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Two types of superconducting pairs in stripe-ordered La2−xBaxCuO4 (x = 1/8):
Evidence from resistivity measurements
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Recent angle-resolved c-axis resistivity measurements of the stripe-ordered La2−xBaxCuO4 (LBCO) with x =
1/8 revealed an unexpected dependence on the direction of the in-plane magnetic field. We argue that these and
other available data for the c-axis transport point to the existence of superconducting pairs of two different types
in the x = 1/8 LBCO below the stripe ordering temperature. The pairs of one type carry finite momentum and
are confined to the Cu-O planes; the pairs of other type (probably the conventional d wave with zero momentum)
propagate along narrow conducting channels traversing the sample in the c-axis direction. The evidence for this
comes from the observed exponential temperature dependence of the c-axis resistivity ρc(T ) which we attribute
to the thermally excited slips of the superconducting phase and flux flows. We present a simple theory to fit the
observed π/2-periodic dependence of ρc on the direction of the in-plane magnetic field and the other data.
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I. INTRODUCTION

“It is a riddle, wrapped in a mystery, inside an enigma;
but perhaps there is a key.” The words of Winston Churchill,
uttered in an entirely different context, can be used to char-
acterize the situation with the cuprates where enigma indeed
contains in itself many layers. These structurally simple mate-
rials display a breathtaking complexity of properties, ranging
from two-dimensional superconductivity [1–3] to magneti-
cally driven anomalous resistive states [4–6]. In this paper
we discuss the stripe-ordered La2−xBaxCuO4 (LBCO) with
x = 1/8, with additional insights gained from recent angle-
resolved c-axis resistivity measurements in the presence of an
in-plane magnetic field [7].

The most remarkable property of the stripe-ordered LBCO,
discovered back in 2007, is the two-dimensional superconduc-
tivity [1,2]. The experimental measurements were performed
on the charge ordered low temperature tetragonal (LTT) phase
in 1/8 doped LBCO. This phase has a crystal structure with
two Cu-O layers per unit cell at T � Tco = 54 K, where
Tco is the charge ordering temperature. In alternative layers,
the charge stripes run along the x or y axis orthogonally.
In the next-nearest neighboring layer, the parallel stripes are
shifted by a half period to minimize the Coulomb interaction,
further doubling the number of layers per unit cell. At tem-
peratures below the spin ordering temperature Tso = 42 K, the
spins between each charge stripe have antiferromagnetic order
along the stripe direction. The charge stripes act as antiphase
boundaries for neighboring spin stripes, further doubling the
unit cell size in the direction perpendicular to the stripes.
Below Tonset < Tso the in-plane resistivity experiences a sharp
drop and the system experiences a crossover into the regime
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of strong 2D superconducting fluctuations leading eventually
to Berezinskii-Kosterlitz-Thouless (BKT) transition at T 2D

c ∼
16 K. Existence of such a sharp BKT transition is consistent
with the theoretical expectations for layered superconductors
without interlayer Josephson coupling [8]. In mean field the-
ories Tonset would be a transition temperature, but in reality
it marks the entrance to the regime of phase incoherence
dominated by thermally excited vortices. Also, Tso does not
depend on magnetic field, but Tonset does, which strongly
suggests the existence of preformed pairs presumably located
on the stripes, protected by the spin gap [3,9,10]. The c-axis
resistivity vanishes below T3D ∼ 10 K, while the 3D supercon-
ductivity, characterized by the Meissner state, is achieved only
below T 3D

c ∼ 4 K. The relation between different temperature
scales are shown in Fig. 1.

The theoretical explanation suggested soon after the orig-
inal discovery [3] portrayed the superconducting state as a
quasicondensate of pairs with a finite momentum, termed as
pair density wave (PDW). Then its two dimensional char-
acter originates from the fact that momenta of the pairs
in adjacent layers have different orientations which frus-
trates the interlayer Josephson coupling. This conclusion is
supported by the optical measurements which established
the decoupling of the superconducting orders in adjacent
copper oxide layers [11]. The theory describes the stripe-
ordered state of the doped antiferromagnet as an array of
self-assembled rivers of charges separated by insulating re-
gions. Each charge river is represented as a Luther-Emery
liquid where the formation of the spin gap leads to the super-
conducting pairing; the pairing fields from different rivers are
weakly coupled by the Josephson pair tunneling. To explain
the finite momentum of the pairs, the theory in [3] posits
the negative sign of the Josephson matrix element—an as-
sumption for which so far, little theoretical justification has
been provided.
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FIG. 1. The relation between different temperature scales in the
x = 1/8 doped La2−xBaxCuO4 (LBCO), together with the transport
regimes. Figure is adapted from Ref. [3].

It was later found in [4–6] that when the magnetic field
destroys superconductivity, a very peculiar resistive metallic
state emerges which persists down to lowest temperatures and
inherits such a prominent feature of the superconductor as a
zero Hall response. The critical magnetic field is relatively
small; the electrical resistance gradually increases with the
magnetic field, and at field strength around 25–30 T, the sheet
resistance reaches a plateau at R� ≈ 2π h̄/2e2. This is dubbed
“ultra-quantum metal,” which lies between Tonset and Tso, and
the Josephson coupling between the stripes is suppressed and
the superconducting fluctuations are one dimensional. There
is a dichotomy in the theoretical explanation of this state
between the quasiparticle picture [12–14] and the Bose metal
picture [15–17], where the transport is carried by quasiparti-
cles in the former and by the incoherent pairs in the latter.

The previous experimental and theoretical efforts have con-
centrated mostly on the understanding of physics of the ab
planes, while the c-axis transport and the possible mechanism
for the Meissner state have not attracted much attention. This
situation is changed by recent angle-resolved c-axis resistiv-
ity measurements [7], which attract attention to the puzzles
related to the dramatic difference between the c-axis transport
and the ab-plane transport. The experimental findings strongly
suggest the existence of two subsystems in the stripe-ordered
LBCO, one being the 2D superconductivity in the form of
PDW within the ab planes, the other being the 1D supercon-
ductivity traversing along the c axis. This is what we will
describe in detail in the following sections.

