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Continuous transition from a Landau quasiparticle to a neutral spinon
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We examine a wavefunction ansatz in which a doped hole can experience a quantum transition from a charge
+e Landau quasiparticle to a neutral spinon as a function of the underlying spin-spin correlation. As shown
variationally, such a wavefunction accurately captures all the essential features revealed by exact diagonal-
ization and density matrix renormalization group simulations in a two-leg t-J ladder. Hence its analytic form
can provide an explicit understanding of the mechanism for the unconventional ground state. The transition in
the phase diagram is accompanied by a change of the hole composite from a tight charge-spin binding to a
loosely-bound hole-spin pair. In the latter, the hole carries a finite spin current but with vanishing charge current
in the degenerate ground states. We show that the charge of the hole composite here is dynamically diminished
due to an internal relative hole-spin motion, which is fundamentally distinct from a simple charge-spin separation
in a one-dimensional case. We further show that the same effect is also responsible for a strong pairing between
two doped holes in such a non-Landau quasiparticle regime.
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I. INTRODUCTION

How to properly characterize a single-particle excitation
is one of the most essential challenges in the study of the
strongly correlated Mott insulators [1–4]. In particular, a
single chargon (hole) may serve as a building block for con-
structing a doped Mott insulator. The central issue under
debate is whether such a chargon moving a quantum spin
background will still behave like a conventional Landau-
type quasiparticle or be fundamentally renormalized into
a non-Landau quasiparticle via “twisting” the surrounding
many-body spins in the background.

In analogy to the electronic “cloud” associated with a
Landau quasiparticle, it was widely believed earlier on that
such a hole in the Mott insulator may still be the Landau-type
after considering the longitudinal spin-polaron effect [5,6],
which involves a distortion in the amplitude of the local spin
magnetization around the hole. On the other hand, it was
conjectured [7] that a nontrivial many-body response from the
Mott insulator background may lead to an “unrenormalizable
Fermi-surface phase shift”, which can result in an “orthogo-
nality catastrophe” to turn the doped hole into a non-Landau
quasiparticle.

Such an “unrenormalizable phase shift” has been explic-
itly identified with the phase-string effect in the t-J [8,9]
and Hubbard [10] models as a singular nonintegrable Berry
phase acquired by the doped hole(s) moving in the quan-
tum spin background of the Mott insulator. Physically, it
implies that the hopping of the doped hole should generate
a spin-current backflow. Exact diagonalization (ED) and den-
sity matrix renormalization group (DMRG) simulations have

recently confirmed [11] such an unconventional behavior of
the doped hole in the two-dimensional (2D) square lattice.
The hidden spin-current backflow overlooked by previous
numerical works has been revealed [11] to accompany and
facilitate the hopping of the hole, leading to a nontrivial
quantum number as a direct manifestation of a non-Landau-
like quasiparticle. Making use of the variational Monte Carlo
(VMC) method, a single-hole wavefunction ansatz has been
constructed [12], which well interprets the numerical results
including the nontrivial angular momenta Lz = ±1 under a
C4 rotational symmetry for a finite-size 2D sample up to
8 × 8 [11].

