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Complex Berry phase and imperfect non-Hermitian phase transitions
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In many classical and quantum systems described by an effective non-Hermitian Hamiltonian, spectral phase
transitions, from an entirely real-energy spectrum to a complex spectrum, can be observed as a non-Hermitian
parameter in the system is increased above a critical value. A paradigmatic example is provided by systems
possessing parity-time (PT ) symmetry, where the energy spectrum remains entirely real in the unbroken PT
phase while a transition to complex energies is observed in the broken PT phase. Such spectral phase transitions
are universally sharp. However, when the system is slowly and periodically cycled, the phase transition can
become smooth, i.e., imperfect, owing to the complex Berry phase associated to the cyclic adiabatic evolution
of the system. This remarkable phenomenon is illustrated by considering the spectral phase transition of the
Wannier-Stark ladders in a PT -symmetric class of two-band non-Hermitian lattices subjected to an external dc
field, revealing that a nonvanishing imaginary part of the Zak phase—the Berry phase picked up by a Bloch
eigenstate evolving across the entire Brillouin zone—is responsible for imperfect spectral phase transitions.
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I. INTRODUCTION

The geometric or Berry phase [1–4], a concept which was
systematized and popularized in the 1980s by Berry [1], has
permeated through all branches of physics with applications
in diverse fields ranging from atomic and molecular physics
[5–7] to condensed-matter physics [8–10], classical optics
[11–13], high-energy and particle physics [14–16], gravity,
and cosmology [17]. When a quantum or classical system
undergoes a cyclic evolution governed by a change of param-
eters, besides the dynamical phase it acquires an additional
phase term, the Berry phase, which depends only on the
geometry of the path and not on how the cycle is run. In
condensed-matter physics, the geometric phase manifests it-
self in many phenomena, such as the quantum Hall effect,
electric polarization, orbital magnetism, and exchange statis-
tics [4,9,10]. In a crystal, the application of an electric field
changes the quasimomentum of the electronic wave function
over the entire Brillouin zone, and the accumulated geometric
phase is known as the Zak phase [18]. In one-dimensional
(1D) lattices, the bulk topological properties of the Bloch
bands are characterized by the quantized Zak phase [19–25],
which can serve as a topological number.

Several exciting phenomena that are attracting great inter-
est in modern condensed-matter physics and beyond, such as
the non-Hermitian skin effect, modified bulk-boundary cor-
respondence, exceptional points, nontrivial spectral topology,
phase transitions, etc. [26–30], appear in non-Hermitian mod-
els, i.e., in models where the dynamics is described by an
effective non-Hermitian Hamiltonian [31–33] which accounts
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for the energy/particle exchange with external reservoirs.
A remarkable property of certain classes of non-Hermitian
Hamiltonians is to display an entirely real-energy spectrum in
spite of non-Hermiticity [34–44]. Among such Hamiltonians,
great attention has been devoted to those displaying parity-
time (PT ) symmetry [34–36], a concept that has become very
popular in the past decade and has found important applica-
tions in photonics and beyond [45–51]. For given parity P
and time-reversal T operators, a Hamiltonian H is said to
be PT symmetric if the commutator [H,PT ] vanishes, i.e.,
HPT = PT H. However, since the operator PT is not linear,
PT symmetry itself does not necessarily imply that the H
and PT operators share the same set of eigenfunctions. This
means that while the underlying Hamiltonian H possesses
PT symmetry, i.e., PT H = HPT , the corresponding eigen-
functions |E〉 of H can (or cannot) display the same symmetry.
When some eigenfunctions of H break the PT symmetry, i.e.,
PT |E〉 and |E〉 are distinct states, we have a typical scenario
of spontaneous symmetry breaking [36]. Spontaneous PT -
symmetry breaking corresponds to a spectral phase transition,
from an entirely real-energy spectrum in the unbroken PT
phase to a complex energy spectrum in the spontaneously
broken PT phase. When a control parameter in the system
is varied above a critical value, spontaneous PT -symmetry
breaking is usually observed and, in the broken PT phase, en-
ergies appear in complex conjugate pairs. This readily follows
from the antilinear nature of the T operator: if |E〉 is an eigen-
function of H with eigenenergy E , i.e., H|E〉 = E |E〉, then
HPT |E〉 = PT H|E〉 = PT E |E〉 = E∗PT |E〉. This means
that PT |E〉 is an eigenfunction of H with eigenenergy E∗.
When the symmetry is not spontaneously broken, |E〉 and
PT |E〉 are the same eigenfunction, which necessarily implies
E = E∗: in the unbroken PT phase, the energy spectrum
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is entirely real. On the other hand, when the symmetry is
spontaneously broken, |E〉 is not necessarily an eigenfunc-
tion of the PT operator and thus the eigenfunctions |E〉 and
PT |E〉, with nondegenerate eigenenergies E and E∗, are lin-
early independent: in this case, the energy spectrum becomes
complex and formed by complex conjugate pairs. The spon-
taneous symmetry-breaking phase transition is ubiquitously
sharp and the symmetry-breaking point corresponds to the
appearance of non-Hermitian degeneracies, i.e., exceptional
points [51–53] or spectral singularities [54–56], at the critical
point.

The concept of the geometric phase can be generalized
to non-Hermitian systems, providing a geometrical descrip-
tion of the quantum evolution of non-Hermitian systems
under a cyclic variation of the parameters [57–72]. Com-
pared to Hermitian systems, different forms of Berry phases
have been introduced. Here we will use the Berry phase
from the biorthogonal basis of the non-Hermitian Hamilto-
nian, which is thus rather generally complex. An interesting
property of adiabatic cycling in non-Hermitian systems is
that the energy surface can display a nontrivial topology:
when one follows a loop in the space of system parame-
ters, even in the absence of degeneracies, the energies and
corresponding instantaneous eigenstates may swap places,
which renders the evolution noncyclic. The interchange of
energies arises when exceptional points are encircled in the
space of system parameters [51,53,73]. The complex Berry
phase has been suggested to provide a topological invariant
identifying different topological phases and quantum phase
transitions in certain non-Hermitian models [30,74–88], and
some general conditions for the quantization of the Berry
phase under certain generalized symmetries have been pro-
vided [89]. In a non-Hermitian lattice, the complex Berry
phase, i.e., Zak phase, naturally arises under an external dc
force or a time-varying magnetic flux [81], so that a Bloch
eigenstate adiabatically evolves across the entire Brillouin
zone, accumulating a complex geometric phase. While the
related phenomena of Bloch oscillations and Zener tunneling
have been investigated to some extent in non-Hermitian lat-
tices [90–100], physical signatures of the complex Zak phase
have received little attention thus far, mostly restricted to some
specific lattice models [66,81].