Before proceeding, we want to make a clarification of the
relation between the current paper and Ref. [7] by the same
group of authors. On the experimental side, the data shown
later in Figs. 2–4 are taken from Ref. [7], and analyzed further
in the current paper. The data shown later in Figs. 5, 8–10 are
exclusively reported in the current paper, although similar data
as that of Figs. 5 and 8 for different temperatures and magnetic
fields are already reported in Ref. [7]. On the theoretical side,
the existence of the two types of superconducting pairs based

FIG. 2. Characteristic measurements of the angle dependent in-
plane resistivity ρab at B = 14 T, T = 30 K. ρab depends only on the
angle between the in-plane magnetic field and the current direction,
but not on the stripe directions. The angle dependence has a period
of π . These data are originally reported in Ref. [7].

on the observed angle-dependent magneto-resistivity is briefly
mentioned in Ref. [7] with a promise to discuss it in detail
in subsequent publications. The current paper serves as a fol-
lowup to Ref. [7] fulfilling this promise, providing theoretical
details and discussing further important implications.

II. EXPERIMENTAL OBSERVATIONS

The experimental measurements are performed on the
stripe-ordered LBCO, where the in-plane resistivity ρab and
the c-axis resistivity ρc are measured in the presence of an
in-plane magnetic field. The measurements are performed at
different temperatures and different strengths of the magnetic
field, with the direction of the magnetic field varied within
the ab plane. Before moving on to the behavior of the c-axis
resistivity, we briefly address the behavior of the in-plane

FIG. 3. The temperature dependence of the c-axis resistivity ρc

at B = 0 T and B = 1 T, where the in-plane magnetic field is along
the Cu-Cu bond. ρc(T ) displays a maximum around the stripe or-
dering temperature, and a thermally activated form below Tonset. The
temperature scales are also shown, where T 3D

c (below 5 K) and Tco

(above 45 K) are not shown. These data are originally reported in
Ref. [7].
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FIG. 4. The temperature dependence of the c-axis resistivity at
B = 0 T and B = 1 T (the in-plane magnetic field is along the Cu-Cu
bond) shown on a semilogarithmic scale as ln ρc(T ) vs 1/T . The
error bars are hidden inside the data points and can be seen if one
enlarges the figure. These data are originally reported in Ref. [7].

resistivity ρab. Due to the layer decoupling, we can focus on a
single layer for the leading-order behavior of ρab. Below Tonset,
the preformed pairs are protected by the spin gap. Above
T 2D

c , there is a proliferation of vortices, which are thermally
activated to produce a resistivity as [18,19]

ρab ∝ ρn
ab exp

(
−b

√
Tonset − T

T − T 2D
c

)
, (2.1)

where b is a dimensionless fitting parameter, and the normal
resistivity ρn

ab receives a contribution from the freed quasipar-
ticles due to loss of pair coherence within the vortices. The
temperature dependence of Eq. (2.1) agrees qualitatively well
with the experimental data [3]. The magnetic field dependence

FIG. 5. Characteristic measurements of the angle-resolved c-axis
resistivity at B = 1 T, T = 7.5 K. ρc depends on the angle between
the in-plane magnetic field and the stripe direction. a and b are along
the Cu-O-Cu bond, so the minima of ρc appear where the magnetic
field is along the directions of the stripes. The angle dependence has
a period of π/2. Materials and methods for these original data are
discussed in Appendix C.

of Eq. (2.1) hides itself in the normal resistivity ρn
ab:

ρn
ab = 1 + ω2

cτ
2

σD
, (2.2)

where σD is the Drude conductivity of the quasiparticles, τ

is the elastic scattering relaxation time, and ωc ∝ B⊥ is the
cyclotron frequency, with B⊥ = B cos φ being the component
of the in-plane magnetic field perpendicular to the current.
The longitudinal component B‖ = B sin φ exerts no force on
the current, as can be seen from the Lorentz formula FL =
j × B. This renders ρab dependent on the angle between the
in-plane magnetic field and the current (but not on the stripe
directions), with a period of π . This is consistent with the
experimental data, shown in Fig. 2.

Now we proceed to the behavior of the c-axis resistivity. As
mentioned above, in a zero magnetic field, the c-axis transport
is resistive above T3D ∼ 10 K. As shown in Fig. 3, ρc(T )
displays a characteristic maximum around the stripe ordering
temperature and a thermally activated form ρc ∼ exp(−�/T )
below Tonset. This brings to mind the Ambegaokar-Halperin
formula [20,21] describing the resistivity in thin supercon-
ducting wires, where the dissipation is generated by thermally
activated phase slips:

ρslip
c ∝ ρn

c

	

T
exp(−�slip/T ), (2.3)

where ρn
c is the normal resistivity due to the interlayer quasi-

particle hopping, 	 is a characteristic frequency, and the
activation energy �slip can be estimated as � ∼ Hc1d2ξc

according to the Langer-Ambegaokar-McCumber-Halperin
theory [22,23], provided the thickness d of the wire is much
smaller than the c-axis coherence length ξc, and Hc1 is the bulk
lower critical magnetic field. The temperature dependence of
Eq. (2.3) agrees qualitatively well with our experimental data
shown in Figs. 3 and 4, where the same data of Fig. 3 is plotted
on semilogarithmic scale in Fig. 4 for a better visualization of
the exponential dependence in Eq. (2.3).

The recent experiments measured ρc in the presence of
an in-plane magnetic field [7]. The measurements were per-
formed both above and below Tso as a function of the angle
θ between an in-plane magnetic field and the stripe direction.
Above Tso, ρc shows no angular dependence. Below Tso, ρc

exhibits an angular dependence with a period of π/2. The
angular dependence does not experience any drastic change
at Tonset. The ρc minima appear at 0, π/2, π, 3π/2, where the
magnetic field is along the directions of the stripes. The ρc

maxima appear at π/4, 3π/4, 5π/4, 7π/4, where the mag-
netic field bisects the stripe directions in adjacent layers, or
along the nodal directions of the d-wave order parameters.
Characteristic experimental results are shown in Fig. 5.

