron correla-
tion strength can be very different for the same material. A
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comparison of the effective one-band Hubbard model [3,4]
consisting of the single antibonding band made up of the
Cu dx2-y2 and O px, py orbitals, and the effective three-band
Hubbard model [6,7] which describes the cuprate electronic
structure in terms of the Cu-O bonding, nonbonding, and
antibonding bands show significantly different values of on-
site Coulomb energy in the Cu d states. In the following,
to distinguish the one- and three-band parameters, we use
the notation Ud/Up and tpd for the Cu/O on-site Coulomb
energies and hopping in the three-band model, while Ũ and
t̃ are used for the one-band Hubbard model, respectively.
Thus, for example, while early studies of the three-band model
estimated Ud ∼ 7–10 eV and Up ∼ 3–6 eV [34–36], typical
values of Ũ ∼ 3–4 eV are known for the effective one-band
model [37,38].

It is noted that, while several theoretical studies have in-
cluded the oxygen on-site Coulomb energy Up, there are
also some studies which have neglected Up. For example,
early theory [7] and cluster model calculations of core-level
photoemission and optical absorption [39–42] could explain
experimental results fairly well but in the absence of Up.
In a study using the coherent potential approximation, an
effective one-band model was obtained from the three-band
model including the intersite Coulomb energy Upd treated in
the Hartree-Fock approximation, but with Up = 0 [43,44]. The
authors showed that the effective Ũ increased on increasing
Upd , and they could obtain a metal-insulator phase diagram as
a function of Ud and �. In a three-band Hubbard model using
the constrained-path Monte Carlo method, the binding energy
of a pair of holes and the symmetry of superconducting pair-
ing correlation functions was investigated but in the absence
of Up [45]. Cluster perturbation theory applied to calculate
spectral functions of cuprates also did not include Up but could
show spin-charge separation in the one-dimensional (1D)
Hubbard model, as well as momentum-dependent spectral-
weight in the 2D Hubbard model [46]. Cluster dynamical
mean field theory approximation was used to investigate the
three-band Hubbard model in the absence of Up and showed
that the cuprates can be described as magnetically correlated
Mott insulators [47]. More recently, quantum Monte Carlo
calculations demonstrated dynamical stripe correlations in the
three-band Hubbard model without Up and explained experi-
mental observations such as the hourglass magnetic dispersion
[48]. The three-band Hubbard model using the auxiliary-field
quantum Monte Carlo method, but without Up, was used to
show the importance of � and a quantum phase transition
from an antiferromagnetic insulator to paramagnetic metal for
� < 3 eV [49].

However, electron spectroscopy studies in conjunction
with cluster model calculations or using the Cini-Sawatzky
method [50,51] have estimated Ud ∼ 6–8 eV [39,40,52] and
Up ∼ 5–6 eV [53–55]. Thus, Ud and Up are comparable and
needed for describing the electronic states derived from Cu-
O planes, particularly in the charge transfer limit, as Up

gets close to or larger than �. Further, an ab initio method
with dynamical screening [37] applied to the one-band model
for La2CuO4 estimated a static Ũ (w = 0) ∼ 3.65 eV, while
for the three-band model, it gave Ud (w = 0) ∼ 7.0 eV and
Up(w = 0) ∼ 4.64 eV. Another very recent multiscale ab
initio method [38] applied to the one-band model for La2CuO4

estimated Ũ ∼ 5.0 eV, while for the three-band model, it es-
timated Ud ∼ 9.6 eV and Up ∼ 6.1 eV. It is noted that the
models have also estimated the intersite Coulomb energies,
as well as the nearest-neighbor (NN) and next-NN hopping (t
and t ′) which also show differences depending on the method
[34–38].