In this work, we show that the complex Berry phase in
slow-cycled non-Hermitian PT -symmetric systems can lead
to imperfect, i.e., smooth, spectral phase transitions. This phe-
nomenon is first illustrated by considering a general model of
two-level PT -symmetric systems, and then applied to explain
the imperfect phase transition of Wannier-Stark ladders found
in certain two-band non-Hermitian lattices [100], which is
rooted in the nonvanishing imaginary part of the Zak phase.

II. PHASE TRANSITIONS IN A CYCLED TWO-LEVEL
PT -SYMMETRIC MODEL

A. Model and PT -symmetry-breaking phase transition

We consider a classical or quantum two-level system
described by an effective 2 × 2 non-Hermitian matrix Hamil-
tonian H = H(k), which depends on a real parameter k and
is periodic in k with a period of 2π , i.e., H(k + 2π ) = H(k).

As we will discuss in the next section, in the Wannier-Stark
ladder problem of a non-Hermitian lattice driven by a dc field,
the matrix Hamiltonian H(k) corresponds to the Bloch Hamil-
tonian of a two-band lattice and k is the quasimomentum that
drifts to span the entire Brillouin zone in the presence of the
dc field.

The temporal dynamics of the system is described by the
Schrödinger equation,

i
d

dt

(
ψ1

ψ2

)
=

(
H11 H12

H21 H22

)(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
. (1)

We assume that the Hamiltonian is PT symmetric with parity
P and time-reversal T operators defined by

P = σx =
(

0 1
1 0

)
, T = K, (2)

where σx is the Pauli matrix and K is the elementwise com-
plex conjugation operator. PT symmetry, i.e., the condition
PT H = HPT , is satisfied provided that

H22 = H∗
11, H21 = H∗

12, (3)

so that the non-Hermiticity in the system is embedded in a
nonvanishing imaginary part of H11. The most general form
of the matrix elements that respect the PT symmetry is thus

H11 = H∗
22 = G(k) + iλW (k), (4)

H12 = H∗
21 = R(k) exp[iϕ(k)], (5)

where G(k),W (k), R(k) are real and periodic functions of k
with period 2π , ϕ(k) is a real function with ϕ(k + 2π ) = ϕ(k)
mod 2π , and λ � 0 is a real parameter that measures the
strength of non-Hermiticity in the system, with the case λ = 0
corresponding to the H(k) Hermitian. Further, we assume that
R(k) is nonvanishing over the entire range 0 � k � 2π .

When the parameter k is kept constant, the eigenenergies
of H(k) are given by

E±(k) = G(k) ±
√

R2(k) − λ2W 2(k), (6)

with corresponding (right) eigenvectors

u+(k) =
(

cos
(

θ
2

)
sin

(
θ
2

)
exp(−iϕ)

)
, (7)

u−(k) =
(

sin
(

θ
2

)
− cos

(
θ
2

)
exp(−iϕ)

)
. (8)

In the previous equations, the complex angle θ = θ (k) is
defined by the relation

tan θ (k) = R(k)

iλW (k)
. (9)

Note that the imaginary part of the angle θ (k) diverges
when R(k) = ±λW (k), corresponding to the simultaneous
coalescence of the two energies and eigenstates, i.e., to the
appearance of an exceptional point. The left eigenvectors of
H(k), i.e., the (right) eigenvectors of the adjoint H†(k) with
eigenvalues E∗

±(k), read

v+(k) =
(

cos∗ (
θ
2

)
sin∗ (

θ
2

)
exp(−iϕ)

)
, (10)
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v−(k) =
(

sin∗ (
θ
2

)
− cos∗ (

θ
2

)
exp(−iϕ)

)
, (11)

and the biorthogonal conditions

〈vn(k)|um(k)〉 = δn,m (12)

are satisfied for any k, with n, m = +,−. After letting

λc(k) ≡ |R(k)/W (k)|, (13)

from Eq. (6) it readily follows that the energy spectrum is
real for λ < λc(k) (unbroken PT phase) and complex for
λ > λc(k) (broken PT phase), with the appearance of an
exceptional point at the critical point λ = λc(k).

B. Phase transition in the cycled system

Let us now consider the two-level system when the Hamil-
tonian H(k) is periodically and adiabatically cycled in time.
We assume that the parameter k in the Hamiltonian varies in
time according to

k = ωt, (14)

where ω is the cycling frequency. The temporal dynamics of
the two-level system is thus described by the equation

i
d

dt

(
ψ1

ψ2

)
= H(ωt )

(
ψ1

ψ2

)
. (15)

In most of our analysis, we will limit our attention considering
the system dynamics in the slow-cycling regime ω → 0. As
we will comment below with reference to some specific ex-
amples, the main motivation thereof is that to observe smooth
spectral phase transitions, the system evolution must be slow
enough. Without loss of generality, we can assume G(k) = 0,
i.e., H11(k) = H∗

22(k) = iλW (k), so that the instantaneous
eigenenergies of H(k) read

E±(k) = ±
√

R2(k) − λ2W 2(k), (16)

with k = ωt . In fact, a nonvanishing value of G(k) can be
eliminated from the dynamics after the gauge transformation,(

ψ1(t )
ψ2(t )

)
→

(
ψ1(t )
ψ2(t )

)
exp

{
− i

ω

∫ ωt

0
G(k)dk

}
.

According to Floquet theory, the most general solution to the
Schrödinger equation (15) is given by(

ψ1(t )
ψ2(t )

)
= U (t ) exp(−iRt )

(
ψ1(0)
ψ2(0)

)
, (17)

where R is a time-independent 2 × 2 matrix, while U (t ) is
a time-dependent and periodic 2 × 2 matrix, U (t + 2π/ω) =
U (t ), with U (0) = I (the identity matrix). The exponential of
the matrix R can be expressed in terms of the path-ordered
integral,

exp(−iR) = T̄ exp

[
−i

ω

2π

∫ 2π/ω

0
dt H(ωt )

]
,

where T̄ indicates the time ordering. The two eigenvalues
μ± = μ±(λ) of R are the quasienergies of the time-periodic
cycled system. The real parts of the quasienergies are defined

mod. ω. Note that for G(k) = 0, the trace of H(k) vanishes,
so that μ− = −μ+, i.e., the two quasienergies can be assumed
to be opposite one another. A nonvanishing value of G(k)
would just lead to a shift of the quasienergies by the amount
(1/2π )