In the presence of a magnetic field, there is an extra contri-
bution to ρc due to the thermally activated flux flows [8,24]:

ρflow
c ∝ ρn

c

B

Hc2
exp(−�flow/T ), (2.4)

where B is the strength of the magnetic field, Hc2 is the
bulk upper critical magnetic field, and the activation energy
�flow is generally smaller than �slip (this can be seen from
Fig. 4). Consequently, in the presence of a magnetic field ρc is
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FIG. 6. The two subsystems of the stripe-ordered LBCO, where
within the ab plane, we have the peculiar PDW configuration, and
along the c axis we have the superconducting wire. The supercon-
ducting wire is enlarged on the righthand side for illustration of the
fluxes produced by the in-plane magnetic field.

dominated by ρflow
c . The temperature dependence of Eq. (2.4)

agrees qualitatively well with the experimental data shown in
Figs. 3 and 4, while the angular dependence must be hidden
inside the normal resistivity ρn

c .1 If the quasiparticles possess
anisotropy compatible with the PDW configuration, the rota-
tion of the PDW direction along the c axis will come with a
rotation of the axis of anisotropy, such that the quasiparticle
hopping along the c axis will produce the observed angular
dependence of ρn

c , which will be shown later. This naturally
explains the different angular dependences observed between
ρab and ρc.

III. THE PHENOMENOLOGICAL MODEL

The transport data described above indicate that above the
3D superconducting transition in the stripe-ordered LBCO
there are two types of carriers responsible for the in-plane
and c-axis transport respectively. These different pairs inhabit
subspaces of different dimensions. One subspace, let us call
it A, consists of two-dimensional arrays of superconducting
stripes, where pairs with finite momentum condense. The
superconducting pairs formed in the stripes of a given plane
remain confined to this plane which determines the BKT
character of the transition. The other subspace, call it B, in-
cludes areas where the pairing has a different symmetry (it is
most likely a conventional d-wave one, which is common for
cuprates [25]) and hence the corresponding order parameter
field does not couple to the one of the stripes. We assume that
the subspace B consists of narrow channels oriented along the
c axis, probably formed by columnar defects. These pairs are
unable to achieve phase coherence due to the phase slips and
flux flows. Since due to the momentum mismatch there is no
pair tunneling between A and B subspaces (otherwise it will
break momentum conservation), the transport along the c axis
can remain resistive even below the BKT transition as seen
experimentally. Since according to Eqs. (2.3) and (2.4) the ob-
served ρc is proportional to the resistivity of the normal state,
to explain the angular dependence of the magnetoresistivity,
we have to study the normal state resistivity ρn

c .

1Both Eqs. (2.3) and (2.4) have the prefactor ρn
c , which encodes

the dependence on the direction of the magnetic field. We assume
that the bulk critical fields Hc1, Hc2 and the activation energies �slip,
�flow all have negligible dependence on the direction of the in-plane
magnetic field.

FIG. 7. The quasiparticle of the Dirac fermion type with
anisotropy compatible with the peculiar PDW configuration, where
black and red ellipses correspond to the cross sections of the Dirac
cones in nearest neighboring layers.

To estimate ρn
c we adopt a simplified model of quasiparticle

hopping to illustrate that the desired angular dependence of
ρn

c can be attributed to quasiparticles of the Dirac fermion
type with anisotropy compatible with the peculiar PDW con-
figuration shown in Fig. 6. At present we do not have any
microscopic model to support this claim. However, we are
forced to introduce the Dirac quasiparticles by the weight of
the evidence coming from the experimental data. As demon-
strated in Appendix B, the scenario where quasiparticles has
quadratic dispersion should be excluded. The discussion be-
low provides further details.

In the simplified model, we consider two layers in the unit
cell instead of four.2 The simplest arrangement corresponds to
Dirac fermions with anisotropy compatible with the peculiar
PDW configuration as shown in Fig. 7, where the main axes
of the cross sections are along the directions of the stripes
and rotated by 90 degrees in the nearest neighboring layer.
Although the d-wave superconducting regions do not have the
stripe order, they do still have the LTT structure, where there
is an anisotropy of the Cu-O hopping. In one direction, the
Cu-O-Cu bonds are in line, while at 90 degrees there is a bend
of 2φ about 7 degrees (for an estimation of the tilt angle, refer
to Fig. 15(a) of [26] ). The bend direction alternates from one
O site to the next, and rotates 90 degrees between adjacent
layers. This could be a potential mechanism responsible for
the anisotropy investigated here.

Since the spin degree of freedom is irrelevant in the fol-
lowing discussion, we focus on a model of spinless Dirac
fermions. In terms of the momentum label kz in the c direction,
the Hamiltonian can be written as

Hquasi =
∑
k,kz

�†(k, kz )H(k, kz )�(k, kz ), � =
(

ψ+
ψ−

)
,

H(k, kz ) =
(

vxkxσx + vykyσy −t (1 + e−ikza0 )I
−t (1 + e+ikza0 )I vykxσx + vxkyσy

)
, (3.1)

where k = (kx, ky ) is the in-plane momentum, ± labels the
two layers in a unit cell, and a0 is the lattice constant in the c

2The parallel stripes in the next-nearest neighboring layer are
shifted by a half period, doubling the number of layers per unit
cell, but this does not have an effect on the rotation of the axis of
anisotropy, and it is the stripe direction that matters for the oscillation
of the magneto-resistivity, as shown by the experimental data.
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direction. The anisotropy shown in Fig. 7 is characterized by
γ 2 ≡ vx/vy �= 1. Now we apply an in-plane magnetic field in
the ab plane:

B = (B cos θ, B sin θ, 0) ⇒ A = Bz(sin θ,− cos θ, 0),
(3.2)

where θ is the angle between the in-plane magnetic field and
the stripe direction. It does not matter with respect to which
layer in the unit cell θ is defined since the system is invariant
under a rotation by 90 degrees. The in-plane magnetic field
appears in the Hamiltonian through

(kx, ky) → (kx − qezB sin θ, ky + qezB cos θ ), (3.3)

where qe is the electron charge and z = −idkz acts as a differ-
ential operator. The c-axis resistivity can be calculated via the
Kubo formula:

1

ρn
c

= − q2
et2

2π

∫
d2k dkzdk′

z

(2π )4

∫
dy

2T
sech2

( y

2T

)

× Tr
[
(e−ikza0+ik′

za0 )

× Im GR
−(y; k; kz, k′

z ) Im GR
+(y; k; k′

z, kz ) + (eikza0−ik′
za0 )

× Im GR
+(y; k; kz, k′

z ) Im GR
−(y; k; k′

z, kz )
]
, (3.4)

where the Green’s functions are defined within each layer in
a unit cell. For a meaningful calculation, we introduce point
disorders within each layer, which can be of two types for the
Dirac fermions:

Hdis(r) =
(

V1(r) + V2(r)σz 0
0 V1(r) + V2(r)σz

)
, (3.5)

where the point disorders are short-range correlated:

Vi(r) = 0, Vi(r)Vj (r′) = �iδi jδ
(2)(r − r′), i, j = 1, 2.

(3.6)
These point disorders can be caused by point defects and
vortex cores within the Cu-O plane. The effect of the point
disorders can be collectively characterized by a parameter
β ≡ (�1 + �2)/(4vxvy), and we are assuming weak disorder
β � 1. To the leading order in t2, and under the condition
of large anisotropy (γ 2 � 1 or γ 2  1), the c-axis resistivity
ρn

c (θ ) can be approximated by the following expression:

ρn
c (θ ) = ρc,0

g(θ ) + g(π/2 − θ )
,

g(θ ) =
√√√√ 1

γ 2 cos2 θ + γ 2 sin2 θ

1
γ 2 sin2 θ + γ 2 cos2 θ

× f

⎛
⎝ξ

√
1

γ 2
cos2 θ + γ 2 sin2 θ

⎞
⎠,

f (x) =
∫

dy sech2y
y2

y2 + x2
, (3.7)

where ρc,0 ∝ βt−2 does not depend on θ , and the parameters
γ , ξ are defined as

γ 2 = vx/vy, ξ = qeBa0
√

vxvy/(2T ). (3.8)

The result respects the symmetry under γ → 1/γ , which is
required since we have the freedom to name the directions.

FIG. 8. The fitting of the c-axis resistivity according to Eq. (3.7),
in correspondence to Fig. 5. The blue solid line represents the
theoretical prediction, while the orange solid dots represent the ex-
perimental data. Materials and methods for these original data are
discussed in Appendix C.

The fitting of Fig. 5 according to Eq. (3.7) is shown in Fig. 8.
It is clear that the c-axis resistivity varies periodically with
the direction of the in-plane magnetic field. The period of the
resistivity oscillation is π/2, and the minima of the resistivity
lie at kπ/2 while the maxima lie at (2k + 1)π/4, where k =
0, 1, 2. . .. These features agree well with the experimental
data. In plotting Fig. 8, we assumed an average velocity v =√

vxvy equal to 0.1% the speed of light, roughly the velocity
of the Dirac fermions in graphene. Accordingly, to produce
the observed amplitude of oscillation shown in Fig. 5, we
obtain a relatively large anisotropy γ 2 ≈ 0.18, or equivalently
γ 2 ≈ 5.7. In contrast, as discussed in Appendix B, the con-
ventional fermions with quadratic yet anisotropic dispersion
cannot produce the observed amplitude of oscillation shown
in Fig. 5 with a realistic fermion mass. In this sense, the
experimental data favor the possibility of Dirac fermions. By
combining Eq. (3.7) together with Eq. (2.4), we can obtain
the dependence of the c-axis resistivity on the magnitude of
the in-plane magnetic field for a fixed temperature. In Figs. 9
and 10 we show the fitting of our result to the experimental

FIG. 9. The dependence of the c-axis resistivity on the magni-
tude of the in-plane magnetic field, shown for a fixed direction of the
magnetic field (in fact, the direction of resistivity maximum). The
blue solid line is the theoretical prediction from Eqs. (3.7) and (2.4),
and the orange solid dots are from the experimental data. Materials
and methods for these original data are discussed in Appendix C.
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FIG. 10. The dependence of amplitude of the c-axis resistivity
oscillation on the magnitude of the in-plane magnetic field. The blue
solid line is the theoretical prediction from Eqs. (3.7) and (2.4), and
the orange solid dots are from the experimental data. Materials and
methods for these original data are discussed in Appendix C.

data, which utilizes the anisotropy parameter γ = 0.42 ob-
tained previously. The consistency is reasonably good given
our simple model of anisotropy and approximate functional
form for large anisotropy.

The angular dependence of the c-axis resistivity in the
simplified model described above can be understood as fol-
lows. In order to conduct along the c axis, the Dirac fermions
have to hop between layers. From one layer to another, the
probability of such hopping is proportional to the amount
of overlapping between the two cross sections of the Dirac
cones determined by the temperature, as shown in Fig. 7.
The in-plane magnetic field has the effect to shift the cross
sections in different layers by different amounts along the
direction perpendicular to the in-plane magnetic field, thus
changing their overlap, as shown in Fig. 11. If the Dirac
cone in each layer is isotropic, such shifting will also be
isotropic, then the overlapping between the cross sections and
consequently the hopping is also isotropic, resulting in an
angle-independent c-axis resistivity. Otherwise, if there is
anisotropy in the Dirac cone, the amount of overlapping be-
tween the cross sections changes with the shifting direction,
resulting in an angle-dependent hopping and c-axis resistivity.
The above argument is illustrated schematically in Fig. 11.
The periodicity in the angular dependence is fixed by the rota-
tional symmetry—in each layer, the stripe configuration gives
us a C2 symmetry, while in each unit cell, the orthogonal stripe
directions of the neighboring layers enhance the symmetry to
C4. As a result, we will have a four-fold periodicity, namely
the π/2 period in the c-axis resistivity. As a bonus point, the
anisotropy in the Dirac cone as well as the hopping along c
axis relaxes the quasi-2D nature of the system inherited from
the layer structure, to the extent that the weak localization
effect is negligible, leaving us a finite c-axis resistivity.

