
PHYSICAL REVIEW B 107, 085116 (2023)
Editors’ Suggestion

Entanglement dynamics and phase transitions of the Floquet cluster spin chain
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Cluster states were introduced in the context of measurement-based quantum computing. In one dimension,
the cluster Hamiltonian possesses topologically protected states. We investigate the Floquet dynamics of the
cluster spin chain in an external field, interacting with a particle. We explore the entanglement properties
of the topological and magnetic phases, first in the integrable spin lattice case and then in the interacting
quantum walk case. We find, in addition to thermalization, dynamical phase transitions separating low- and
high-entanglement nonthermal states, reminiscent of the ones present in the integrable case, but differing in their
magnetic properties. The nonergodic phases are characterized by the emergence of magnetic order, persistent at
long times.
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I. INTRODUCTION

One of the main trends in quantum information is the
search for “computational phases” of matter [1,2]. Indeed,
since the formulation of models of fault-tolerant [3,4],
robust-against-error [5] quantum computation using logical
qubits encoded in the degenerate ground state of gapped
Hamiltonians and their topological excitations [6], or us-
ing persistent, highly entangled quantum states [7], different
models of quantum computation have been introduced. The
main idea has been to use the properties of topological
phases of matter, protected by some kind of symmetry to
implement the qubit logical operations, as in the topological
model [8] or the measurement-based model [9] of quantum
computation.

One obstacle in the way of self-correcting fault-tolerant
quantum computation is the need for robust topologically
ordered phases supporting highly entangled states as a uni-
versal quantum resource [10–13]. In fact, closed quantum
systems with short range, local interactions, conserving only
total energy, tend to thermalize: The expected value of the
observables is essentially given by their microcanonical value
as derived from the eigenvector thermalization [14].

As a result of thermalization, the states, although highly en-
tangled, cannot be a useful resource for quantum computation
[15]. If, in addition, the system is periodically driven by an
applied field, breaking then the energy conservation, it should
evolve towards an infinite-temperature ergodic state [16,17].
In systems without extrinsic disorder, protection against ther-
malization can also be reached by ergodicity breaking, in
analogy with classical glasses, due to the existence of addi-
tional conservation laws [18–20], or by the emergence of a
decoupled subspace of nonthermal states [21,22].

In Floquet systems, in which we are interested, exceptions
to relaxation towards a thermal state are integrable systems
whose large number of local constants of motion prevent the

*alberto.verga@univ-amu.fr

emergence of an ergodic phase [23,24], and systems with
dynamical constraints, as in arrays of Rydberg atoms [25] sup-
porting many-body scar states [26–28]. Another possibility
for suppression of unbounded energy absorption in strongly
driven systems is the emergence of a robust (albeit not exact)
conserved quantity leading to dynamical freezing [29]. For a
recent review, see Ref. [30].

The search for nonergodic phases in Floquet systems
is motivated by the possibility of using them to engineer
effective Hamiltonians in order to describe, for instance,
topological materials [31] or, from a more fundamental
perspective, to investigate nonequilibrium phases of matter
[32–34]. One interesting possibility is to create, using Floquet
dynamics, nonthermal states possessing useful entanglement
properties, similar to the ones found in symmetry-protected
topological phases of gapped Hamiltonians [35], having the
potential to be a universal resource for quantum computation,
such as, for instance, the cluster state [36,37].

Breaking of ergodicity in Floquet systems was recently
demonstrated in the case of a periodically perturbed ergodic
Ising spin chain [38,39] and in the case of a quantum cellu-
lar automaton [40]. Although the two models are unrelated,
the mechanisms of ergodicity breaking have in common the
emergence of approximate integrals of motion [29]: the mag-
netization in the first case [38] and the conservation of the
quasiparticle number in the second case [40].

For generic Ising chains, the emergence of an approximate
conservation law, absent in the undriven system, is related
to the presence of resonances. These resonances are a many-
body generalization of the single-particle resonances that, by
interference at particular driven frequencies, coherently de-
stroy amplitude tunneling [41], leading to energy eigenstate
localization. At strong driving, these resonances effectively
create constraints (similar to the ones in scar models), even-
tually leading to the freezing of the system dynamics and
the breaking of the system’s ergodicity [39]. In contrast to
the Ising chain, ergodicity breaking in the automaton is due
to the persistence of weakly interacting quasiparticles in the
chaotic regime, even in the absence of energy eigenstate
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localization, leading to the fragmentation of the Hilbert space
according to their content in quasiparticles [40].

Our aim in this paper is to investigate the fate of a
topological phase associated with the ground state of an error-
correcting Hamiltonian, such as the cluster phase [1,42], first
when externally driven by a periodic field and then when
embedded in a larger Hilbert space by the introduction of
an interaction with a quantum walker [43]. More specifically,
we generalize the Floquet cluster model, which is integrable,
by introducing an exchange coupling between the chain spins
and the walker spin (the coin internal degree of freedom). We
chose a coupling such that it preserves the original symmetries
but destroys the local integrals of motion of the cluster chain.
The effect of the walker is to mediate, through its ballistic
motion, the interaction between spatially separated spins, ef-
fectively adding a nonlocal interaction [44,45].

We focus on a one-dimensional spin chain whose Floquet
dynamics can be solved analytically (Sec. II) and demonstrate
the existence of a topological phase issued from the original
static phase; in addition, computing the Loschmidt rate [46],
we show that the integrable model undergoes a dynamical
phase transition [47,48] that can be characterized by the con-
comitant change in the entanglement level [49,50].

The extension of the model to an interacting quantum walk
[44,51] allows us to determine the persistence of the two
phases present in the integrable case, the cluster phase and
the topologically trivial paramagnetic phase (Sec. III). In fact,
we find that even if the dynamical phase transition is always
present in a range of parameters, new nonergodic phases
appear, characterized by a finite magnetization and global en-
tanglement. We discuss the mechanism of ergodicity breaking
in terms of the effective magnetic interaction mediated by the
particle between fixed spins. We show, in particular, that a
phase transition between low- and high-entanglement phases
is possible even for the case corresponding to the trivial phase
in the original cluster chain.