∫ 2π

0 dkG(k).
A natural question arises: akin to the noncycled PT -

symmetric system, is there a spectral phase transition, from
real to complex quasienergies, as the non-Hermitian param-
eter λ in the system is increased above a critical value? To
answer this question, let us indicate by λ̄c the minimum value
of λc(k) as k spans the range 0 � k � 2π , i.e.,

λ̄c = min
0�k�2π

λc(k) = min
0�k�2π

∣∣∣∣ R(k)

W (k)

∣∣∣∣. (18)

Intuitively, for a slow-cycled system, one would expect the
following scenario: for λ < λ̄c, the instantaneous eigenener-
gies E±(k = ωt ) of H(k = ωt ) are real, and thus we expect
the quasienergies μ± to remain real as well. On the other
hand, for λ > λ̄c within the modulation cycle, there are time
intervals where the instantaneous eigenenergies E±(k = ωt )
become complex: in this case, we expect the quasienergies to
become complex too. Hence, according to such an intuitive
picture, we expect a spectral phase transition of the cycled
two-level system, from real to complex quasienergies, when
the non-Hermitian parameter λ is increased above the critical
value λ̄c. This result is indeed what one observes from a nu-
merical computation of the quasienergies in several examples
of cycled two-level PT -symmetric models, as shown in the
next section. However, in some other models, it turns out
that for a small but nonvanishing oscillation frequency ω, the
phase transition is smooth, i.e., imperfect: below the critical
value λ̄c, the imaginary part of the quasienergy takes a small
but nonvanishing value, which scales as ∼ω, i.e., it exactly
vanishes only in the limit ω → 0. What is the physical origin
of such an imperfect phase transition, which is observed in
some models but not in others?

The answer to this question is rooted in the appearance of
a complex Berry phase in certain models (but not in others),
and can be gained from an adiabatic analysis of the time
evolution of the system in the ω → 0 limit, which is detailed
in Appendices A and B. In the adiabatic analysis, the slow
evolution of the amplitudes of the instantaneous eigenstates
u±(k = ωt ) of the Hamiltonian H(k = ωt ) is governed by the
non-Hermitian Berry connection,

An,l (k) = −i〈vn|∂kul〉 (19)

(n, l = +,−), which is defined in the context of the
biorthonormal inner product. The integrals of the diagonal
terms of the Berry connection, A+,+(k) and A−,−(k), over
the interval 0 � k � 2π , i.e.,

γB+ =
∫ 2π

0
dkA+,+(k), γB− =

∫ 2π

0
dkA−,−(k), (20)

are the non-Hermitian Berry phases associated to the two in-
stantaneous eigenstates u±(k). The explicit form of the Berry
connection and Berry phases are derived in Appendix A. In
particular, one has

γB± = ∓1

2

∫ 2π

0
dk

dϕ

dk
± i

2

∫ 2π

0
dk

dϕ

dk
sinh ψ (k), (21)
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where the function ψ (k) is defined by the relation

tanh ψ (k) = λW (k)

R(k)
. (22)

Note that the Berry phase vanishes in any PT -symmetric two-
level system with (dϕ/dk) ≡ 0.

The adiabatic analysis shows some subtleties and limita-
tions when applied to our model, owing to the appearance
of instantaneous exceptional point (EP) on the cycle when
λ > λ̄c. Technical details are given in Appendix B. The main
result of the adiabatic analysis is that in the limit ω → 0 and
for λ 	= λ̄c, the two quasienergies are given by

μ± = 1

2π

∫ 2π

0
dkE±(k) + ω

2π
γB± . (23)

Note that since E−(k) = −E+(k) and γB− = −γB+ , one has
μ− = −μ+, as it should. The above result provides an approx-
imate form of the quasienergies in the adiabatic limit ω → 0
for any strength λ of the non-Hermitian parameter far from the
critical value λ = λ̄c, at which the Berry phase term becomes
singular and the adiabatic analysis fails; a discussion on this
point is given in Appendix B.

According to Eq. (23), each quasienergy is given by the
sum of two terms. The first one is related to the dynami-
cal phase accumulated by the adiabatic eigenstates in one
cycle and equals the average of the instantaneous energies
E±(k) over one cycle. The dynamical phase term is clearly
independent of the modulation frequency ω and is real for
λ < λ̄c, while its imaginary part is nonvanishing for λ > λ̄c.
The second term on the right-hand side in Eq. (23) is the
non-Hermitian Berry phase contribution. This is a small term
which vanishes like ∼ω as ω → 0. Interestingly, for λ < λ̄c,
the imaginary part of the quasienergies is provided solely
by the Berry phase term, and vanishes as ω → 0. This ex-
plains why, in the cycled two-level PT -symmetric system
with a vanishing Berry phase, the spectral phase transition
of the quasienergies, at λ = λ̄c, is sharp (exact), while it
becomes smooth (imperfect) when the non-Hermitian Berry
phase along the cycle is nonvanishing.

C. Illustrative examples

The main result of the adiabatic analysis is that the spec-
tral phase transition of the quasienergies in the slow-cycled
PT -symmetric two-level system turns out to be imperfect
(smooth) whenever the Berry phase in the cycle is complex,
which requires the derivative (dϕ/dk) not to identically van-
ish. On the other hand, the phase transition is sharp (exact)
whenever the Berry phase is real. Here we illustrate and con-
firm the predictions of the adiabatic analysis by considering
three examples of cycled two-level PT -symmetric systems.

(1) First example. The first example is a simple and ex-
actly solvable model, corresponding to G(k) = 0, W (k) = 1,
R(k) = R0, ϕ(k) = k, i.e., to the PT -symmetric Hamiltonian

H(k) =
(

iλ R0 exp(ik)
R0 exp(−ik) −iλ

)
, (24)

where R0 > 0 is a real parameter. Physically, this model
describes a two-level system in which the two states are Her-
mitian coupled by an amplitude R0 and a gauge (Peierls) phase

FIG. 1. Behavior of the imaginary part of the quasienergies μ±
vs the non-Hermitian parameter λ for the cycled PT -symmetric
system with Hamiltonian H(k) given by Eq. (24) for R0 = 1 and for
a modulation frequency (a) ω = 0.02 and (b) ω = 0.1. Open blue
circles and red crosses refer to the exact curves and to the approxi-
mate curves obtained from the adiabatic analysis, respectively. Note
that the spectral phase transition is imperfect around the critical point
λ = λ̄c = R0, and that near the critical point the adiabatic curves fail
to predict the exact behavior of the quasienergies.

k and with gain (λ) and loss (−λ) rates in the two levels. The
system displays a PT -symmetry breaking at a critical value
λc(k) = λ̄c, independent of k, given by

λ̄c = R0. (25)

In the cycled system with k = ωt , we expect an imperfect
phase transition of quasienergies because (dϕ/dk) = 1 	= 0
and the imaginary part of the Berry phase does not vanish. The
quasienergies μ± can be calculated in an exact form, given
that the time dependence of the Hamiltonian H(k = ωt ) can
be removed from the dynamics after the gauge transformation,

ψ1(t ) = ψ̄1(t ) exp

(
i
ωt

2

)
, ψ2(t ) = ψ̄2(t ) exp

(
−i

ωt

2

)
.