Very interestingly, Hubbard-type cluster models employ-
ing dx2-y2 , px, and py levels have been extensively used for
calculating spectra in high-energy spectroscopies like core-
level photoemission (PES) and x-ray absorption, and resonant
inelastic x-ray scattering (RIXS) structure factors, and the
obtained electronic parameters [53–71] are quite close to
the theoretical estimates from the effective three-band model
[34–36,38,72] (see Tables I and II). It is noted that the effec-
tive three-band model parameters were also used to calculate
the dynamical spin structure factor of Bi2201 measured by
RIXS [65]. On the other hand, analysis of neutron scattering
measurements of magnon dispersions [73] and angle-resolved
PES (ARPES) band dispersions [74,75] of parent cuprates
have employed the extended one-band Hubbard model or the
extended t − J model to study the NN exchange interaction
and correlation effects, and they obtained electronic parameter
values close to the values obtained from the effective one-band
theoretical models.

For example, it was shown that neutron scattering of
La2CuO4 provided a dominant NN hopping t = 0.33 eV and
an effective U/t = 8.8 with U = 2.9 eV but also showed
that, in addition to the NN exchange J = 138 meV, it was
important to include ring exchange Jc = 38 meV, while
J ′ = J ′′ = 2 meV were small [73]. Similarly, for Sr2CuO2Cl2,
the t − t ′ − t ′′ − J model showed t = 0.35 eV, while t ′ =
0.12 eV, and t ′′ = 0.08 eV, and with a J = 0.14 eV [75], it
implied an effective Ũ/t = 10 with Ũ = 3.5 eV. Thus, in
these cases, the results suggest that the NN hopping t and U
can be considered the t̃ and Ũ of the one-band model. For
CuO, a recent study showed that a linear spin-wave model
for a Heisenberg antiferromagnet provided a good description
of the neutron scattering results [76]. The relevant exchange
constants could be accurately determined and showed that the
dominant exchange interaction J = 91 meV, which coupled
antiferromagnetically along the [101̄] chain direction, while
the NN interchain interactions were very weak (Jac = 3.9 meV
and Jb = 0.39 meV) and coupled ferromagnetically [76].

Given the differences in electronic parameters between the
theoretical one-band vs the three-band models and the cor-
responding experimental high-energy spectroscopies vs the
low-energy magnon and band dispersion measurements, we
felt it important to address a possible connection between
them. In this paper, we have found an equivalence by using the
NN Heisenberg exchange interaction J obtained from neutron
scattering and RIXS experiments [59–65,73,76] as a bridge
to connect electronic parameters known from experiment
(high-energy spectroscopy, RIXS, and neutron scattering) and
theoretical estimates obtained from the one- and three-band
Hubbard models. The results show that the three-band Hub-
bard model parameters can be used to describe J in terms of
the well-known one-band Hubbard model form of J = 4t̃2/Ũ
with renormalized parameters Ũ and t̃ .

We now summarize our main results. We calculate J , the
strength of the Heisenberg coupling between Cu moments in
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TABLE I. Electronic parameters (Ud , tpd , �, and Up) for cuprates from the three-band Hubbard model (theory) and from cluster model
calculations (spectroscopy and RIXS). The table also shows two optimized parameter sets (�1, Up1 and tpd2, �2) with their cost functions f1

and f2, respectively. J is the NN Heisenberg exchange deduced from scattering experiments. See text for details.

Optimization-1 Optimization-2

Compound Ud tpd � Up �1 Up1 J [Ref.] tpd2 �2

[Ref.] (±0.5 eV) (±0.2 eV) (±1.0 eV) (±0.5 eV) (eV) (eV) f1 (±5 meV) (eV) (eV) f2

Theory
La2CuO4 [34] 9.4 1.5 3.5 4.7 5.7 4.9 5.09 140 [73] 1.1 3.7 0.96
La2CuO4 [35] 10.5 1.3 3.6 4.0 4.5 4.1 1.01 140 [73] 1.2 3.7 0.4
La2CuO4 [36] 8.8 1.3 3.5 6.0 4.5 6.1 0.98 140 [73] 1.2 3.7 0.38
La2CuO4 [38] 9.61 1.37 3.7 6.1 4.6 6.2 0.79 140 [73] 1.2 3.9 0.36
Hg1201 [38] 8.84 1.26 2.42 5.3 4.4 5.4 3.78 135 [64] 0.9 2.6 0.75
Bi2212 [72] 8.5 1.13 3.2 4.1 3.5 4.1 0.06 161 [64] 1.1 3.5 0.06