II. FLOQUET CLUSTER MODEL

We consider a system of L spins in a one-dimensional
lattice. The system’s Hamiltonian is [52]

HC = −J

2

L−1∑
x=0

Zx−1XxZx+1, (1)

where J is the coupling constant of the “cluster” interaction;
we denote σx = (Xx,Yx, Zx ) the vector of Pauli matrices at
each site x = 0, . . . , L − 1 (we take the lattice constant as the
unit of length). We assume periodic boundary conditions, to
ensure translation invariance. In addition, an external field B
applies in the x direction:

HB = −B

2

L−1∑
x=0

Xx. (2)

The spin Hilbert space is spanned by the basis states
|s〉 = |s0 · · · sL−1〉, sx = {0, 1}, labeled by the integer s =
0, . . . , 2L − 1. The ground state of HC , the cluster state, is
the eigenvector with eigenvalue 1 common to every term in
HC ; it can be written in terms of the controlled Z operator

CZ = diag(1, 1, 1,−1):

|C〉 =
∏

x

CZx,x+1|+〉L, (3)

where |+〉 = (|0〉 + |1〉)/21/2 (we use the tensor product no-
tation “⊗” only in ambiguous cases or to separate Hilbert
subspaces). The HC Hamiltonian is in fact a sum of stabilizer
operators [5], whose terms commute with each other and
commute with the Hamiltonian, hence providing an extensive
number of integrals of motion.

The cluster state (3) is a highly entangled quantum state
that can also be defined over an arbitrary graph of qubits, used
as an information resource for measurement-based quantum
computing [7,9]. “Highly entangled” means that its Schmidt
dimension, the minimal number of parameters needed for its
specification, grows exponentially with the number of qubits.
It also has the property of maximal connectedness: Any pair
of qubits can be projected into a Bell state by appropriately
measuring the intermediate qubits, joining them along a path
on the graph [53]. A consequence of the exponential Schmidt
rank and the inherent entanglement nonlocality, the cluster
state is a genuine quantum resource that goes beyond the pos-
sibilities of any classical resource: A computation based on
the cluster state cannot, in principle, be efficiently simulated
by a classical algorithm [54].

The dynamics of the system is governed by the Floquet
operator

F (J, B) = e−iHC e−iHB

=
L−1∏
x=0

ei(J/2)Zx−1XxZx+1

L−1∏
x=0

ei(B/2)Xx (4)

such that the state of the system |ψ (t )〉 at time t changes in
one time step (our unit of time, with h̄ = 1) according to

|ψ (t + 1)〉 = F (J, B)|ψ (t )〉. (5)

The parity operators

Po =
∏
x∈o

Xx, Pe =
∏
x∈e

Xx, P = PoPe, (6)

where o, e stand for odd and even sites, commute with F :

[Pe, F ] = [Po, F ] = [P, F ]. (7)

Therefore HC is symmetric under the Z2 × Z2 group gener-
ated by Pe,o, and its ground state belongs to a topological phase
protected by symmetry [42,55]. This suggests the question
about the fate of this topological phase in the Floquet case.

Both the Hamiltonian HC + HB and the Floquet F models
possess the same Z2 × Z2 symmetry; however, F do not
commute with HC + HB, breaking the energy conservation,
which leads to essentially different dynamical properties. The
Hamiltonian model, often called the transverse field cluster
model, was extensively analyzed, starting with the calculation
by Suzuki [56], who used the Jordan-Wigner transformation
to find the eigenspectrum of HC + HB, and followed by the
description of the phase transition between the J → 0 param-
agnetic phase and the B → 0 topological phase [1,57] and the
discussion of the phase diagram when magnetic interactions
are added [42,58–60].
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To find the spectrum of F , we follow the usual method
[56,61] and introduce the Jordan-Wigner transformation
[62,63] of the spin operators in terms of the fermion operators,

{ fx, fy} = { f †
x , f †

y }, { fx, f †
y } = δxy. (8)

It is defined by

Xx = 1 − 2 f †
x fx,

Yx = iKx( f †
x − fx ), (9)

Zx = −Kx( f †
x + fx ),

where

Kx =
x−1∏
y=0

eiπ f †
y fy =

x−1∏
y=0

(1 − 2 f †
y fy). (10)

Once introduced into (1), the Jordan-Wigner transformation
leads to the bilinear fermion Hamiltonian

HC = J

2

L−1∑
x=0

( f †
x−1 − fx−1)( f †

x+1 + fx+1), (11)

HB = B

2

L−1∑
x=0

(2 f †
x fx − 1). (12)

The translation invariance allows the use of the Fourier
transform

fx = eiπ/4

√
L

∑
k

eikx fk, (13)

where the set of wave numbers in the Brillouin zone k ∈
(−π, π ] is divided into “even” and “odd” sectors,

e =
{

k = ±πn

L
| n = 1, 3, . . . , L − 1

}
= e+ ∪ e−,

o =
{

k = πn

L
| n = 0,±2, . . . ,±(L − 2), L

}
= {0} ∪ o+ ∪ o− ∪ {π}, (14)

for an even and odd number of fermions, respectively (taking
L to be even). Indeed, the sign of the parity operator P depends
on the total number of fermions NF ,

P = (−1)NF , NF =
L−1∑
x=0

f †
x fx; (15)

for even NF , we impose antiperiodic boundary conditions
fL+1 = − f1, and we impose periodic boundary conditions
fL+1 = f1 for NF odd. The Fourier transformed cluster Hamil-
tonian is, in the even sector,

HC = J
∑
k∈e+

[cos 2k( f †
k fk − f−k f †

−k )

+ sin 2k( f †
k f †

−k + f−k fk )], (16)

and the field Hamiltonian is

HB = B
∑
k∈e+

( f †
k fk − f−k f †

−k ). (17)

Similar expressions hold for the odd sector.

The unitary map F is, in the even sector,

F (e) =
∏
k∈e+

Vk

∏
k∈e+

Wk, (18)

where

Vk = eiJC†
k (cos 2kZ+sin 2kX )Ck , Wk = eiBC†

k ZCk (19)

and

Ck =
(

fk

f †
−k

)
, C†

k = ( f †
k f−k ). (20)

In the odd sector we add the terms k = 0, π :

F (o) = F0

∏
k∈o+

Vk

∏
k∈o+

WkFπ , (21)

where

F0 = ei(J+B)(2 f †
0 f0−1), Fπ = ei(J+B)(2 f †

π fπ −1). (22)

Combining the two rotations, we obtain the Floquet operator
in terms of an effective Hamiltonian HF :

F (e) = e−iHF , F (o) = F0e−iHF Fπ , (23)

where

HF = −
∑

k

C†hkCk (24)

and

hk = εknk · σ = dk · σ, (25)

with dk = εknk and

cos(εk ) = cos J cos B − sin J sin B cos 2k; (26)

nk = 1

| sin εk|

⎛
⎝ sin J cos B sin 2k

sin J sin B sin 2k
sin J cos B cos 2k + cos J sin B

⎞
⎠ (27)

is a unit vector of (nx, ny, nz ) components. Note that similar
effective Hamiltonians appear in the Floquet transverse field
Ising model [61] and topological quantum walks [43].