The phase-string effect or the spin-current backflow here
leads to a transverse spin twist to renormalize the doped
hole. But previously a Landau quasiparticle behavior had been
still inferred in a semiclassical field-theory approach [13,14]
even with incorporating a long-range transverse dipolar spin
twist beyond the longitudinal spin-polaron effect. It is because
a singular coupling between the doped hole and the spin
currents at the short distance was omitted [15]. The latter
effect has been carefully and consistently implemented in the
wavefunction approach [12] to reproduce the correct behavior.
Nevertheless, in spite of the good agreement of the VMC
result [12] and exact numerics [11] at finite (small) sizes,
the 2D single-hole problem can be further complicated by
the antiferromagnetic (AF) long-range order, which sets in as
the thermodynamic limit is taken, which may further lead to a
self-localization of the hole. Thus, a thorough understanding
of the 2D single-hole problem has to handle both singular
effects in short-range and long-range physics together, which
is beyond the finite-size exact numerical methods.
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FIG. 1. The phase diagram of the single-hole variational ground
state as a function of the underlying spin-spin correlation controlled
by an anisotropic parameter α in a two-leg t-J ladder (see text). (a) A
schematic illustration of a quantum transition point at α = αc for a
Landau quasiparticle of charge q = +e state to become a “twisted”
quasiparticle with diminished charge q = 0 to be shown in this
paper; (b) Q0 [cf. Eq. (3)] as a function of α, which measures the
momentum splitting in the ground state (the insets) as calculated by
both DMRG and VMC methods on a 48 × 2 ladder under PBC. The
insets show the quasiparticle weight Zk at two typical α = 0.4 < αc

and α = 1.0 > αc, respectively, determined by VMC with αc ≈ 0.68
at t/J = 3.

On the other hand, it would be interesting to first focus on
the singular short-range physics, which should be generally
present even though the long-range AF order is expected to
disappear at finite doping. Besides the above VMC study on a
single hole in a finite-size system in 2D, a single-hole-doped
t-J model on a two-leg ladder may be a more suitable “toy”
system to examine such an effect as here the spin-spin cor-
relation length remains finite even at half-filling [16]. The
anisotropy of a two-leg ladder system can also provide us
more tools to continuously tune the correlation of the spin
background. The previous DMRG studies [16–18] have es-
tablished an exotic ground state for the single hole, which
behaves like a non-Landau-quasiparticle with breaking charge
translational symmetry [19]. Note that the above non-Landau-
quasiparticle picture was previously contested by another
DMRG study [20], in which a finite quasiparticle spectral
weight Zk has been explicitly measured. To reconcile both
DMRG results, it was pointed out [19] that the Landau’s one-
to-one correspondence principle is actually broken down even
though Zk still remains finite in the non-Landau-quasiparticle
regime, where the hole object is of a two-component structure,
composed of a translation-invariant Bloch wave component
and a charge-incoherent component. In other words, the
DMRG results indicate the existence of a new type of non-

Landau quasiparticle. Especially a quantum transition for the
doped hole to become a true Landau quasiparticle has been
also found by reducing the spin-spin correlation length along
the ladder direction [17–20], with the translation symmetry
and charge coherence being eventually restored. Therefore,
a wavefunction description of such a single-hole problem in
a two-leg ladder can offer a valuable proof-of-principle on
how a bare doped hole can be specifically “twisted” into a
non-Landau-quasiparticle due to the intrinsic Mott physics
even in the absence of an AF long-range order.

In this paper, we shall present a simple variational
wavefunction ansatz by incorporating the aforementioned
phase-string or transverse spin-current effect. It can accurately
capture all the essential ground-state features of a single-hole-
doped two-leg t-J ladder under a periodic boundary condition
(PBC) via the VMC method. In particular, it will describe a
doped hole as a Landau quasiparticle with charge q = +e in
the strong anisotropic limit of α � 1 (α is the ratio of chain
direction coupling and rung direction coupling, cf. Fig. 2).
In the isotropic regime of α � 1, the doped hole will ac-
quire nonzero total momenta with finite spin currents, but
its charge current will vanish in the large sample limit. The
results clearly indicate that the doped hole is a charge-neutral
“spinon” in the regime of α > αc with αc denoting a quantum
critical point (QCP), as schematically illustrated in Fig. 1(a),
which are in excellent agreement with the DRMG calculation
[cf. Fig. 1(b)]. In other words, we shall demonstrate by an
analytic wavefunction that an exotic transition resembling a
metal-insulator transition beyond a Landau paradigm [21] can
happen in a doped Mott insulator. The specific form of such
a variational wavefunction and its VMC results are briefly
outlined as follows.