Spectroscopy
CuO [54,69] 7.7 1.55 2.5 5 7.6 5.4 25.9 91 [76]a 0.8 2.6 1.72
Sr2CuO3 [66,67] 8.8 1.45 2.5 4.4 4.4 4.6 3.62 241 [59] 1.1 2.8 0.96
Sr2CuO2Cl2 [68] 8.8 1.5 3.5 4.4 6.0 4.6 6.45 130 [74,75] 1.1 3.7 1.04
La2CuO4 [69,70] 7.0 1.5 3.5 6.0 6.0 6.2 6.49 140 [73] 1.13 3.7 1.0
Nd2CuO4 [71] 8.0 1.1 3.0 4.1 3.6 4.1 0.41 133 [60] 1.0 3.2 0.21
Pr2CuO4 [71] 8.0 1.1 3.0 4.1 3.8 4.2 0.62 121 [60] 1.0 3.2 0.26
YBCO [53,55] 7.0 1.2 1.5 5.0 4.4 5.2 8.2 125 [61] 0.7 1.7 0.99
Bi2212 [58] 7.7 1.5 3.5 6.0 5.6 6.1 4.3 161 [64] 1.2 3.7 0.88

RIXS
Bi2201 [65] 10.2 1.35 3.9 5.9 4.5 5.9 0.34 153 [64,65] 1.3 4.1 0.22

aFor CuO, the dominant exchange interaction J which couples antiferromagnetically is the one along the [101̄] chain direction and considered
here, while the NN spins exhibit a weak ferromagnetic coupling.

a Cu2O cluster, using the downfolding method discussed by
Koch [33]. For several compounds, neutron scattering data
for J and spectroscopic data for Ud , Up, �, and tpd are

available. Directly using the spectroscopic parameter values
in the downfolding expression for J leads to deviations from
the experimental J values. We therefore use two estimation

TABLE II. Renormalized electronic parameters Ũ and t̃ for cuprates in the one-band Hubbard model along with the GS singlet weights c21

(between the two Cu sites) and c13 (between the Cu and O site). Optimization-1 uses Ud , tpd , �1, and Up1; and Optimization-2 uses Ud , tpd2,
�2, and Up from Table I to obtain corresponding Ũ and t̃ .

Optimization-1 Optimization-2

Compound Ũ t̃ J Ũ t̃
[Ref.] (eV) (eV) Ũ/t̃ (meV) (eV) (eV) Ũ/t̃ c21 c13

Theory
La2CuO4 [34] 4.38 0.39 11.18 140 3.68 0.36 10.26 0.65 0.2
La2CuO4 [35] 4.03 0.37 10.73 140 3.7 0.36 10.28 0.65 0.2
La2CuO4 [36] 4.05 0.38 10.76 140 3.81 0.37 10.42 0.64 0.2
La2CuO4 [38] 4.27 0.41 10.43 140 4.05 0.4 10.16 0.64 0.2
Hg1201 [38] 3.93 0.36 10.79 135 3.3 0.33 9.89 0.63 0.21
Bi2212 [72] 3.35 0.37 9.13 161 3.34 0.37 9.11 0.64 0.2