A. Winding number

The dispersion relation εk (26) is represented in Fig. 1 as
a function of J for fixed B; two Dirac points appear in the
Brillouin zone k ∈ (−π, π ] when J = B, for εk = 0, π . We
demonstrate now that the change in the band structure through
the line in parameter space J = B separates two topological
distinct phases, related to a chiral symmetry of the effective
Hamiltonian.

We show in Fig. 2 the locus of nk for two values of (J, B).
When the spin coupling constant is small with respect to the
applied field J < B, the vector describes an arc, and in the
opposite case it describes a complete circle; both run twice
around the center.

We note that the vector A

A = A(B) =
⎛
⎝ sin(B)

− cos(B)
0

⎞
⎠ (28)
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0

π/2

π

k

−π

0

π

E
±(

k
)

−π

0

π

B = 0.7(π/2)

FIG. 1. Family of quasienergy bands εk of the effective Hamilto-
nian, as a function of the quasimomentum k and J , for B = 0.7π/2
fixed. The gap between positive and negative quasienergy bands
closes on the line J = B, at εk = 0 when k = ±π/2 and at εk = π

when k = 0, π .

is perpendicular to nk, independently of k. The existence of
such a vector is related to the symmetry

eiπA·σ/2he−iπA·σ/2 = −h, (29)

indicative of a chiral invariance of the effective Hamiltonian.
Indeed, applying the rotation

e−iπX/4eiBY/2he−iBY/2eiπX/4 = hc, (30)

we can off-diagonalize the effective Hamiltonian, explicitly
exhibiting its chiral symmetry:

hc =
(

0 g(k)
ḡ(k) 0

)
= dc(k) · σ, (31)

where g(k) = dcx(k) − idcy(k) and where

dc = εk

sin εk

⎛
⎝ sin J sin 2k

sin J cos B cos 2k + cos J sin B
0

⎞
⎠ (32)

nzk

−1

0

1

n xk

−1

0

1

n
y
k

−1

0

1

J < B

nzk

−1

0

1

n xk

−1

0

1

n
y
k

−1

0

1

J > B

FIG. 2. The rotation axis vector of the effective Hamiltonian
accumulates a zero phase for J < B and a 4π phase for J > B, when
k spans the Brillouin zone. (The two circles are shifted for clarity; the
dot marks the origin of coordinates.) Parameters: J > B case, J =
0.9π/2, B = 0.7π/2; and J < B case, J = 0.5π/2, B = 0.7π/2.

−π 0 π
J

−π

0

π

B

0

2−2

FIG. 3. Winding number as a function of the coupling J and field
B. The two dots correspond to the trivial and nontrivial phases of
Fig. 2.

lies on the (x, y) plane. Therefore the winding number can be
easily computed using the standard formula [64]

ν = 1

2π i

∫ π

−π

dk
d

dk
ln g(k). (33)

(Note that the wave number can be extended to the whole
Brillouin zone k ∈ (−π, π ], since εk is even.)

Noting that the coordinates of dc define the parametric
equations of an ellipse centered at (0, cos J sin B), we obtain

ν =
{

2 sgn(sin J ) if tan J > tan B
0 if tan J < tan B; (34)

the critical points locate at the lines J = B mod π/2, split-
ting the (J, B) plane into sectors with winding number ν =
0,±2 (Fig. 3).

We remark that the use of (33) to characterize the topo-
logical phases is based on the symmetries of the effective
Hamiltonian; in particular, the winding number is invariant
under the unitary transformation (30) leading to the manifestly
chiral form hc (31). However, it is possible to generalize ν

from the symmetries of the Floquet operator instead of those
related to the effective Hamiltonian [65]. More specifically,
one may take into account the fact that εk is a quasienergy and
define a pair of winding numbers associated with the closing
of band gaps at εk (J, B) = 0, π [66,67]. The result (34) shows
that the Floquet generalization of the cluster model does not
destroy the cluster nontrivial topology [55,68].

B. Eigenstates

The diagonalization of the effective Hamiltonian can be
obtained by a unitary Bogoliubov transformation

Rk = 1√
2
√

1 − nz(k)

(
1 − nz(k) n−(k)
−n+(k) 1 − nz(k)

)
, (35)

where n± = nx ± iny and the columns of Rk are the eigenvec-
tors of hk corresponding to the eigenvalues ∓εk , respectively.
This transformation maps the Fermi operators Ck into the new
operators

Ak =
(

ak

a†
−k

)
= R†

k

(
fk

f †
−k

)
(36)
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preserving the commutation relations. In the new basis the
effective Hamiltonian reads

HF =
∑
k>0

A†
k

(
εk 0
0 −εk

)
Ak . (37)

The corresponding evolution operator factorizes as

F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∏
k∈e+

Fk, even

F0

⎛
⎝∏

k∈o+

Fk

⎞
⎠Fπ , odd,

(38)

where

Fk = eiC†
k hkCk . (39)

Its eigenstates span a four-dimensional space for each k, cor-
responding to the four eigenvalues of the fermion number
operators f †

k fk and f †
−k f−k . The basis of this four-dimensional

space is

{|0〉, f †
k |0〉, f †

−k|0〉, f †
−k f †

k |0〉}, (40)

where fk|0〉 = f−k|0〉 = 0. The vacuum state |0〉 corresponds
to the completely polarized state |+〉L in the original spin
configuration basis [cf. (3)]. In this basis, the eigenstates of
Fk are

Fk|±k〉 = |±k〉,
(41)

Fk|±kk〉 = e±iεk |±kk〉,
where

|±k〉 = f †
±k|0〉,

|+kk〉 = 1 − nz(k) + n−(k) f †
−k f †

k√
2(1 − nz(k))

|0〉,

|−kk〉 = n+(k) − (1 − nz(k)) f †
−k f †

k√
2(1 − nz(k))

|0〉 (42)

(see Appendix A). The k = {0, π} subspace is spanned by the
eigenvectors

{|0〉, f †
0 |0〉, f †

π |0〉, f †
0 f †

π |0〉}, (43)

which also are the eigenvectors of F0Fπ with eigenvalues

{e−2i(J+B), e−i(J+B), e−i(J+B), 1}, (44)

respectively. Therefore these terms contribute with a constant
phase and do not play any dynamical role.