IV. DISCUSSION

In the current paper, we have argued that the recent angle-
resolved c-axis resistivity measurements of the stripe-ordered
LBCO, together with temperature dependence, imply the

FIG. 11. The schematic illustration of the mechanism of the
oscillation observed in the c-axis resistivity in the presence of an
in-plane magnetic field. The tips of the Dirac cones in nearest
neighboring layers are shifted by the in-plane magnetic field. The
magnitude of the shift is fixed by the strength of the magnetic field
and the lattice constant, while the direction of the shift varies with
the direction of the magnetic field. If there is anisotropy, such a shift
will produce a varying overlap between the cross sections, and thus
a varying c-axis resistivity.

existence of two weakly coupled subsystems containing su-
perconducting pairs of different symmetry. Pairs of the first
type are located on charge stripes and are confined to ab
planes with the peculiar PDW configuration first proposed in
[3], such that the interlayer Josephson coupling is nullified.
The pairs of the other type must have a different symmetry,
they are most likely conventional d-wave pairs, whose pres-
ence is due to doping inhomogeneities. The one-dimensional
character of the c-axis transport indicates that these pairs
must traverse the sample along narrow channels along the
c direction without interruption, likely formed by columnar
defects. The layer decoupling can be destroyed by defects in
the charge-stripe order. Then, with decreasing temperature,
the two subsystems merge into one and first go through a
glassy transition to a dissipationless state, and then evolve into
a Meissner state.

The phenomenological model of the two-subsystem pic-
ture consists of preformed pairs moving in the charge stripes,
and pairing of quasiparticles confined in the columnar de-
fects. It can provide a good, qualitative explanation of the
temperature dependence of the experimental data. In the mean
time, the observed dependence of the c-axis resistivity on
the direction of the in-plane magnetic field can be explained
by introducing anisotropy of the normal state quasiparticles
compatible with the peculiar in-plane stripe order, and the
experimental data favor the possibility of the quasiparticles
being Dirac fermions (which we will discuss further at the
end of this section). As a consequence, when we apply a
magnetic field strong enough to destroy the coherence be-
tween the preformed pairs, and free the Dirac fermions to
propagate in three dimensions, we will obtain a resistive state
in presence of weak disorder. Such a resistive state has a zero
Hall response due to the particle-hole symmetry of the Dirac
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fermions, which is consistent with the experimental findings
[4]. This gives support to the quasiparticle picture over the
Bose metal picture about the nature of such a resistive state.

The Dirac fermion picture favored by the experimental data
as proposed in this paper is unusual, so we emphasize the logic
behind our reasoning here. To explain the magnetoresistivity,
we have two options at hand: one is a quasiparticle mecha-
nism, and the other is a Bose metal. We can rule out the later
option since the incoherent pairs would not react to the direc-
tion of the magnetic field. As a consequence there would be no
oscillation of the magnetoresistivity as seen in Fig. 5. As far as
the quasiparticle mechanism is concerned, the first candidate
is the conventional quasiparticles with quadratic dispersion.
However, in Appendix B we have shown that in order to
explain the experimental data, the quasiparticle mass must be
vanishingly small. This brings us to the next candidate on the
list, which is the Dirac fermions. We have shown in the main
text that the Dirac fermions produce a surprising agreement
with the experimental data (the oscillation pattern with respect
to the direction of the in-plane magnetic field, and the oscil-
lation amplitude with respect to the strength of the in-plane
magnetic field), given the simplicity of our phenomenology.
Therefore, our result provides a minimal phenomenological
model that is consistent with the experimental data. Although
we are forced to introduce the Dirac quasiparticles by the
weight of the experimental data, we admit that at present we
cannot suggest any microscopic justification for this hypothe-
sis. To date, Dirac fermions are found in topological insulators
and semimetals like graphene. For d-wave superconducting
cuprates, spinons with linear dispersion are proposed for the
undoped system [27], and Bogoliubov quasiparticles (effec-
tively of spin 1/2 and charge 0) can present a Dirac fermion
type dispersion along the nodal direction of the Brillouin zone
[28], but the normal state quasiparticles (of spin 1/2 and
charge e) with Dirac fermion type dispersion still evade direct
or indirect experimental observations. To our knowledge, the
only exception is the observation of a closely related type-II
Dirac fermion in cuprates with a different chemical substitu-
tion, La1.77Sr0.23CuO4, where the same Cu and O bands are
involved and the observed tilted linear dispersion is attributed
to the tight-binding band structure [29]. Therefore, we hope
that our work may encourage theoretical efforts in the direc-
tion of Dirac fermions in the stripe-ordered LBCO.

The phenomenological theory discussed in this paper has
relations with other theories previously proposed. The the-
oretical description in [13] provides a possible microscopic
mechanism for the preformed pairs moving on the charge
stripes and quasiparticles hopping between layers, using a
strongly correlated Kondo lattice model, but the quasiparti-
cles are conventional fermions with quadratic dispersion. On
the other hand, Dirac fermions have been proposed [30,31]
to explain the magnetically induced resistive state in disor-
dered superconducting films, but the Dirac fermions are of
the composite type. Thus, a consistent microscopic mech-
anism for the phenomenological theory discussed in this
paper requires further investigations. On the experimental
side, a definitive experimental evidence should come from the
angle-resolved photoemission spectroscopy (ARPES) identi-
fied with the normal state band structure, as has been done for
La1.77Sr0.23CuO4. The position of the Dirac point should be

tunable by changing the chemical substitution and the doping
level, which is also subject to experimental observations. In
addition to the Dirac fermions, the formation mechanism, the
geometric property, and the distribution of the narrow super-
conducting channels that host the Dirac fermions also call for
a further investigation. Other experimental observations such
as thermal transport measurements are needed to obtain a full
understanding of these detailed properties.
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APPENDIX A: QUASIPARTICLES
WITH LINEAR DISPERSION

Here we show details of the calculation of the c axis normal
conductivity σc due to hopping of quasiparticles with linear
dispersion (namely the Dirac fermions), using the simplified
model introduced in the main text. The inverse of σc will be
the c axis normal resistivity ρn

c discussed in the main text.