(26)
The exact expression of the quasienergies can be readily com-
puted, yielding

μ± = ±
√

R2
0 +

(ω

2
+ iλ

)2
∓ ω

2
. (27)

A typical behavior of the imaginary parts of the quasienergies
versus λ, in the adiabatic limit ω 
 R0, is depicted in Fig. 1,
clearly showing the appearance of an imperfect spectral phase
transition near λ = λ̄c. Note that when λ is not too close to
λ̄c = R0, in the adiabatic limit ω → 0, we can expand the
right-hand side of Eq. (27) in a power series of ω and, up
to first order in ω, the following approximate expression of
quasienergies is obtained:

μ± � ±
√

R2
0 − λ2 ∓ ω

2
± i

λω

2
√

R2
0 − λ2

. (28)

It can be readily shown that Eq. (28) precisely reproduces the
result predicted by the adiabatic analysis [Eq. (23)]. In fact,
the dynamical phase contribution to the quasienergy is given
by

1

2π

∫ 2π

0
dkE±(k) = ±

√
R2

0 − λ2,
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FIG. 2. Behavior of the imaginary part of the quasienergies μ±
vs the non-Hermitian parameter λ for the cycled PT -symmetric
system with Hamiltonian H(k) given by Eq. (30) for t1 = 1, t2 = 0.5
and for a modulation frequency (a) ω = 0.02 and (b) ω = 0.1. Open
blue circles and red crosses refer to the exact curves, obtained from
a numerical computation of quasienergies, and to the approximate
curves obtained from the adiabatic analysis, respectively. Note that
the spectral phase transition is sharp around the critical point λ =
λ̄c = t1 − t2 = 0.5.

while the Berry phase contribution reads

ω

2π
γB± = ∓ ω

4π

∫ 2π

0
dk

dϕ

dk
± iω

4π

∫ 2π

0
dk

dϕ

dk
sinh ψ (k)

= ∓ω

2
± i

ω

2
sinh ψ = ∓ω

2
± i

λω

2
√

R2
0 − λ2

. (29)

In deriving Eq. (29), we used the property that ψ (k), defined
by the relation tanhψ (k) = λ/R0, is independent of k and
(dϕ/dk) = 1. Note that the behavior of the imaginary part
of the quasienergies, predicted by the adiabatic analysis, well
reproduces the exact curves, except near the phase transition
point λ = λ̄c where the Berry phase contribution displays a
singularity.

(2) Second example. As a second example, let us consider
the PT -symmetric two-level Hamiltonian

H(k) =
(

iλ t1 + t2 cos k
t1 + t2 cos k −iλ

)
(30)

corresponding to G(k) = 0, W (k) = 1, R(k) = t1 + t2 cos k,
and ϕ(k) = 0, where t1 and t2 are real and positive parameters
with t1 > t2. Since (dϕ/dk) = 0, the Berry phase vanishes
and, according to the adiabatic analysis, when the system is
slowly cycled with k = ωt , the spectral phase transition of
the quasienergies is sharp (exact) and occurs at the critical
value λ̄c = t1 − t2 of the non-Hermitian parameter λ. The
numerical computation of the quasienergies μ± versus λ, as
obtained by a direct numerical integration of the Schrödinger
equation (15) using an accurate variable-step fourth-order
Runge-Kutta method, confirms that the phase transition is
sharp and the curves Im[μ±(λ)] are well approximated by
the behavior predicted by the adiabatic analysis, as shown in
Fig. 2.

(3) Third example. As a third example, let us consider the
PT -symmetric two-level Hamiltonian

H(k) =
(

iλ + t0 cos k t1 + t2 exp(ik)
t1 + t2 exp(−ik) −iλ + t0 cos k

)
(31)

FIG. 3. Behavior of the imaginary part of the quasienergies μ±
vs the non-Hermitian parameter λ for the cycled PT -symmetric
system with Hamiltonian H(k) given by Eq. (31) for t0 = 0.3,
t1 = 0.5, t2 = 1 and for a modulation frequency (a) ω = 0.02 and
(b) ω = 0.1. Open blue circles and red crosses refer to the exact
curves, obtained from a numerical computation of quasienergies,
and to the approximate curves obtained from the adiabatic analysis.
Note that in (a) (slow-cycling limit), the spectral phase transition is
smooth around the critical point λ = λ̄c = |t2 − t1| = 0.5, displaying
a characteristic knee shape. In (b), the system is cycled faster and the
knee shape of the curves is spoiled out. In both cases, the adiabatic
theory fails to predict the correct behavior of the quasienergies near
the critical point.

corresponding to G(k) = t0 cos k, W (k) = 1, R(k) =√
t2
1 + t2

2 + 2t1t2 cos k, and ϕ(k) = atan[t2 sin k/(t1 +
t2 cos k], where t0, t1, and t2 are real and positive parameters
with t1 	= t2. Since (dϕ/dk) 	= 0, the imaginary part of
the Berry phase does not vanish and, according to the
adiabatic analysis, when the system is slowly cycled with
k = ωt , the spectral phase transition of the quasienergies
is imperfect (smooth). The phase transition occurs at the
critical value λ̄c = |t2 − t1| of the non-Hermitian parameter
λ. The numerical computation of the quasienergies μ±
versus λ, as obtained by a direct numerical integration of the
Schrödinger equation (15), confirms that the phase transition
is imperfect and the curves Im[μ±(λ)] are well approximated
by the behavior predicted by the adiabatic analysis for
λ 	= λ̄c, as shown in Fig. 3. Note that in the slow-cycling
regime [Fig. 3(a)], the curves Im(μ±) versus λ display a
characteristic knee shape, indicating a smooth spectral phase
transition. We remark that the terminology “smooth” phase
transition is meaningful in the adiabatic limit ω → 0 solely,
while when we cycle the system faster, so that ω becomes
comparable to the other characteristic frequencies of the
Hamiltonian (such as the separation of adiabatic energies),
the knee shape of the curves is continuously spoiled out and
there is not any evident sharp transition of the imaginary part
of the quasienergies as λ is increased; see Fig. 3(b).