C. Time evolution

The discrete time evolution of an arbitrary state |ψ (t )〉 =
F (t )|ψ (0)〉, for integer t , is governed by

F (t ) =
∏

k

Fk (t ) =
∏

k

eitεkC†
k nk ·σCk , (45)

where the product is over the relevant set of wave numbers [cf.
(14) and (38)]. For the vacuum state |0〉, a simple calculation

using the eigenstates (42) gives (see Appendix A)

|t〉 =
∏

k

[cos(εkt ) + inz(k) sin(εkt )

+ in−(k) sin(εkt ) f †
−k f †

k ]|0〉. (46)

We are interested in the time evolution of the entanglement,
when the system is initially in the product state |0〉 (or,
equivalently, |+〉L). A computable measure of the global en-
tanglement can be defined in terms of the spin purity trρ2

x ,
where ρx is the reduced density matrix of the spin located at
x, assuming that the system is in an arbitrary pure state |ψ (t )〉
[69]:

Q(t ) = 2 − 2

L

L−1∑
x=0

trρ2
x (t ). (47)

This formula can easily be written as

Q(t ) = 1 − 1

L

∑
x

〈ψ (t )|σx|ψ (t )〉2, (48)

where, from the expression of the density matrix,

ρx = 1 + 〈σx〉 · σ

2
, (49)

we derived the purity in terms of the expected value of the
spin at site x, 〈σx〉 [61]. The Q measure, first introduced in
Ref. [70], quantifies the multipartite entanglement of a given
state as an average over the bipartite entanglement of each
spin with the rest of the system [69]. Q vanishes only if the
global state is a product state and is maximum for a globally
entangled state. It distinguishes localized and chaotic random
states [71] and is useful to characterize the quantum phase
transition of the XY model [72]. The time evolution of Q in
the kicked Ising model, extensively investigated by Lakshmi-
narayan and Subrahmanyam in Ref. [61], shows recurrences
to an initial unentangled state and smooth variations for zero
field, but at nonzero transverse field, its dynamics becomes
very complex due to the large energy spectrum (time scales)
of the Floquet operator (even if the system is completely
integrable).

Equations (9) and (46) imply that the expected values in the
evolved vacuum state of 〈Yx〉(t ) and 〈Zx〉(t ) vanish; therefore

Q0(t ) = 1 − 1

L

∑
x

〈t |Xx|t〉2

= 4

L

∑
x

〈t | f †
x fx|t〉(1 − 〈t | f †

x fx|t〉), (50)

which gives (see Appendix A)

Q0(t ) = 4

L

∑
k∈B

Nk

[
1 − 1

L

∑
k∈B

Nk

]
, (51)

where

Nk = 〈t | f †
k fk|t〉 = (

1 − n2
z

)
sin2(εkt ). (52)

In the case J = B = π/2, nz(k) = 0, and εk = 2k (Dirac
dispersion) the global entanglement for the initial |0〉 state
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J

0

π/2

π

B

0

π/2

π

Q 0

0

1

FIG. 4. Mean global entanglement Q0, averaged over the last 50
time steps (over 200), as a function of J and B. Computed from (51)
with 1000 values of k, L = 1000.

reduces to

Q0(t ; J = B) = 1 − δt,mL/4, (53)

where we used the identity

1

L

∑
k∈B

sin2(2kt ) = 1 − δt,mL/4

2
, (54)

with m being an integer (t = 0, 1, . . ., and L is even). We
find that the entanglement present revivals with a period pro-
portional to the system’s size, in which it is maximal during
one step. This result is similar to the one obtained for the
transverse Ising model [61]. In the J = 0 case, Q0 vanishes,
while for B = 0 it becomes

Q0(t ; J = 0) = 0, Q0(t ; B = 0) = 1 − cos4(Jt ) (55)

and tends to 1/2 at large times

lim
t→∞Q0(t ; B = 0+) = 5/8. (56)

The global entanglement as a function of J and B is repre-
sented in Fig. 4. On the critical lines J = B, Q0 is maximum,
reaching the absolute maximum at J = B = π/2. Therefore
Q0 is a good indicator of the symmetry-breaking phase transi-
tion, although it cannot detect the distinct topological phases.

D. Loschmidt echo

To characterize the topological phases, we investigate the
Loschmidt echo [46],

L(t ) = |〈0|t〉|2, (57)

here defined for the initial completely polarized pure state |0〉,
and |t〉 is given by (46)

L(t ) =
∏
k∈B

{1 − [1 − nz(k)2] sin2(εkt )}. (58)

FIG. 5. Loschmidt echo rate λ(t ) [(a) and (b)] and global en-
tanglement Q0(t ) [(c) and (d)] of the full polarized state. (a) Near
J, B = 0 we find the behavior of the Hamiltonian model; (b) for
larger values of J and B, λ(t ) loses regularity. In both (a) and (b), the
topological phase (J > B, black upper line) is clearly distinguished
from the trivial one (J < B, red bottom line). The global entangle-
ment [(c) and (d)] follows a similar pattern with higher values for
J > B. Parameters: L = 600; for (a) and (c), (J = 0.03, B = 0.01)
and (J = 0.01, B = 0.03), and for (b) and (d), (J = 0.6, B = 0.2)
and (J = 0.2, B = 0.6).

A more suitable quantity is the intensive variable, well defined
in the large-system limit L → ∞, the Loschmidt ratio

λ(t ) = − 1

L
lnL(t ), (59)

which we represent in Figs. 5(a) and 5(b). We observe that
the evolution of λ(t ) well discriminates the trivial J < B and
nontrivial J > B phases; however, only near the Hamiltonian
limit (in the sense of the Trotter approximation of the evo-
lution operator) is λ(t ) smooth, with isolated singularities
(cusps) signaling the presence of a dynamical phase transi-
tion [Fig. 5(a)], similar to the Ising transverse field model
[46,48]. For larger values of (J, B), it becomes irregular, with
an increase in the frequency of the singularities and dis-
playing intermittent large fluctuations at long times (revivals)
[60,61,73].

We find that in Fig. 5(c), the first peaks of Q0 are well cor-
related with the period t = π/2J, 3π/2J, . . . ≈ 52, 157, . . .,
predicted by formula (55), valid for vanishing field. Moreover,
the long-time behavior of both λ(t ) and Q0(t ) essentially
depends on the topological phase rather than the actual values
of J and B.

More precisely, in the small-coupling limit J, B → 0 with
J/B ∼ O(1), one can introduce a small parameter 	t = t/n
with n → ∞ such that J = J̄	t and B = B̄	t , where the
barred constants are order 1: J̄, B̄ ∼ O(1). As a consequence,
the Floquet evolution (4), F (t ) = F (J, B)t , can be approxi-
mated by [74]

F (t ) ≈ lim
	t→0

(e−iH̄C	t e−iH̄B	t )
t

	t = e−i(H̄C+H̄B )t , (60)

the evolution operator of the transverse cluster model, where,
in the barred Hamiltonians, we substituted the barred cou-
plings, (J̄, B̄). The behavior of λ(t ) [Fig. 5(a)] is compatible
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with the known phenomenology of the model [60]. In contrast,
when both couplings are order 1, the stroboscopic dynamics
appears to be irregular [Fig. 5(b), even if the underlying sys-
tem is integrable]. Note, however, that the asymptotic levels
of the Loschmidt rate (as well as the global entanglement) are
comparable in the two regimes.