Spectroscopy
CuO [54,69] 4.39 0.32 13.87 91 3.09 0.27 11.62 0.64 0.2
Sr2CuO3 [66,67] 3.79 0.48 7.94 241 3.17 0.44 7.25 0.62 0.23
Sr2CuO2Cl2 [68] 4.28 0.37 11.47 130 3.53 0.34 10.42 0.65 0.19
La2CuO4 [69,70] 3.96 0.37 10.64 140 3.42 0.34 9.89 0.64 0.2
Nd2CuO4 [71] 3.33 0.33 10.01 133 3.17 0.32 9.75 0.64 0.2
Pr2CuO4 [71] 3.38 0.32 10.58 121 3.16 0.31 10.23 0.64 0.2
YBCO [53,55] 3.49 0.33 10.56 125 2.61 0.29 9.14 0.62 0.23
Bi2212 [58] 4.07 0.4 10.05 161 3.59 0.38 9.44 0.64 0.2

RIXS
Bi2201 [65] 4.31 0.41 10.61 153 4.18 0.4 10.45 0.65 0.2
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procedures, referred to as Optimization-1 and Optimization-2
in the following, to modify a subset (different in the two
procedures) of the spectroscopic data, so that there is good
agreement with experimental J values using the procedure
described in Sec. II. We identify effective parameters t̃ and
Ũ so that the downfolding expression for J becomes equal
to 4t̃2/Ũ . The estimated values of t̃ and Ũ are found to be
consistently smaller than tpd and Ud in all cases but lead
to a larger Ũ/t̃ in the one-band case compared with Ud/tpd

of the three-band case, in good agreement with theoretical
estimates reported in the literature. The results indicate that
stronger effective correlations, arising from a combination
of Ud , Up, �, and tpd are hidden in the effective one-band
Hubbard model. In this paper, we provide a consistent method
to connect electronic parameters obtained from spectroscopy
and the three-band model with effective parameters obtained
from neutron scattering, ARPES measurements, and the one-
band Hubbard model.

II. CALCULATIONS

We consider a Cu2O cluster with site labels i = 1, 2 [for
Cu(1) and Cu(2) atoms] and i = 3 (for the O atom). The
cluster Hamiltonian is

Ĥ = �

2
(n3 − n1 − n2) − tpd

∑
iσ

(d†
iσ pσ + H.c.)

+Ud (n1↑n1↓ + n2↑n2↓) + Upn3↑n3↓, (1)

where nd
iσ = d†

iσ diσ (i = 1, 2), n3σ = p†
σ pσ , and ni = ni↑ +

ni↓. Here, d†
iσ creates a hole with a z component of spin

σ = ± 1
2 in the Cu d orbital at site i (= 1, 2), and p†

σ creates
a hole with a z component of spin σ = ± 1

2 in the O p orbital
at the site located in between the two Cu sites. Here, � is the
charge-transfer energy; the parameters Up and Ud are on-site
Coulomb energies at the O and Cu sites, respectively; and
finally, tpd is the strength of hopping between neighboring O
and Cu sites.

In this paper, we consider a filling fraction corresponding
to undoped cuprates, in which the outermost p orbital on the O
site is filled with two electrons (i.e., empty in the hole picture),
and the outermost d orbital on the Cu site has one electron
(i.e., one hole), in the absence of hopping. For our cluster
with three atoms, this corresponds to a total occupancy of four
electrons or two holes. The two holes can be selected in three
ways: both with σ = − 1

2 (the ferromagnetic down case), both
with σ = 1

2 (the ferromagnetic up case), and finally, one hole
with σ = 1

2 and another with σ = − 1
2 (the antiferromagnetic

case).
We will consider only the antiferromagnetic case hence-

forth. In this case, there are nine basis states |i, j〉, i, j =
1, 2, 3. In state |i, j〉, i and j are the Cu (i, j = 1, 2) or
O (i, j = 3) sites with up and down holes, respectively. In
the basis {|1, 2〉, |2, 1〉, |1, 3〉, |3, 1〉, |2, 3〉, |3, 2〉, |1, 1〉,
|2, 2〉, |3, 3〉}, the Hamiltonian in Eq. (1) becomes a 9 × 9
matrix:

H =

⎡
⎢⎣

H00 H01 H02

H10 H11 H12

H20 H21 H22

⎤
⎥⎦, (2)

in which the blocks are

H00 = −�

[
1 0

0 1

]
, H01 =

[
tpd 0 0 −tpd

0 tpd −tpd 0

]
,

H02 = O2×3, H11 = O4×4,

H12 =

⎡
⎢⎢⎢⎣

tpd 0 tpd

−tpd 0 −tpd

0 tpd tpd

0 −tpd −tpd

⎤
⎥⎥⎥⎦,

H22 =

⎡
⎢⎣

Ud − � 0 0

0 Ud − � 0

0 0 Up + �

⎤
⎥⎦. (3)

In the above, Om×n denotes an m × n matrix of zeros. We cal-
culate the Heisenberg antiferromagnetic coupling J between
the Cu(1) and Cu(2) spins based on the downfolding fourth-
order perturbation method described by Koch [33] and Zurek
[77]. Accordingly, the effective Hamiltonian is

H̃ = H00 + H01{ε − [H11 + H12(ε − H22)−1H21]−1}−1.

≈ H00 + H01(ε − H11)−1H10 + H01(ε − H11)−1

× H12(ε − H22)−1H21(ε − H11)−1H10, (4)

where we have used the approximation (A + B)−1 ≈ A−1(1 −
BA−1). We now take ε = −� and perform the matrix products
above. The result is

H̃ ≈ −2t2
pd

�

[
1 0
0 1

]
− J

2

[
1 −1

−1 1

]
, (5)

where the Heisenberg coupling is

J = 4
t4
pd

�2

[
1

Ud
+ 1

� + Up/2

]
. (6)

The result we have obtained for J using the downfolding
approximation is the same as that reported in earlier studies
[32,78,79] using a fourth-order perturbation theory. If we now
define t̃ and Ũ using

t̃ = t2
pd

�
,

1

Ũ
= 1

Ud
+ 1

� + Up/2
, (7)

then J = 4t̃2/Ũ . This is the expression for J we would get if
we used a one-band Hubbard model with a hopping strength
t̃ and an on-site repulsion Ũ � t̃ , using second-order per-
turbation theory. In this sense, we consider Ũ and t̃ as the
parameters of an effective one-band Hubbard model corre-
sponding to the model in Eq. (1).

We find that using the spectroscopic values on the right-
hand side and the experimental J values on the left-hand side
of Eq. (6) does not satisfy the equation with sufficient accu-
racy. We therefore modify, in an optimal manner described
below, a subset of the spectroscopic parameter values so that
the agreement is good.

We now describe two such simple optimization procedures.
We define the parameter R = Ũ/t̃ to obtain the paramet-
ric forms t̃ = RJ/4, Ũ = R2J/4 for the effective parameters.
These are the expressions that we use below for t̃, Ũ .
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TABLE III. Examples of one-band model electronic parameters
estimated independently from magnon dispersion in neutron scatter-
ing, band dispersion in ARPES, and from ab initio theory.

Compound Ũ t̃
[Ref.] (eV) (eV) Ũ/t̃ Method

La2CuO4 [79] 2.9 0.33 8.8 Neutron scattering
Sr2CuO2Cl2 [73,80] 3.5 0.35 10.0 ARPES
La2CuO4 [38] 5.0 0.48 10.4 Ab initio theory
Hg1201 [38] 4.4 0.46 9.5 Ab initio theory

In the Optimization-1 procedure, we modify (�, Up).
We solve the relations in Eq. (7) to obtain �1(R) = t2

pd/t̃

and Up1(R)/2 = UdŨ/(Ud − Ũ ) − �1(R). We then minimize
a cost function f1(R) = [�1(R) − �]2 + [Up1(R) − Up]2 with
respect to R to obtain the minimum R�, using the spectroscopic
values for Ud , Up, �, and tpd and neutron scattering values
for J . This estimates �1(R�), Up1(R�), Ũ (R�), and t̃ (R�).