III. WANNIER-STARK LADDER PHASE TRANSITION

The imperfect spectral phase transition, arising from the
complex Berry phase in a slowly cycled two-level system pre-
sented in the previous section, finds an interesting illustrative
application to the problem of Wannier-Stark ladder formation
in non-Hermitian lattices subjected to a weak external DC
field and the transition from periodic to aperiodic Bloch-Zener
oscillations recently observed for some models in Ref. [100].

085122-5



STEFANO LONGHI AND LIANG FENG PHYSICAL REVIEW B 107, 085122 (2023)

In this case, the Berry phase is also referred to as the Zak
phase [18], which is the geometric phase acquired during an
adiabatic motion of a Bloch particle across the Brillouin zone.

A. Model

Let us consider a two-band tight-binding lattice model
driven by a dc force F . In physical space, the temporal evolu-
tion of the single-particle state of the system is described by
the Schrödinger equation

i
dan

dt
=

∑
l

ρn−l al +
∑

l

σn−l bl − Fnan, (32)

i
dbn

dt
=

∑
l

θn−l al +
∑

l

ηn−l bl − Fnbn, (33)

for the amplitudes an and bn in the two sublattices A and B
of the nth unit cell of the crystal. In the above equations, the
coefficients ρ0 and η0 are the on-site energy potentials in the
two sublattices A and B, respectively; ρl and ηl (l 	= 0) are
the intradimer hopping amplitudes; finally, σl and θl are the
interdimer hopping amplitudes. In the absence of the dc force,
i.e., for F = 0, we can assume an(t ) = ψ1(t ) exp(ikn) and
bn(t ) = ψ2(t ) exp(ikn), where k is the Bloch wave number
that spans the Brillouin zone 0 � k � 2π . In this case, from
Eqs. (32) and (33), one obtains

i
d

dt

(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
, (34)

where the elements of the 2 × 2 Bloch Hamiltonian H(k) are
given by

H11(k) =
∑

l

ρl exp(−ikl ), (35)

H12(k) =
∑

l

σl exp(−ikl ), (36)

H21(k) =
∑

l

θl exp(−ikl ), (37)

H22(k) =
∑

l

ηl exp(−ikl ). (38)

The Bloch Hamiltonian is PT symmetric, with P = σx and
T = K, provided that

θ∗
−l = σl , η∗

−l = ρl . (39)

Such conditions ensure that H22(k) = H∗
11(k) and H21(k) =

H∗
12(k). In this case, the lattice does not display the non-

Hermitian skin effect [101] and the energy spectrum is
absolutely continuous and composed of two energy bands,
with the dispersion relation given by Eq. (6). A PT -
symmetry-breaking phase transition of Bloch bands arises
when the non-Hermitian parameter λ in the system is in-
creased above the critical value λ̄c, as in the two-level system
discussed in Sec. II.

B. Wannier-Stark ladders

When the external dc force is applied, i.e., for F 	= 0,
the energy spectrum becomes pure point and composed of
two Wannier-Stark (WS) ladders [102,103], with the allowed

energies given by

El = lF ± �, (40)

where l = 0,±1,±2,±3, . . . and � describes the energy
shift of the two ladders. The corresponding eigenstates are
normalizable (localized) with a higher-than-exponential local-
ization.

In a Hermitian lattice, the energy shift � is real and the
dynamics in the time domain is generally aperiodic and cor-
responds to a superposition of Bloch oscillations and Zener
tunneling between the two bands [102–109]. The dynamics is
characterized by two time periods: The first one, T1 = 2π/F ,
is determined by the mode spacing of each WS ladder and is
related to the Bloch oscillation dynamics, whereas the second
one, T2 = π/�, is determined by the shift of the two inter-
leaved WS ladders.

In a non-Hermitian lattice, the energy shift � can become
complex and, as we show below, in the small-forcing limit
F → 0, it contains the complex Zak phase of the Bloch
Hamiltonian H(k). More precisely, we will show below that
� is the quasienergy μ+ of the Bloch Hamiltonian H(k),
cycled over the Brillouin zone at a frequency ω = F , i.e., with
k = Ft . This means that the WS energy spectrum undergoes
a phase transition as λ is increased above λ̄c, from real to
complex energies, and the phase transition can be either sharp
or smooth, depending on whether or not the imaginary part of
the Zak phase for λ < λ̄c is vanishing.

To calculate the WS energy spectrum E , let us assume
an(t ) = ān exp(−iEt ), bn(t ) = b̄n exp(−iEt ) in Eqs. (32) and
(33), and let us introduce the spectral variables

ψ1(k) = exp(−iEk/F )
∑

n

ān exp(−ikn), (41)

ψ2(k) = exp(−iEk/F )
∑

n

b̄n exp(−ikn). (42)

It readily follows that ψ1,2(k) satisfy the Sturm-Liouville
problem,

iF
d

dk

(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
, (43)

on the interval 0 � k � 2π , with the boundary conditions

ψ1,2(2π ) = ψ1,2(0) exp

(
−2π iE

F

)
. (44)

Once the spectral amplitudes ψ1,2(k) and eigenenergies E
have been determined, the eigenvectors (ān, b̄n), correspond-
ing to the energy E , are determined using the inverse relations

ān = 1

2π

∫ 2π

0
dkψ1(k) exp(ikn + iEk/F ), (45)

b̄n = 1

2π

∫ 2π

0
dkψ2(k) exp(ikn + iEk/F ). (46)

Interestingly, after letting k = ωt , Eq. (43) indicates that
ψ1,2(k) can be viewed as the amplitudes of a two-level PT -
symmetric system, with Hamiltonian H(k), which is slowly
cycled in time at the frequency ω = F . This basically cor-
responds to the fact that in Bloch space, the external force
introduces a uniform drift of the quasimomentum k to span the
entire Brillouin zone. The Sturm-Liouville problem, defined
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by Eqs. (43) and (44), can be solved as follows. Let us indicate
by ψ+ and ψ− the eigenvectors of the Floquet matrix R,
introduced in Sec. II B, with eigenvalues (quasienergies) μ±.
Then, Eq. (43) is satisfied by letting either(

ψ1(k)
ψ2(k)

)
= U

(
k

F

)
exp(−iRk/F )ψ+

= exp(−iμ+k/F )U
(

k

R

)
ψ+

or (
ψ1(k)
ψ2(k)

)
= U

(
k

F

)
exp(−iRk/F )ψ−

= exp(−iμ−k/F )U
(

k

F

)
ψ−.