It is worth noting that the global entanglement given by
(51) follows qualitatively the same pattern as the Loschmidt
ratio (58) [Figs. 5(c) and 5(d)]: The J > B case corresponds
to a high global entanglement with a maximum at the first
singular point, and the other case (J < B) corresponds to
a featureless, low-entanglement evolution. However, the Q
measure appears to follow a smooth evolution for small (J, B),
in contrast to the appearance of a cusp in λ [Figs. 5(a) and
5(c)], showing that the global entanglement is a poor indicator
of the dynamical phase transition.

In conclusion, the integrable Floquet cluster model dis-
plays a dynamical phase transition between low- and
high-entanglement states, extending the phases of the static
Hamiltonian’s ground state to the driven nonequilibrium
regime. The existence of symmetry-protected topological
phases in Floquet models is well documented in integrable
or near-integrable models, for example, the ones related to
quantum cellular automata [23,24] or nonthermal states in
constrained systems [26,40,75]; yet it is of interest to in-
vestigate Floquet nonergodic states in noiseless interacting
systems.

III. CLUSTER QUANTUM WALK

To investigate nonergodic behavior beyond the integrable
case, we extend the Floquet cluster model to consider the
interaction of the chain spins with a moving particle. We
introduce then a quantum walk, which in the continuous limit
represents a Dirac particle, coupled with the lattice spins by
an exchange interaction characterized by the parameter Jw.
Related models of interacting quantum walks were used in the
study of thermal relaxation [44,45] and spin dynamics [76].

The system’s total Hilbert space H is the tensor product of
the walker and spin chain Hilbert spaces; it is then spanned by
the basis vectors

|xcs〉 = |x〉 ⊗ |c〉 ⊗ |s〉 ∈ H, x ∈ {0, . . . , L − 1},
c ∈ {0, 1}, s ∈ {0, . . . , 2L − 1},

(61)

where x is the particle position, c is the particle spin, which
we call the coin state (heads or tails) as usual for quantum
walks, and s is the spin configuration (|s〉 = |s0 · · · sL−1〉; cf.
Sec. II). An arbitrary state of the interacting quantum walk can
be written in the canonical basis (61),

|ψ〉 =
∑
xcs

ψxcs|xcs〉,
∑
xcs

|ψxcs|2 = 1. (62)

We choose the particle-spin exchange interaction in the
form

Wx(Jw ) = exp(iJwτ (x)Xx ), (63)

where τ (x) is the particle coin operator, the Pauli matrix in
the x direction (it flips the coin and acts as the identity on the
position and spin spaces). This operator acts at each site x, on

the local coin-spin four-dimensional Hilbert space, spanned
by vectors of the form ⎛

⎜⎜⎝
x00x

x01x

x10x

x11x

⎞
⎟⎟⎠, (64)

where 0x, 1x denote a spin configuration with a spin up or
down at site x, respectively. Note that W acts as the identity
on the position Hilbert subspace. Therefore Wx(Jw ) couples
the coin and the local spin degrees of freedom, entangling the
walker with the spin chain.

The motion operator M of the walker is controlled by its
coin degree of freedom c. At each time step we modify the
coin state applying a rotation of angle θ ,

R(θ ) = exp(−iθτ (y) ), (65)

whatever the particle position (τ (y) is the y Pauli matrix), fol-
lowed by a switch of the particle’s position between neighbors
x + 1 → x if the coin state is heads and x → x + 1 if it is tails:

M|x1s〉 = |x + 10s〉, M|x + 11s〉 = |x0s〉. (66)

The sequence MC, where

C(θ ) = 1L ⊗ R(θ ) ⊗ 12L , (67)

is the usual definition of a quantum walk [43]; with our
choice of coin it belongs to the class of Dirac walks, which
tend in the continuous limit to the Dirac evolution operator
[76–79]. Schematically, the walker’s behavior in the absence
of coupling with the spins (Jw = 0), depends on the rotation
angle; when θ ≈ π/2, the particle propagates as a chiral exci-
tation walking to the left (if c = 1) or to the right (if c = 0);
when θ ≈ π/4, the particle propagates ballistically in the two
directions.

Finally, we apply the interaction operators, particle-spin W
and spin-spin F . In summary, the one-time-step operator is

FQW = F (J, B)W (Jw )MC(θ ). (68)

The coupling of the particle with the spins (Jw = 0), through
W and F , introduces an entanglement mechanism between
the two parties. It also modifies the system’s dispersion prop-
erties leading to strong effects on the walker’s motion. In
Appendix B we show the explicit formulas of the different
operators in (68).

It is important to note that the introduction of the coupling
(63) preserves the Z2 × Z2 symmetry of the cluster model,
Eq. (7). However, it deeply modifies the properties of the
system, which cannot be considered anymore as “integrable”
[80]. One may identify an integrable or quasi-integrable
quantum system by the presence of weakly interacting quasi-
particles, related to the existence of a set of local conservation
laws. The introduction of the walker changes the nature of
the degrees of freedom: local and attached to the lattice in the
case of the spins, and spread over the whole lattice in the case
of the particle. (Appendix B shows the complex structure of
the Floquet operator, which cannot be associated with a local
effective Hamiltonian.)

The nonlocality of the particle wave function allows the
spins to indirectly interact at large distance [76,81]. This fact
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does not forbid the emergence of dynamical approximated
conserved quantities [38,39] and might facilitate the creation
of long-range entanglement through the transfer of informa-
tion carried by the walker to separated locations. Qualitatively,
using a naive mean-field reasoning, the spin-particle interac-
tion adds to the applied field B; it might thus suppress its
action and restore, for example, a highly entangled phase even
if J < B. This is the point we want to study.

In contrast to the effect of an external field, the presence of
a self-consistent spin-particle interaction enlarges the cluster
model Hilbert space; this means that the state of the spin
subsystem is generally mixed. The spin subsystem is then
described by the reduced density matrix

ρs(t ) = trxcρ(t ), ρ(t ) = |ψ (t )〉〈ψ (t )|, (69)

where |ψ (t )〉 is the state that has evolved from the initial
|ψ (0)〉 state, usually a simple product state,

|ψ (t )〉 = Ft
QW|ψ (0)〉. (70)

In (69) we took the partial trace over the particle and coin
degrees of freedom {x, c} of the total system density matrix
ρ(t ).