1. Green’s Function for Linear Dispersion

The Hamiltonian for the Dirac fermions is

Hquasi =
∑
k,kz

�†(k, kz )H(k, kz )�(k, kz ), � =
(

ψ+
ψ−

)
,

H(k, kz ) =
(

vxkxσx + vykyσy −t (1 + e−ikza0 )I
−t (1 + e+ikza0 )I vykxσx + vxkyσy

)
, (A1)

where k = (kx, ky ), ± labels the two layers in a unit cell, and
a0 is the lattice constant in the c direction. In presence of
the in-plane magnetic field, we need to perform the following
substitution:

kx → k̃x = kx − qezB sin θ

ky → k̃y = ky + qezB cos θ, (A2)

where z = −idkz in the momentum representation. The Mat-
subara Green’s function Ĝ ≡ −〈��†〉 is determined by the
following equation:

[iωn − H(k; kz )]Ĝ(iωn; k; kz, k′
z ) = δ(kz − k′

z )

(
I 0
0 I

)
.

(A3)

The matrix Green’s function Ĝ can be partitioned as

Ĝ =
(

G+ F
F̄ G−

)
,

×
{

G+ = −〈ψ+ψ
†
+〉, G− = −〈ψ−ψ

†
−〉

F = −〈ψ+ψ
†
−〉, F̄ = −〈ψ−ψ

†
+〉 . (A4)
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To evaluate the conductivity to leading order in t , we can just
keep the zeroth order Green’s functions:

F (0)(iωn; k; kz, k′
z ) = 0, F̄ (0)(iωn; k; kz, k′

z ) = 0,

G(0)
+ (iωn; k; kz, k′

z )

= − 1

2π

∫
dz

iωn + vxk̃xσx + vyk̃yσy

ω2
n + m2 + v2

x k̃2
x + v2

y k̃2
y

ei(kz−k′
z )z,

G(0)
− (iωn; k; kz, k′

z )

= − 1

2π

∫
dz

iωn + vyk̃xσx + vxk̃yσy

ω2
n + m2 + v2

y k̃2
x + v2

x k̃2
y

ei(kz−k′
z )z, (A5)

and the physical Green’s function GR
± can be obtained by the

analytic continuation iωn → ω + i0+. Now we introduce the
point disorders within each layer mentioned in the main text:

Hdis(r) =
(

V1(r) + V2(r)σz 0
0 V1(r) + V2(r)σz

)
,

Vi(r) = 0, Vi(r)Vj (r′) = �iδi jδ
(2)(r − r′), (A6)

where i, j takes the values 1,2. The point disorders introduce
a self-energy to the Dirac fermions as

�R(ω; k; kz, k′
z ) = �1

∫
d2k

(2π )2
GR

±(ω; k; kz, k′
z )

+ �2

∫
d2k

(2π )2
σzG

R
±(ω; k; kz, k′

z )σz.

(A7)

The calculation of �R involves the following integral, which
can be approximated as [32]∫

d2k

(2π )2

ω + i0+ + vxk̃xσx + vyk̃yσy

(ω + i0+)2 − (
v2

x k̃2
x + v2

y k̃2
y

)
≈ A

2(2π )2

∫ ∞

−∞
dx

〈
ω + i0+ + vxk̃xσx + vyk̃yσy

(ω + i0+)2 − x

〉
ω

,

= A

2(2π )2

∫ ∞

−∞
dx

ω + i0+

(ω + i0+)2 − x
= −i

|ω|
4vxvy

, (A8)

where the average is over the cross section v2
x k̃2

x + v2
y k̃2

y =
ω2, and A = ν(|ω|)/|ω| = 2π/(vxvy) with ν(|ω|) being the
density of states. In the end, the disorder averaged Green’s
function can be represented as

GR+(ω; k; kz, k′
z )

= − 1

2π

∫
dz

ω + i� + vxk̃xσx + vyk̃yσy

−(ω + i�)2 + v2
x k̃2

x + v2
y k̃2

y

ei(kz−k′
z )z,

GR
−(ω; k; kz, k′

z )

= − 1

2π

∫
dz

ω + i� + vyk̃xσx + vxk̃yσy

−(ω + i�)2 + v2
y k̃2

x + v2
x k̃2

y

ei(kz−k′
z )z, (A9)

where �(ω) = |ω|(�1 + �2)/(4vxvy). In the following cal-
culations, we assume that �(ω) � |ω|, which means a weak
disorder β ≡ (�1 + �2)/(4vxvy) � 1.

2. Kubo Formula for c-axis Conductivity

We focus on the DC conductivity obtained as setting k → 0
and taking the limit ω → 0 in the end. The current operator
with k → 0 is

Jz(0, ω) = qet
∑

k

[�†(ω; k, kz )�z(kz )�(ω; k, kz )],

�z(kz ) =
(

0 ie−ikza0I

−ieikza0I 0

)
. (A10)

Then the c-axis conductivity can be derived from the Kubo
formula

Re σc(ω) = 1 − e−βω

2ωV

∫ ∞

−∞
dt eiωt 〈J†

z (0, t )Jz(0, 0)〉, (A11)

where V = V2DVz is the size of the system. In the leading order
(σc ∝ t2), we obtain

σc(ω) = i

ω
q2

et2�zz(ω), (A12)

where �zz(ω) is obtained from its Matsubara representation
�zz(i	n):

�zz(i	n)

= 1

π2V

∑
k

∑
kz,k′

z

∫∫
dξdξ ′ tanh(ξ/2T ) − tanh(ξ ′/2T )

i	n + ξ − ξ ′

× Tr [(e−ikza0+ik′
za0 )

× Im GR
−(ξ ; k; kz, k′

z ) Im GR
+(ξ ′; k; k′

z, kz ) + (eikza0−ik′
za0 )

× Im GR
+(ξ ; k; kz, k′

z ) Im GR
−(ξ ′; k; k′

z, kz )]. (A13)

Then the c-axis conductivity in the DC limit ω → 0 is

σc = − q2
et2

πV

∑
k

∑
kz,k′

z

∫
dy

2T
sech2

( y

2T

)
Tr [(e−ikza0+ik′

za0 )

× Im GR
−(y; k; kz, k′

z ) Im GR
+(y; k; k′

z, kz ) + (eikza0−ik′
za0 )

× Im GR
+(y; k; kz, k′

z ) Im GR
−(y; k; k′

z, kz )], (A14)

and we need to perform the disorder average for the expres-
sion in Eq. (A14). Under the weak disorder condition β � 1,
we can ignore the vertex correction and replace the individual
Green’s function GR

± with its disorder average GR± determined
in Eq. (A9).