Since U (0) = U (2π/F ) = I (the 2 × 2 identity matrix), to
satisfy the boundary conditions given by Eq. (44), one should
have

2π

F
μ± = 2πE

F
− 2lπ,

i.e.,

E = lF + μ±, (47)

where l = 0,±1,±2, . . . . Equation (47) provides the general
form of the Wannier-Stark ladders of allowed energies in
terms of the quasienergies μ± of the cycled two-level Bloch
Hamiltonian H(k). It is precisely Eq. (40) with the energy
shift parameter � given by � = μ+.

When the external dc force is weak, i.e., in the limit
F → 0, the Bloch wave number k = Ft in the two-level
Bloch Hamiltonian H(k) varies slowly with time, and thus the
quasienergies can be approximated by Eq. (23). One obtains

E = lF + 1

2π

∫ 2π

0
dkE±(k) + F

2π
γB± , (48)

corresponding to the energy shift

� = μ+ = 1

2π

∫ 2π

0
dkE+(k) + F

2π
γB+ . (49)

Therefore, under a weak external driving, the Wannier-Stark
energy spectrum undergoes a phase transition at λ = λ̄c,
which is either sharp or smooth depending on whether or not
the imaginary part of the Zak phase γB+ is vanishing when
λ < λ̄c. We mention that contrary to other non-Hermitian
lattice models where the spectral (PT -symmetry breaking)
phase transition coincides with a localization/delocalization
phase transition [110–112], in the Wannier-Stark ladder prob-
lem the spectral phase transition does not correspond to
a localization/delocalization phase transition because the
eigenstates of the Wannier-Stark Hamiltonian are always
localized, for both λ < λ̄c and λ � λ̄c. This very general
result follows from the fact that the spectral amplitudes
ψ1,2(k) exp(iEk/F ), with ψ1,2(k) solutions to the Sturm-
Liouville problem [Eqs. (43) and (44)], are periodic and
continuously differentiable functions of k and thus their
Fourier coefficients ān, b̄n decay as n → ±∞ at least like
∼1/n, regardless of the value of λ.

FIG. 4. Schematic of two binary non-Hermitian lattices display-
ing (a) perfect and (b) imperfect Wannier-Stark phase transitions
under a dc force. t0, t1, and t2 are Hermitian hopping amplitudes.
The non-Hermiticity in the system is provided by the gain and loss
terms ±λ in the two sublattices A and B. The Bloch Hamiltonian of
the two lattices is given by Eq. (30) for model (a) and by Eq. (31) for
model (b).

In a non-Hermitian lattice below the Wannier-Stark phase
transition point, i.e., for λ < λ̄c, the dynamical signature of
a complex Zak phase can be probed looking at the tem-
poral behavior of Bloch-Zener oscillations [100]. When the
imaginary part of the Zak phase is vanishing, the temporal
dynamics is rather generally aperiodic and characterized by
the two periods T1 and T2, like in an ordinary Hermitian
lattice under a dc field: only accidentally the dynamics can be
periodic. On the other hand, when the imaginary part of the
complex Zak phase does not vanish, after an initial transient
the dynamics becomes periodic with period T1. In fact, a rather
arbitrary excitation of the system at initial time t = 0 can
be decomposed as a superposition of localized Wannier-Stark
eigenstates belonging to the two ladders, and the dynamics
at successive times is governed by the interference of such
localized eigenstates. The localized Wannier-Stark eigenstates
in one ladder, excited by the initial condition, decay in time
with a damping rate ∼F Im(γB+ ), while the eigenstates in the
other ladder are amplified in time with an amplification rate
∼F Im(γB+ ). Therefore, after a transient time of the order
of ∼1/F Im(γB+ ) only the Wannier-Stark eigenstates in the
former ladder survive and the dynamics become periodic with
the period T1 [100].

As illustrative examples, let us consider the binary lattices
depicted in Figs. 4(a) and 4(b). The non-Hermiticity in the
lattices is introduced by assuming energy gain and loss terms
±λ in the two sublattices A and B. The binary lattice of
Fig. 4(a) was introduced in a previous work [93] and its Bloch
Hamiltonian H(k) is given by Eq. (30), previously introduced
in Sec. II C. Since (dϕ/dk) ≡ 0, the Wannier-Stark ladder
phase transition in this model is sharp. The model shown
in Fig. 4(b) is a non-Hermitian extension of the Rice-Mele
model [66] and its Bloch Hamiltonian is given by Eq. (31). For
this model, the spectral phase transition of the Wannier-Stark
energies is imperfect. We emphasize that our analysis is very
general and could be applied to a generic PT -symmetric
binary lattice, also displaying long-range hopping.

IV. CONCLUSIONS AND DISCUSSION

In many classical and quantum systems described by
an effective non-Hermitian Hamiltonian, where energy and
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particles can be exchanged with external reservoirs, the
energies of the Hamiltonian are rather generally complex.
However, in certain classes of non-Hermitian systems, the
energy spectrum can remain entirely real in spite of non-
Hermiticity. A paradigmatic example is provided by systems
possessing parity-time symmetry, where the energy spectrum
remains entirely real in the unbroken PT phase. When the
strength of non-Hermiticity in the system is increased, a spec-
tral phase transition to complex energies is usually observed,
corresponding to the unbroken PT phase. Such spectral phase
transitions are universally sharp. In this work, we consid-
ered periodically and slowly cycled non-Hermitian models
possessing instantaneous PT symmetry and showed that the
phase transition can remain exact (sharp) or become imperfect
(smooth) when the strength of non-Hermiticity in the system
is increased above a critical value. The imperfect nature of
the phase transition in the latter case is universally ascribable
to a nonvanishing imaginary part of the complex Berry phase
associated to the cyclic adiabatic evolution of the system. This
remarkable phenomenon has been illustrated by considering a
rather general class of PT -symmetric two-level systems, for
which a rigorous adiabatic analysis both below and above the
phase transition point has been developed. The results have
been applied to describe the spectral phase transitions of the
Wannier-Stark ladders in a broad class of PT -symmetric two-
band non-Hermitian lattices subjected to an external dc field;
however, our analysis is expected to hold for more general
multiband systems. In fact, under the adiabatic conditions and
assuming no state flip after one adiabatic cycle, the form of
quasienergies can be given in terms of dynamic and geometric
(Zak) phases, and the complex or real nature of the latter
defines the smooth or sharp nature of the spectral phase tran-
sitions in the slow-cycling regime. Our results provide fresh
insights into phase transitions of open quantum or classical
systems, providing important examples of smooth phase tran-
sitions in non-Hermitian physics and unraveling the main role
played by the non-Hermitian Berry phase.
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APPENDIX A: BERRY CONNECTION AND BERRY PHASE

For the cycled two-level PT -symmetric model consid-
ered in Sec. II A, the elements of the 2 × 2 matrix of the
non-Hermitian Berry connection are given in terms of the
biorthogonal product as