Motivated by the formula proposed by Peres [82], we in-
troduce a generalization of the Loschmidt overlap to mixed
systems in terms of reduced density matrices, here the one of
the spin subsystem,

Ls(t ) = trρs(0)ρs(t )

trρs(0)2
, λs(t ) = − 1

L
lnLs(t ), (71)

which, for pure systems and initially mixed systems, reduces
to the usual definitions [82]. Note that this definition does not
use the subsystem evolution operator, which in our case is not
necessarily a local Floquet Hamiltonian: Formula (71) gen-
eralizes the overlap of two pure states with the one built from
the forward and backward time evolution of the partial density
matrices of a larger pure system. Alternative definitions do
use the subsystem Hamiltonian to evolve an initial mixed state
[83,84].

Entanglement of the spin subsystem can be measured with

Qs(t ) = 1

L

L∑
x=1

τs(x, t ), τs(x, t ) = 4 det ρs(x, t ), (72)

where τs is the so-called (one) tangle [85], and

ρs(x, t ) = trs̄x ρs(t ), s̄x = s1 · · · sx−1sx+1 · · · sL,

is the density matrix of the spin at site x, which is also a
straightforward generalization of the pure-state case. For a
single-spin reduced density matrix, the tangle is useful to
visualize the entanglement distribution along the chain. In
addition, the walker space density is characterized by the wave
function amplitudes ψxcs(t ) = 〈xcs|ψ (t )〉:

p(x, t ) = trcsρ(t ) =
∑

cs

|ψxcs(t )|2. (73)

It simply gives the probability of finding the walker at position
x and time t , whatever its coin state and surrounding spin con-
figuration. The magnetization distribution per site is defined
by

〈σ〉(x, t ) = trρs(x, t )σ; (74)

TABLE I. Numerical parameters used in cases (a)–(d) of Fig. 6:
size L = 14; particle-spin coupling Jw = 1.6; J > B [cases (a) and
(b)], J < B [cases (c) and (d)]; θ ≈ π/2 [cases (a) and (c)], θ = π/4
[cases (b) and (d)].

Case J B θ Qs Thermal

(a) 0.03 0.01 1.6 high no
(b) 0.03 0.01 π/4 low no
(c) 0.2 0.6 1.6 low no
(d) 0.2 0.6 π/4 high yes

its mean value over the sites, in contrast to the pure-state case,
does not entirely determine the global entanglement, although
in our model where the number of degrees of freedom in the
spin subsystem overwhelms the number in the particle sub-
system, its behavior is well correlated with the entanglement
measures. In particular, in a mixed state, the norm of 〈σ〉 is
smaller than 1.

We compute the time evolution of an initial state in which
all spins are polarized in the + direction, and the particle is
located at x = L/2 with a heads coin state (c = 0)

|ψ (0)〉 = |L/2, 0〉|+〉L. (75)

In the uncoupled case Jw = 0 this state would evolve into
a quantum Dirac walk for the particle subspace [78,86] and
into the Floquet cluster for the spin subspace (cf. Sec. II).
Instead, when Jw = 0, the different degrees of freedom, posi-
tion, coin, and spins get entangled. We compare the results of
four numerical computations labeled as cases (a)–(d) in Fig. 6,
using the parameters of Table I. The four cases use a strong
particle-spin coupling Jw = 1.6 ≈ π/2, corresponding to the
exchange between the coin and local spin states. In addition,
we distinguish the J > B cases [cases (a) and (b)] and the
J < B cases [cases (c) and (d)]. Finally, for the same values
of (J, B), we compare the weak dispersive cases [cases (a)
and (c)], θ ≈ π/2, with the strong dispersive ones [cases (b)
and (d)], θ = π/4.

Case (a) keeps similarities with the integrable case shown
in Figs. 5(a) and 5(c), in which a dynamical phase transition
appeared. The coupling with the walker results in an increase
in the entanglement after the transition, as can be inferred
form the behavior of Qs(t ) and λs(t ) [Fig. 6(a), rows 3 and
4]. One remarkable effect of the particle-spin interaction is
the localization of the walker state around its initial position
[Fig. 6(a), row 1]. This effect contrasts with the fast dispersion
of the θ = π/4 [case (b)]. The asymptotic state reached in
both case (a) and case (b), which only differ in the particle
dispersion, possesses essentially identical entanglement and
magnetization properties. However, the transition dynamics
between the initial low-entanglement state and the final highly
entangled state is singular in the case where the walker is
localized and smooth when the particle-spin interaction is
important. It is worth noting that in case (a) the initial growth
of the spin entanglement is faster in the region where the
particle density is low and is depleted in the central region
as measured by τs(x, t ) [Fig. 6(a), row 2].
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FIG. 6. Influence of the spin-particle interaction on the dynamical topological transition. Rows: particle distribution p, tangle τ , global
spin entanglement Qs(t ) and magnetization per site 〈X 〉(t ), and spin Loschmidt ratio λs(t ); the initial state is |L/2, 0, +〉. For parameters, see
Table I. Columns (a)–(c) show evolution towards a highly entangled state, while column (c) shows a low-entanglement one. (c) and (d) display
a transition between low- and high-entanglement phases induced by the particle (change in the coin angle), even if J < B.

The effect of the particle on the propagation of the spin’s
entanglement is also present in cases (c) and (d). In case
(c) the walker is localized, and the spin entanglement re-
mains inhomogeneous for long times, while its mean value
Qs rapidly reaches its saturation value at a low level. The
persistence of inhomogeneities in both spin entanglement and
magnetization 〈X 〉 is typical of nonergodic chaotic states: The
evolution of the system and the long-time stationary state
depend on the initial configuration. Case (d), in which the
walker spreads over the whole space, shows entanglement
growth and homogenization, with a very small value of the
Loschmidt ratio, indicating that the system evolved into a
chaotic (thermal) state, in which the magnetization tends to

zero after an exponential relaxation. In this J < B case the
transition between the low-entanglement state [case (c)] and
the high-entanglement state [case (d)] is driven by the particle
and controlled by θ .

A significant difference exists between the integrable case
and the interacting quantum walk case. For Jw = 0 the topo-
logical phase is magnetically disordered with a vanishing
mean magnetization 〈σx〉; for Jw = 0, the topological phase
coexists with a magnetic order, as can be verified from the
results of Fig. 6, where we plot 〈Xx〉(t ) [cf. Eq. (74), where ρs

replaces |ψ〉]. In the integrable case, Qs = 1 implies 〈X 〉 = 0,
but in the interacting case the spin subsystem can be max-
imally entangled even in the presence of a finite value of
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the magnetization, due to the interaction with the particle
[Figs. 6(a) and 6(b)]. We further discuss the magnetic order
in Appendix C.