3. Calculation of the c-axis Conductivity

We consider the evaluation of Eq. (A14) with GR
± re-

placed with GR±. The integration over kz, k′
z can be carried out

straightforwardly, while the integration over k can be carried
out using the strategy shown in Eq. (A8). Finally, we obtain

σc = q2
et2

2πvxvy

∫
dy

2T
sech2

( y

2T

)
[I (y, θ ) + I∗(y, θ )], (A15)
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where the function I (y) has the following expression:

I (y > 0, θ ) =
(〈

y2 + �2 + vxvy(kxk′
x + kyk′

y)

4y� − iF+

〉
+

+
〈

y2 + �2 + vxvy(kxk′
x + kyk′

y)

4y� + iF−

〉
−

)
,

I (y < 0, θ ) =
(〈

y2 + �2 + vxvy(kxk′
x + kyk′

y)

4|y|� + iF+

〉
+

+
〈

y2 + �2 + vxvy(kxk′
x + kyk′

y)

4|y|� − iF−

〉
−

)
. (A16)

The subscript ± denotes the two layers within a unit cell, and the average is parametrized by α ∈ [0, 2π ) according to the
following rules:

+ : kx = |y| cos α

vx
, ky = |y| sin α

vy
; k′

x = −qeBa0 sin θ + |y| cos α

vx
, k′

y = qeBa0 cos θ + |y| sin α

vy
,

F+ = v2
y (−qeBa0 sin θ + |y| cos α/vx )2 + v2

x (qeBa0 cos θ + |y| sin α/vy)2 − y2,

− : kx = qeBa0 sin θ + |y| cos α

vy
, ky = −qeBa0 cos θ + |y| sin α

vx
; k′

x = |y| cos α

vy
, k′

y = |y| sin α

vx
,

F− = v2
x (qeBa0 sin θ + |y| cos α/vy)2 + v2

y (−qeBa0 cos θ + |y| sin α/vx )2 − y2. (A17)

Introducing the following parameters:

ε0 ≡ vqeBa0, vx = vγ , vy = v/γ ,

β = (�1 + �2)/(4v2), (A18)

we can express I (y, θ ) + I∗(y, θ ) = J (y, θ ) + J (y, π/2 − θ )
as

J (y, θ ) =
〈

8βy2[(1 + β2)y2 + P]

(4βy2)2 + Q2

〉
α∈[0,2π )

,

P(α) =
(

y2 cos2 α

γ 2
+ γ 2y2 sin2 α + γ ε0|y| cos θ sin α

−ε0|y| sin θ cos α

γ

)
,

Q(α) = 1

γ 2

( |y| cos α

γ
− ε0 sin θ

)2

+ γ 2(γ |y| sin α + ε0 cos θ )2 − y2. (A19)

An important feature of σc expressed in the above formulas
is that it is symmetric under γ → 1/γ , since the system is
invariant under rotation by 90 degrees, or in another word,
we have the freedom to define x, y axis in neighboring layers.
The analytical and numerical evaluation of the average over
α presents obstacles due to the singular behavior of the in-
tegrand. As a practical approximation, we work in the limit
γ � 1 and β � 1, and take into account only the dominating
contributions near the singular points of the integrand. The
singular points are determined by

Q ≈ 0 ⇒ cos α1,2 ≈ γ ε0 sin θ

|y| , α1 + α2 = π, (A20)

and the function J (y, θ ) is approximated as

J (y, θ ) ≈ 1

2π

∫
dα

8βy2[y2 + P(α1)]

(4βy2)2 + [Q′(α1)]2(α − α1)2

+ 1

2π

∫
dα

8βy2[y2 + P(α2)]

(4βy2)2 + [Q′(α2)]2(α − α2)2

≈ 1

γ 6

∣∣∣∣cos θ

sin θ

∣∣∣∣ y2

y2 + ε2
0 cos2 θ/γ 2

. (A21)

Substituting this into Eq. (A15), we obtain

σc(θ ) ≈ q2
et2

2πβvxvy

1

γ 6
[K (θ ) + K (π/2 − θ )]

K (θ ) =
∣∣∣∣cos θ

sin θ

∣∣∣∣
∫

dy

2T
sech2

( y

2T

) y2

y2 + ε2
0 cos2 θ/γ 2

.

(A22)

This approximate result misses the information from the op-
posite limit γ  1, which can be cured by performing a
symmetrization according to the required symmetry under
γ → 1/γ . Finally, we obtain

σc(θ ) ≈ q2
et2

2πβvxvy

(
γ 2 + 1

γ 2

)3

[g(θ ) + g(π/2 − θ )],

g(θ ) =
√

(1/γ 2) cos2 θ + γ 2 sin2 θ

(1/γ 2) sin2 θ + γ 2 cos2 θ

× f (ξ
√

(1/γ 2) cos2 θ + γ 2 sin θ ),

f (x) =
∫

dy sech2y
y2

y2 + x2
, (A23)

where we have introduced the parameter ξ = ε0/(2T ). The
fitting of Eq. (A23) to the experimental data is shown in the
main text, and we obtain γ 2 = vx/vy ≈ 0.18 for the averaged
velocity equal to 0.1% the speed of light.