An,l = −i〈vn|∂kul〉, (A1)

where n, l take the values + or −. Using Eqs. (7), (8) and
(10), (11) given in the main text, the explicit form of the Berry

connection can be readily calculated and reads

A+,+ = −dϕ

dk
sin2

(
θ

2

)
, (A2)

A+,− = −1

2
i
dθ

dk
+ 1

2

dϕ

dk
sin θ, (A3)

A−,+ = 1

2
i
dθ

dk
+ 1

2

dϕ

dk
sin θ, (A4)

A−,− = −dϕ

dk
cos2

(
θ

2

)
. (A5)

The Berry phases associated to the two adiabatically evolving
eigenstates u±(k) are given by

γB+ ≡
∫ 2π

0
dkA+,+ = −

∫ 2π

0
dk

dϕ

dk
sin2

(
θ

2

)
, (A6)

γB− ≡
∫ 2π

0
dkA−,− = −

∫ 2π

0
dk

dϕ

dk
cos2

(
θ

2

)
. (A7)

From Eqs. (A6) and (A7), it readily follows that γB+ + γB− =
− ∫ 2π

0 dk(dϕ/dk) is zero mod. 2π . Since the Berry phase is
defined apart from integer multiples other than 2π , we can
thus write

γB+ = −γB− (A8)

= −1

2

∫ 2π

0
dk

dϕ

dk
+ 1

2

∫ 2π

0
dk cos θ

dϕ

dk
.

The complex angle θ = θ (k) is defined by Eq. (9) given in the
main text, i.e.,

tan θ (k) = R(k)

iλW (k)
, (A9)

which can be solved by letting

θ (k) = π/2 − iψ (k), (A10)

where the function ψ (k) is given by

tanh ψ (k) = λW (k)

R(k)
. (A11)

Using Eqs. (A8) and (A10), one finally obtains

γB± = ∓1

2

∫ 2π

0
dk

dϕ

dk
± i

2

∫ 2π

0
dk

dϕ

dk
sinh ψ (k). (A12)

The above expression of the Berry phase is formally valid for
any value of the non-Hermitian parameter, except for λ = λ̄c.
Note that for λ < λ̄c, one has |λW (k)/R(k)| < 1 and thus the
function ψ (k) is real over the entire interval 0 � k � 2π . In
this case, Eq. (A12) shows that the real part of the Berry phase
is quantized and can take only the two values 0 or π (mod 2π ),
whereas the imaginary part of the Berry phase is not quantized
and vanishes whenever (dϕ/dk) ≡ 0.

APPENDIX B: ADIABATIC ANALYSIS

In this Appendix, we derive an analytical expression of
the quasienergies μ± of the cycled two-level PT -symmetric
system, considered in Sec. II B of the main text, in the adi-
abatic limit of slow cycling ω → 0. It should be mentioned
that special attention is required when using adiabatic meth-
ods to slowly evolving non-Hermitian systems because of the
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FIG. 5. Schematic behavior of the energy curves E±(k) of the
PT -symmetric two-level Hamiltonian H(k) in a complex energy
plane as k spans the interval 0 � k � 2π (solid lines). In (a), λ < λ̄c,
the two energy curves lie on the real-energy axis and are line gapped.
In (b), λ > λ̄c, and the two energy curves cross at E = 0 (instan-
taneous exceptional point) at the critical values k = kc such that
λW (kc ) = ±R(kc ). The dashed curves in (b) show the behavior of
the energy curves for the modified Hamiltonian Hε (k), which avoids
energy crossing and exceptional points.

following: (i) Owing to possible nontrivial topologies of the
energy curves in a complex plane, even in the absence of
eigenvalue degeneracies, it could happen that an adiabatically
evolving eigenstate, after one cycle, does not come back to
its initial state because of energy and eigenvector flipping
[53,73]. (ii) Even in the slow-cycling regime, the adiabatic
approximation can easily break down when the instantaneous
eigenenergies are complex [113–115], and the adiabatic ap-
proximation can be safely applied only to the most dominant
eigenstate of the system.

After letting k = ωt , the Schrödinger equation (15) reads

iω
d

dk

(
ψ1

ψ2

)
= H(k)

(
ψ1

ψ2

)
. (B1)

To perform the adiabatic analysis, let us distinguish two cases.
First case: λ < λ̄c. In this case, the two energy curves

E±(k), as k spans the interval (0, 2π ), are straight and non-
intersecting segments on the real-energy axis; see Fig. 5(a).
Therefore, the energy curves are line gapped and there is no
eigenvalue/eigenstate flip after one cycle. From the point of
view of the adiabatic analysis, the system thus behaves like a
Hermitian one, even though the Hamiltonian is not Hermitian.
We then expand the state vector [ψ1(k), ψ2(k)]T as a super-
position of the instantaneous eigenstates u+(k) and u−(k) of
H(k), i.e., let us set(

ψ1(k)
ψ2(k)

)
= a+(k)u+(k) exp

{
− i

ω

∫ k

0
dξE+(ξ )

}

+a−(k)u−(k) exp

{
− i

ω

∫ k

0
dξE−(ξ )

}
, (B2)

where a+(k) and a−(k) are the adiabatic amplitudes and

E±(k) = ±
√

R2(k) − λ2W 2(k) (B3)

are the instantaneous eigenenergies. The evolution equa-
tions of the amplitudes a±(k) are readily obtained by
substitution of the ansatz (B2) into Eq. (B1) and taking the

scalar product of the equation so obtained by 〈v+| and 〈v−|.
Using the biorthogonal conditions (12), one obtains

i
da+
dk

= A+,+a+

+ A+,−a− exp

{
i

ω

∫ k

0
dξ [E+(ξ ) − E−(ξ )]

}
,

(B4)

i
da−
dk

= A−,−a−

+A−,+a+ exp

{
− i

ω

∫ k

0
dξ [E+(ξ ) − E−(ξ )]

}
,

(B5)

where An,l (n, l = +,−) is the non-Hermitian Berry connec-
tion, given by Eqs. (A1)–(A5). In the adiabatic limit ω → 0,
since the energy difference E+(k) − E−(k) is entirely real
and nonvanishing over the interval 0 � k � 2π , the rapidly
oscillating terms on the right-hand sides of Eqs. (B4) and
(B5) do not induce, on average, transitions between the two
adiabatic amplitudes and can be disregarded (rotating-wave
approximation). Hence one obtains

a±(2π ) � a±(0) exp(−iγB± ), (B6)

where γB± are the Berry phases associated to the two adia-
batically evolving eigenstates u±(k). The explicit form of the
Berry phases is given by Eq. (A12).