In summary (see Table I, last two columns), case (a) shows
a dynamical entanglement transition reminiscent to the one
present in the integrable case for J > B; case (b) shows a
smooth evolution of the entanglement towards a nonthermal
highly entangled state; and cases (c) and (d) illustrate the
transition between a nonthermal chaotic regime and a ther-
mal phase, respectively, induced by the interaction with the
particle and controlled by the quantum walk parameter θ .

IV. CONCLUSION

We investigated the entanglement properties of the Floquet
cluster spin chain coupled with a particle via an exchange
interaction. The system is invariant with respect to a global
Z2 × Z2 symmetry. Already in the integrable case, when the
coupling vanishes, the periodically driven spin chain exhibits
phase transitions between a low-entanglement phase and a
topological highly entangled phase, as demonstrated by ex-
plicit analytic computations.

More interestingly, we found that the (interacting) combi-
nation of the chiral particle motion with the spin chain leads
to nonthermal states and dynamical phase transitions between
low- and high-entanglement regimes. In fact, not only can the
particle inhibit the topological phase, but also it can be local-
ized by its interaction with the spins; in this case a dynamical
phase transition can arise, allowing the initial product state to
evolve into a strongly entangled one.

We identified different regimes, some of them extend-
ing the properties of the topological ordered cluster phase
of the integrable model; however, there is a difference: the
emergence of an approximately conserved magnetization. The
transition between the initial product state and the high, albeit
nonthermal, entangled state could be reached through a dy-
namical phase transition reminiscent of the one present in the
integrable case, or directly following a path of nonexponential
relaxation. Exponential relaxation to a paramagnetic regime
was also observed, typical of the infinite-temperature phase.

We note that the magnetization vanishes in this paramag-
netic regime, even if the applied field is nonzero, and that
in the nonthermal phases the presence of a long-time finite
magnetization generally correlates with the enhancement of
the entanglement with respect to the integrable case. These
effects are related to the complex magnetic interactions me-
diated by the particle scattering off the fixed spins, which

can generate effective magnetic (Ising) spin-spin couplings.
These magnetic interactions compete with the external field,
modifying the original regimes of the effective noninteracting
case and allowing the emergence of other regimes, notably
affecting the entanglement dynamics.

In our model the driven frequency is fixed (the unit of
time); however, it could be of interest to study the behavior of
the system as a function of the driving strength, in particular
the robustness of the emerging conserved law and the cor-
responding dynamical phases [30,31,87]. Another interesting
generalization would be to consider an arbitrary graph of
spins, to probe the topological properties of the correspond-
ing cluster state together with those of the underlying graph
topology.

The experimental realization of an interacting quantum
walk of the type defined by (68) is certainly challenging.
However, the basic ingredients (the cluster coupling and the
particle walk) can probably be implemented in lattices of Ryd-
berg excited atoms and combined to obtain an effective system
approaching FQW. Cluster states were recently created using
highly selective interactions of atoms in a Rydberg array [88].
Moreover, it was proposed that with a similar experimental
setup, it is possible to simulate a discrete time quantum walk
possessing nontrivial topological properties [89].

In conclusion, ergodicity can then be broken in a periodi-
cally driven system by the interplay of qualitatively different
interacting degrees of freedom, blocking the evolution to-
wards an infinite-temperature state.

APPENDIX A: EIGENVECTORS AND EVOLUTION

In this Appendix we give some details about the calcu-
lations of Sec. II. In terms of the fermion operators fk , the
Fourier components of the Hamiltonian (24) can be written as

Hk = εk[nz( f †
k fk − f−k f †

−k )

+ n− f †
k f †

−k + n+ f−k fk], (A1)

where n± = nx ± iny and nz are given by (27). The eigenvec-
tors (42) are obtained from the following identities:

Hk|0〉 = εk (−nz|0〉 + n− f †
k f †

−k ), (A2)

Hk f †
±k|0〉 = 0, (A3)

Hk f †
k f †

−k|0〉 = εk (nz f †
−k|0〉|0〉 + n+|0〉). (A4)

For example, we have

Hk (n+|0〉 − (1 − nz ) f †
k f †

−k|0〉)

= εk[−nzn+ + n−n+ f †
k f †

−k − (1 − nz )nz f †
k f †

−k − (1 − nz )n+]|0〉
= εk

[−n+ + (
n2

x + n2
y − nz + n2

z

)
f †
k f †

−k

]|0〉, (A5)

or

Hk (n+ − (1 − nz ) f †
k f †

−k )|0〉 = −εk (n+ − (1 − nz ) f †
k f †

−k )|0〉, (A6)

which leads to the eigenvector |−kk〉.
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The evolution of the vacuum state is

|t〉 = F (t )|0〉 =
∏

k

Fk (t )|0〉. (A7)

We verify that |0〉 can be written as a superposition,√
1 − nz

2
|kk〉 + n−√

2(1 − nz )
|−kk〉 =

(
1 − nz

2
+ 1 + nz

2

)
|0〉 = |0〉, (A8)

of the ±εk eigenvectors. Therefore

Fk (t )|0〉 = eiεkt

√
1 − nz

2
|kk〉 + e−iεkt n−√

2(1 − nz )
|−kk〉

= eiεkt

(
1 − nz

2
+ n−

2
f †
−k f †

k

)
|0〉 + e−iεkt

(
1 + nz

2
− n−

2
f †
−k f †

k

)
|0〉

= [cos(εkt ) − inz sin(εkt ) + in− sin(εkt ) f †
−k f †

k ]|0〉, (A9)

which leads to (46). Knowing the explicit expression of |t〉, one deduces straightforwardly Q0(t ) from its definition (51), as well
as λ(t ) from (57) and (59).

A useful formula, used to compute the global entanglement (51), is the expected value:

〈t | f †
k fk|t〉 = 〈0|(c + inzs − in+s f−k fk ) f †

k fk (c − inzs + in−s f †
k f †

−k )|0〉
= (1 − nz )2 sin2(εkt ), (A10)

where s = sin(εkt ) and c = cos(εkt ). In the previous equa-
tion we used the fact that

fk|t〉 = in− sin(εkt ) f †
−k|0〉. (A11)

Moreover, the expected value of the spin Xx does not depend
on x in the state |t〉,

〈t |Xx|t〉 = 1 − 2

L

∑
k1,k2

ei(k1−k2 )x〈t | f †
k2

fk1 |t〉, (A12)

where we used the Fourier transform (13), because the ex-
pected value of the fermion product vanishes for k1 = k2,
leading to the simple relation

〈t |Xx|t〉 = 1 − 2

L

∑
k

〈t | f †
k fk|t〉. (A13)

This formula together with (A10) allows us to obtain the
expression of Q0 (51).