In the Optimization-2 procedure, we modify (�, tpd ). We
solve the relations in Eq. (7) to obtain tpd2(R)2 = �2(R)t̃
and �2(R) = UdŨ/(Ud − Ũ ) − Up/2. We then minimize a
cost function f2(R) = [�2(R) − �]2 + |[tpd2(R)2 − t2

pd ]| with
respect to R to obtain the minimum R�, using the spectroscopic
values for Ud , Up, �, and tpd and neutron scattering values
for J . This estimates �2(R�), tpd2(R�), Ũ (R�), and t̃ (R�).

III. RESULTS AND DISCUSSION

The results are summarized in Tables I and II for a variety
of CuO-based materials. Table I presents our estimates of the
theoretical and spectroscopic three-band model parameters,
while Table II presents our estimates of effective one-band
parameters. Both tables contain results of the two optimization
procedures that we discussed above.

In Table I, columns 5–7 present results of the Optimization-
1 procedure: These are values of �1,Up1, and f1. Columns
9–11 present results of the Optimization-2 procedure: These
are values of tpd2,�2, and f2. We can see from the cost func-
tion values that Optimization-2 is better than Optimization-1;
this is also reflected in the greater closeness of (tpd2,�2) es-
timates to measured values than that of (�1,Up1) estimates to
measured values. Considering that J depends on t4

pd in Eq. (6),
it can be seen that a smaller spread in tpd across compounds
provides a better description of parameter values; further,
since � and tpd are intimately related through the first relation
in Eq. (7), it makes sense to optimize with respect to these two
parameters as is done in Optimization-2. This has the result
of reducing the spread in estimated tpd2 values compared
with reported spectroscopic tpd values. This also improves the
estimates of � compared with �1 in Optimization-1. For these
reasons, we can understand that Optimization-2 is better than
not only Optimization-1 but also other possible optimization
choices, namely, (�,Ud ), (tpd ,Up), and (tpd ,Ud ). We there-
fore do not present the results of these latter procedures.

Since R = Ũ/t̃ ∼ 10 in most cases (see columns 4 and 8
in Table II), we can see that it makes sense to treat Ũ , t̃
as effective one-band parameters, as is known from earlier
work (Table III). We observe that R ∼ 10 not only in cases

where spectroscopic three-band parameter values are reported
but also for theoretical as well as RIXS three-band parameter
values (see Table II).

Secondly, Ũ is roughly half of Ud in almost all cases. This
shows that the effective model is not a simple Cu d-band
model, but possibly a more hybrid one involving Cu d and
O (px, py) orbitals. To understand this better, we have looked
at the nature of the GS obtained by exactly diagonalizing
the cluster Hamiltonian in Eq. (1) for each compound in
Table I using our Optimization-2 estimates of the three-band
parameters. The GS we obtain, |G〉 = ∑

i j ci j |i, j〉, always has
the property c12 = −c21, c13 = −c31 = c23 = −c32, c11 = c22

by symmetry, which shows that it is a singlet of Cu and O
orbitals. We can thus completely characterize the GS with the
two distinct singlet weights c21 and c13 and the two distinct
hole double-occupancy weights c11 and c33. Since our focus
is primarily on the singlet nature of |G〉, we present c21 and
c13 in Table II (see columns 9 and 10). The singlet weights
of the Cu-Cu and Cu-O sectors confirm that the GS is a ZRS.
The effective interaction Ũ is thus not between purely Cu d
holes but represents the hybrid ZR singlets and is therefore
significantly smaller than Ud . However, it must also be noted
from Tables I and II that Ũ/t̃ 	 10, satisfying the strong
correlation condition in the effective one-band model. In
Table III, we list a few examples of one-band model electronic
parameters estimated independently, from magnon dispersion
in neutron scattering, band dispersion in ARPES, and from ab
initio theory. It is clear that the values of Ũ/t̃ in all the cases
are close to the values in Table II and validate our analysis.