The quasienergies μ± are the eigenvalues of the matrix R,
which is obtained from the condition [Eq. (17) in the main text
with t = 2π/ω](

ψ1(2π/ω)
ψ2(2π/ω)

)
= exp(−2π iR/ω)

(
ψ1(0)
ψ2(0)

)
. (B7)

From Eqs. (B2) and (B5), it readily follows that u±(0) are
the eigenvectors of R, with the corresponding quasienergies
given by

μ± = 1

2π

∫ 2π

0
dkE±(k) + ω

2π
γB± . (B8)

Note that since E−(k) = −E+(k) and γB− = −γB+ , the two
quasienergies are opposite one another, i.e., μ− = −μ+,
as it should be whenever G(k) = 0. Note also that each
quasienergy is given by the sum of two terms. The first
term on the right-hand side of Eq. (B8) is the usual dy-
namical phase term that one would obtain by a standard
Wentzel-Kramers-Brillouin (WKB) analysis neglecting the
Berry phase [96,100], whereas the second term on the right-
hand side of Eq. (B8) is the Berry phase contribution. While
the dynamical phase term is always real and independent of
the modulation frequency ω, the Berry phase contribution
vanishes as ω → 0 and can display a nonvanishing imaginary
part in models where (dϕ/dk) 	= 0. Therefore, we may con-
clude that for λ < λ̄c, the imaginary part of the quasienergies,
as predicted by the adiabatic analysis, reads

Im (μ±) = ω

2π
Im(γB± ) = ± ω

4π

∫ 2π

0
dk

dϕ

dk
sinh ψ (k),

(B9)
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where the real function ψ (k) is defined by Eq. (A11).
Second case: λ > λ̄c. In this case, the two energy curves

E±(k), as k spans the interval (0, 2π ), may touch one an-
other at E = 0, as shown by the solid curves in Fig. 5(b).
The crossing occurs when k equals the critical values k = kc

such that λW (kc) = ±R(kc). At such points, the instantaneous
Hamiltonian H(kc) is not diagonalizable and displays an ex-
ceptional point. Eventually, if W (k) does not vanish in the
entire range (0, 2π ), at large values of λ, the two energy
curves can become separated and fully lie on the imaginary
axis.

The occurrence of the instantaneous exceptional points and
energy curve touching at k = kc during the cycle when λ > λ̄c

makes the adiabatic analysis discussed in the previous case
formally invalid. To overcome such a limitation, we slightly
modify the Hamiltonian of the system, from H(k) to Hε (k),
by letting

[Hε (k)]11 = iλW (k) + ε, [Hε (k)]22 = −[Hε (k)]11, (B10)

where ε > 0 is a small real parameter. For ε = 0, we recover
the original Hamiltonian H(k). The instantaneous eigenener-
gies of Hε (k) read

Eε ± = ±
√

R2(k) − [λW (k) − iε]2. (B11)

A nonvanishing (albeit small) value of ε breaks exact PT
symmetry and avoids the energy curve touching and the ap-
pearance of the instantaneous exceptional points during the
adiabatic cycle, as shown by the dashed curves in Fig. 5(b).
Since the two energy curves are now line gapped and there
are no exceptional points along the cycle, we can again ex-
pand the state vector of the system as a superposition of the
instantaneous eigenstates of Hε (k) with adiabatic amplitudes
a±(k), which evolve according to Eqs. (B4) and (B5) (these
are exact equations). The main difference is that the Berry
connection and instantaneous eigenenergies entering in such
equations are now those of the modified Hamiltonian Hε (k),
rather than H(k). The expressions of the instantaneous (right
and left) eigenstates of Hε (k), and thus of the Berry connec-
tion and Berry phases, are formally the same as those of H(k),
with the complex angle θ = θ (k) now defined by the relation

tan θ (k) = R(k)

iλW (k) + ε
. (B12)

It should be noted that as ε → 0, the imaginary part of θ (k)
diverges at the critical values k = kc; however, for a lin-

ear crossing, such that λW ′(kc) 	= ±R′(kc), the singularity of
cos θ (k) near k = kc is of the type cos θ (k) ∼ 1/

√
k − kc and

thus integrable, leading to a finite value of the Berry phase
according to Eq. (A8).

To calculate the quasienergies, we exploit the fact that
μ− = −μ+, so that we can compute the quasienergy of the
dominant adiabatic eigenstate of the system, i.e., with the
largest imaginary part of instantaneous energy [corresponding
to the dashed curve in the first quadrant of Fig. 5(b)]. For
such a state, we can in fact safely apply the adiabatic ap-
proximation, avoiding the problem of adiabaticity breakdown
that could arise for the nondominant eigenstate [113,114].
For example, assuming that u+(k) is the dominant instan-
taneous eigenstate, i.e., with Im[E+(k)] � 0, we can safely
apply the rotating-wave approximation to the second term
on the right-hand side of Eq. (B4), thus obtaining a+(2π ) �
a+(0) exp(−iγB+ ). Proceeding as in the previous case, in the
adiabatic limit one then obtains the following expression of
the quasienergy μ+, associated to the dominant adiabatic
eigenstate:

μ+ = 1

2π

∫ 2π

0
dkE+(k) + ω

2π
γB+ . (B13)

The other quasienergy is then given by μ− = −μ+. This
result formally coincides with the one obtained in the case
λ < λ̄c [see Eq. (B8)]; however, in Eq. (B13), the Berry phase
term should be obtained from the modified angle θ , given
by Eq. (B12), and then taking the limit ε → 0. The main
difference in the λ > λ̄c case is that the dynamical phase
contribution to the quasienergy has a nonvanishing imaginary
part, which dominates over the imaginary contribution of the
Berry phase term in the adiabatic (ω → 0) limit.

Finally, we mention that at the phase transition point λ =
λ̄c, the crossing of the exceptional point during the oscillation
cycle, at k = kc, is quadratic rather than linear, i.e., one has
λW (kc) = ±R(kc) and λW ′(kc) = ±R′(kc). In this case, as
ε → 0, the singularity of cos θ (k) near k = kc is of the type
cos θ (k) ∼ 1/(k − kc) and thus it is not integrable, leading to
a diverging value of the Berry phase according to Eq. (A8).
Therefore, the adiabatic analysis fails to predict the correct
values of the quasienergies as λ approaches the critical value
λ̄c, either from below or from above. Such a failure is clearly
illustrated in the exactly solvable model with Hamiltonian
H(k) given by Eq. (24), discussed in the main text [see,
specifically, Eq. (29) and Fig. 1(b)].
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