APPENDIX B: INTERACTING QUANTUM WALK
OPERATOR

We show the explicit form of the operators MC(θ ),
F (J, B), and W ( jw ) which define the interacting quantum
walk evolution operator FQW, (68).

The combined motion and coin operators governing the
particle quantum walk can be written as

MC(θ ) =
∑

x

[|x + 1〉〈x| ⊗ |0〉〈1|R(θ )

+ |x〉〈x + 1| ⊗ |1〉〈0|R(θ )] ⊗ 12L . (B1)

It acts trivially on the spin Hilbert subspace and exchanges the
amplitudes of neighboring sites according to their coin state;
the coin state is rotated by an angle θ .

The cluster Floquet operator (4) is readily extended to the
whole Hilbert space:

F (J, B) → 1L ⊗ 12 ⊗ F (J, B). (B2)

Finally, the coin-spin interaction is given by

W (Jw ) = 1L ⊗
∏

x

[cos Jw12 ⊗ 12L + i sin Jwτ (x) ⊗ Xx],

(B3)
where the operator

Xx = 12x−1 ⊗ X ⊗ 12L−x (B4)

belongs to the spin Hilbert subspace and τ (x) belongs to the
coin subspace. It is worth noting that the global structure of
FQW, in particular due to the sum over x in (B1), cannot be
reduced to a tensor product of local unitary operators, as is
usual for near-neighbor interacting Hamiltonian systems (as
is indeed the case for the driven cluster model). Indeed, if
in principle it is possible to embed the quantum walk into
a local quantum automaton, it can be done, using a Fourier
space representation of the motion operator, at the cost of an
exponentially large internal particle space [90]; however, in
our case, the interaction of the walker, this construction would
give a highly nonlocal spin Floquet operator.

APPENDIX C: MAGNETIC ORDER

We showed in the main text (Sec. III) that a transi-
tion was possible even in the J < B case, between different
entanglement regimes, characterized by low-entanglement
nonergodic and highly entangled thermal states, whereas in
the three-spin interaction dominant case J > B we observed
two types of relaxation toward a highly entangled state, with
and without dynamical phase transition. We complement the
characterization of these regimes with the computation of the
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FIG. 7. Negativity between two 3-site connected and discon-
nected sets of spins. Parameters are as in Fig. 6 (vertical lines at
θ = π/4, 1.6): (a) J = 0.03, B = 0.01; (b) J = 0.2, B = 0.6; (a) and
(b) Jw = 1.6, L = 12.

entanglement negativity:

Ns(A) = ln
∣∣ρTB

s

∣∣, ∣∣ρTB
s

∣∣ = 1 + 2
∑

n

|λn|, (C1)

where AB is a bipartition of the spin subsystem and TB denotes
the partial transpose over B; the norm of the density matrix is
computed from its negative eigenvalues λn < 0 [91]. The neg-
ativity is a measure of the entanglement of mixed states, here
the spin subsystem, sensitive to the range of entanglement.

We computed Ns as a function the rotation angle θ , using
a connected A set of six spins and a disconnected 3 + 3 set
(L = 12), for the two regimes of Fig. 6, J > B and J < B.
The result is shown in Fig. 7. For J > B the system remains
in its high-entanglement phase, while for J < B it displays a
transition for values of θ ∼ 1.3 (only the qualitative behavior
can be inferred from such small system sizes, here L = 12).
A slight difference between the connected and disconnected
sets is observed for low entanglement, the disconnected set
entanglement being slightly larger than the connected set one.

The parameter Jw controls the strength of the particle-
spin coupling; by tuning its value, a near-adiabatic regime
in which the fixed spins follow the particle dynamics can
be set in. It differs from the topological and paramagnetic
phases by its magnetic order. Even in the case where J = 0,
a two-spin interaction can be mediated by the successive
particle scattering off the fixed spins, in much the same way
as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
of magnetic impurities in a metal is mediated [92]. In this
case the orientation of the spins is essentially determined by
their indirect interaction through the particle’s coin degree of
freedom.

Indeed, a simple perturbation expansion argument, in anal-
ogy with the abovementioned RKKY interaction [93], shows
that the effective spin Hamiltonian should contain a long-
range XX coupling. This coupling is at the origin of the
magnetic phase we illustrate in Fig. 8, which is qualitatively
similar to the one in Fig. 6(c). To characterize this regime, we
measured the von Neumann entropy

Sl (t ) = tr l̄ |ψ (t )〉〈ψ (t )|, l = {x, c, s}, (C2)

of the x, c, s subsystems, as well as the half-chain entan-
glement S (t ), the global spin entanglement Qs(t ), and the
expected value of the magnetization vector 〈σx〉, averaged
over x.

FIG. 8. Entanglement in the magnetic ordered phase. (a) Sub-
system spin s, position x, and coin c von Neumann entropies;
(b) Loschmidt rate; (c) half-chain entanglement entropy normal-
ized to its maximum value S0 = L/2; and (d) global entanglement.
Parameters: L = 12, J = 0.2, B = 0.6, Jw = 0.5, and θ = π/4 [com-
pare with the parameters of Fig. 6(d)].

We observe that the spin entanglement follows the parti-
cle, as measured by the von Neumann entropy [Fig. 8(a)];
the Loschmidt ratio is small, characteristic of a chaotic state
[Fig. 8(b)]; and the half-chain entropy and the global entan-
glement [Figs. 8(c) and 8(d)] saturate at levels well below
their maximum values, following the same pattern as the
von Neumann entropy, and they also are well correlated
with the stochastic variations of the Loschmidt ratio. One
important point here is that the stationary state possesses
a finite magnetization, signaling a magnetic order (Fig. 9).
This asymptotic magnetization appears as an emergent

FIG. 9. Distribution of the one-site magnetization, showing the
persistent spatiotemporal fluctuations. Parameters are the same as in
Fig. 8.
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conserved quantity [38]. We deduce that the magnetic inter-
action between the chain spins mediated by the walker, in
a near-adiabatic regime, can establish a high-entanglement
regime with magnetic order, counterbalancing the paramag-
netic effect of the external field (B > J).

In conclusion, the magnetic order can be attributed to the
spin-spin interaction mediated by the walker. It emerges for
a range of parameters characterizing the walker motion and
coupling with the spins, and its entanglement behavior essen-
tially differs with the paramagnetic (noninteracting) phase.
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