Finally, in Figs. 1(a)–1(d), we present plots of various |ci j |2
as a function of tpd , for Up = 1, 3, and 5 eV; we have fixed the
values Ud = 8 eV and � = 3.3 eV (=average � of values
obtained by Optimization-2 shown in Table I) in these plots.
Figure 1(a) shows that the pure Cu(1)-Cu(2) singlet weight
2|c12|2 ∼ 1 obtained for tpd = 0 systematically reduces in
weight on increasing tpd . Simultaneously, the total Cu(1)-O(3)
singlet weight 4|c13|2 increases systematically on increasing
tpd , indicating the role of Cu-O hybridization in forming the
ZRS state for the cuprates. Thus, the O p orbital plays an
increasingly important role on increasing tpd to ∼1 eV, typical
of the cuprates. Further, the on-site double occupancy weights
|cii|2, i = 1 − 3, are quite small [Figs. 1(c) and 1(d)]. How-
ever, on increasing Up from 1 to 5 eV, while there is hardly
any change in the total double occupancy weight 2|c11|2 on
the Cu sites, the double occupancy weight |c33|2 on the O site
gets suppressed to nearly half its value for tpd > 1 eV. This
behavior of the O site double occupancy is closely related
to the reduction of J by Up according to Eq. (6). Thus, Up

plays an important role in tuning the value of J , which is
considered one of the most important parameters to achieve
high-temperature superconductivity exhibited by the family of
cuprates [1,59–65,73,81–84].

IV. CONCLUDING REMARKS

In this paper, we have presented a data analysis of spec-
troscopic parameters and neutron scattering parameters for a
variety of cuprates based on a theoretical relationship between
the parameters of a three-band model and effective one-band
Heisenberg antiferromagnetic coupling, using a cluster model
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FIG. 1. Plots of various calculated total weights |ci j |2 as a func-
tion of tpd , for Ud = 8 eV, � = 3.3 eV, and Up = 1, 3, and 5 eV.
(a) Total Cu(1)-Cu(2) singlet weight 2|c12|2. (b) Total Cu(1)-O(3)
singlet weight 4|c13|2. (c) and (d) On-site double occupancy weights
|2c11|2 [total for the Cu(1) and Cu(2) sites] and |c33|2 for the O(3)
site.

calculation. We have also performed an exact diagonaliza-
tion of the cluster Hamiltonian to understand the nature of
the GS.

Our analysis shows Ũ < Ud always. In addition to agreeing
with estimates of Ũ from the one-band model applied to

neutron scattering or ARPES experiments, this inequality is
a direct consequence of Eq. (7).

Here, Up is significant in magnitude, both in measurements
and in our estimates, and is not small compared with Ud .
While Up has been neglected in some studies on cuprates, we
believe it is as important as Ud . Further, the second relation in
Eq. (7) shows that the effective interaction Ũ is enhanced by
Up and �.

The GS singlet weights from our exact diagonalization
show the importance of O moments and ZRS in the effective
description. We also observe that the singlet weights change
very little across the family of compounds, despite a variation
in the three-band spectroscopic parameters that are used to
calculate them. This holds for the ratio Ũ/t̃ as well.

Here, Ũ/t̃ ∼ 10 in all cases, pointing to the effective one-
band model being strongly correlated.

As to the spectroscopic values of the three-band parame-
ters, it is generally believed that � and tpd measurements are
less reliable than those of Ud and Up. Our estimation proce-
dure Optimization-2 attempts to offer a reasonable description
of the spectroscopic and neutron scattering data by reducing
the spread in the values of � and tpd across the family of
cuprates.

In conclusion, we have performed a perturbative and ex-
act diagonalization study of a model of a Cu2O cluster that
connects electronic parameters obtained from spectroscopy
and the three-band model with values of J obtained from
scattering, band dispersion measurements, and the effective
one-band Hubbard model.
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