APPENDIX B: QUASIPARTICLES
WITH QUADRATIC DISPERSION

Here we discuss the c axis normal conductivity σc due to
hopping of quasiparticles with quadratic dispersion, where the
inverse of σc will be the c axis normal resistivity ρn

c . We will
show the reason why such conventional quasiparticles with
quadratic dispersion fail to explain the experimental data.
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1. Green’s Function for Quadratic Dispersion

The Hamiltonian for the conventional fermions is

Hquasi =
∑
k,kz

�†(k, kz )H(k, kz )�(k, kz ), � =
(

ψ+
ψ−

)
,

H =
(

ε+(k) −t (1 + e−ikza0 )
−t (1 + eikza0 ) ε−(k)

)
,

ε+(kx, ky) = ε−(ky, kx ) = k2
x

2mx
+ k2

y

2my
− μ, (B1)

where in the presence of the in-plane magnetic field, we need
to perform the substitution shown in Eq. (A2). The Matsubara
Green’s function Ĝ ≡ −〈��†〉 is determined by

[iωn − H(k, kz )]Ĝ(iωn; k; kz, k′
z ) = δ(kz − k′

z )I, (B2)

where the matrix Green’s function again can be partitioned as

Ĝ =
(

G+ F
F̄ G−

)
, (B3)

and to evaluate the conductivity to leading order in t , we can
just keep the zeroth order Green’s functions:

F (0)(iωn; k; kz, k′
z ) = 0, F̄ (0)(iωn; k; kz, k′

z ) = 0,

G(0)
+ (iωn; k; kz, k′

z ) = 1

2π

∫
dz

1

iωn − ε+(k, z)
ei(kz−k′

z )z,

G(0)
− (iωn; k; kz, k′

z ) = 1

2π

∫
dz

1

iωn − ε−(k, z)
ei(kz−k′

z )z,

(B4)

where ε±(k, z) ≡ ε±(kx − qezB sin θ, ky + qezB cos θ ). We
then take into account the effect of the disorder within each
layer:

V = 0, V (r)V (r′) = �δ(2)(r − r′). (B5)

Consequently, the disorder-averaged physical Green’s func-
tion can be presented as

GR±(ω; k; kz, k′
z ) = 1

2π

∫
dz

ei(kz−k′
z )z

ω + i/(2τ ) − ε±(k, z)
, (B6)

and τ is the elastic scattering relaxation time, which can be
taken as a constant τ = 1/(2πν�) with ν being the constant
density of states in 2D, if we consider low enough tempera-
tures.

2. Calculation of the c-axis Conductivity

We can still use the Kubo formula shown in Eq. (A14),
where the trace operation becomes trivial. In case of weak
disorder such that the vertex correction can be ignored, we just
replace the Green’s function GR

± with the disorder-averaged

ones GR±. Similar in spirit to the strategy shown in Eq. (A8),
here we replace the integration over k with an integration over
energy, for example:∫

d2k

(2π )2

f (k)

ω + i/(2τ ) − ε+(k, z)

≈ ν

∫
dζ

〈
f (k)

ω + i/(2τ ) − ζ

〉
FS+

, (B7)

FIG. 12. The schematic plot of the c-axis resistivity according to
Eq. (B8) and Eq. (B9), in correspondence to Fig. 4 in the main text.

where the average is over the Fermi surface determined by
ε+(k, z) = 0. Following this strategy, in the leading order in
t2, the c-axis conductivity is obtained as

σc(θ ) =
〈

4νq2
et2τ

1 + τ 2μ2 f 2(θ )
+ 4νq2

et2τ

1 + τ 2μ2 f 2(π/2 − θ )

〉
FS

,

(B8)

where the function f (θ ) takes the expression

f (θ ) = (
√

ξγ sin θ + γ cos ϕ)2

+
⎛
⎝−

√
ξ

γ
cos θ + 1

γ
sin ϕ

⎞
⎠

2

− 1,

γ =
√

my

mx
, ε0 = (qeBa0)2

√
mxmy

, ξ = ε0

2μ
, (B9)

and 〈· · · 〉FS is simply the average over ϕ ∈ [0, 2π ]. A
schematic plot of Eq. (B8) and (B9) in terms of the resis-
tivity ρn

c = 1/σc is shown in Fig. 12. As can be seen from
Fig. 12, although it presents the desired period and locations
of maxima/minima, it has a qualitatively different shape near
the maxima and minima. To make it even worse, in order
to produce the amplitude of oscillation in ρn

c observed in
experiments, we have to adopt an effective electron mass on
the order of 10−5 the bare electron mass, which is unrealistic.
In this sense, the experimental data favor the Dirac fermions
over the conventional fermions.

APPENDIX C: MATERIALS AND METHODS

Here we discuss the materials and methods for obtaining
the experimental data. Single crystals of LBCO with x = 1/8
studied here were grown in an infrared image furnace by the
floating-zone technique. They are pieces from the same cylin-
drical crystal used previously to characterize twodimensional
fluctuating superconductivity [1]. Single crystal samples were
cut and aligned into slabs, then fixed on a 0.5 mm thick
sapphire substrate. The imperfection in the sample alignment,
estimated from X-ray diffraction, is less than 0.5 degrees. For
transport measurements, current contacts were made at the
ends of the longest dimension of crystals to ensure uniform
current flow, while the voltage contacts were made on both
the top and side of the crystals. We used a low-temperature
contact annealing procedure [1] leading to low contact re-
sistance (<0.2 	) that allows us to measure the resistivity
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over seven orders of magnitude. The angular-resolved mag-
netoresistance (ARMR) was measured using the four-point
probe in-line method in a Quantum Design Physical Prop-
erty Measurement System (PPMS) equipped with a 14 T
superconducting magnet. The resistivity measurements have
been performed with the current applied along either the
in-plane direction or the c direction using DC and AC trans-
port options with a current range of 50 µA − 1 mA. Both
DC and AC methods produced the same results. The data

shown are from the AC transport measurements (17 Hz).
For crystal alignment with the magnetic field, horizontal
and vertical sample rotators with an angular resolution of
∼0.1◦ were used. Temperature-dependent ARMR data were
taken from 1.8 K to 300 K, at various fields up to 14 T.
ARMR data at fixed temperatures and magnetic fields were
taken insitu with a vertical sample rotator as a function of
the in-plane magnetic field angles (θ ) in a range of −15◦
to 355◦.
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