Basic variational results

Such a single-hole wavefunction ansatz is given by

|�G〉1h ∝
∑

i

ei(k0xi−�̂i )ci↓|φ0〉, (1)

where |φ0〉 denotes an undoped spin-singlet background of
the two-leg ladder, and the electron annihilation operator ci↓
removes an electron of spin ↓ (without loss of generality) to
create a bare hole at site i. The ground-state momentum k0 is
along the quasi-1D ladder direction, with each rung labeled
by xi. Note that if one turns off the phase-shift operator �̂i

in Eq. (1), the wavefunction is simply reduced to a conven-
tional Bloch-wave state as the leading term of a spin polaron
wavefunction [13,22],

|�B(k0)〉1h ∝
∑

i

eik0xi ci↓|φ0〉, (2)

which is explicitly translational invariant (with the translation-
ally invariant spin background |φ0〉) to describe a Landau-like
quasiparticle of momentum k0. The phase-shift field �̂i as a
nonlocal spin operator is thus the only unconventional quan-
tity in the ground state of Eq. (1), which is to incorporate the
phase-string effect as stated above. An excellent agreement of
the VMC calculation based on Eq. (1) and its variant (i.e., a
further incorporation of the longitudinal spin-polaron effect)
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with the DMRG and ED results will be demonstrated in this
paper.

As a matter of fact, a QCP is found in the ground state as
a function of the anisotropic parameter α, by which the AF
correlation in |φ0〉 can be continuously tuned. At strong rung
limit (α � 1), k0 is found at π mod 2π (taking the lattice
constant as the unit), which corresponds to a nondegenerate
state essentially the same as the Bloch-wave state in Eq. (2).
A double-degeneracy in the ground state arises on the other
side of the QCP at larger α’s, which is characterized by non-
trivial momentum splitting k±

0 = π ± κ mod 2π . The split
as characterized by the wavevector

Q0 ≡ 2κ (3)

is shown in Fig. 1(b) as a function of α calculated by VMC and
DMRG, respectively, which both indicate a QCP at αc � 0.68
where Q0 vanishes as determined by DMRG [17–20].

In the insets of Fig. 1(b), the sharp peak(s) of the quasi-
particle spectral weight Zk specifies k0 in the ground state.
Here Zk is defined as the absolute-value squared of the overlap
between the wavefunctions in Eqs. (1) and (2) (after normal-
ization) as follows:

Zk ≡ 1
2 |〈�B(k)|�G〉1h|2 = |〈φ0|c†

k↓|�G〉1h|2, (4)

where c†
k↓ = 1/N

∑
i c†

i↓eikxi is the k space electron with ky =
0. On both sides of the QCP in Fig. 1(b), Zk is always fi-
nite, indeed consistent with the DMRG result first shown in
Ref. [20]. In particular, the nondegenerate ground state at
α < αc is a Landau quasiparticle, which can be smoothly con-
nected to the Bloch-wave state in Eq. (2). However, we shall
show that the charge of the doped hole will actually disappear
at α > αc, whereas its spin-1/2 remains unrenormalized. In
other words, the QCP represents a fundamental transition of
the doped hole from a Landau-like quasiparticle to a pure
charge-neutral spinon, which is schematically illustrated in
Fig. 1(a). Such a non-Landau-like quasiparticle with a finite
Zk±

0
indicates a two-component structure in the wavefunction

where the Landau’s one-to-one correspondence hypothesis
fails at α > αc. Indeed, besides a finite amplitude of the
Bloch-wave component (with Zk±

0

= 0), another many-body

component is also explicitly identified in the ground state,
in which a spin current pattern associated with the doped
charge is always present. The latter is found to be charge
incoherent as the total momentum k±

0 is now continuously
shared between the hole and spin degrees of freedom.

Finally, it is briefly discussed that the pairing between two
doped holes also becomes substantially enhanced at α > αc

as previously revealed by the DMRG calculation [17,23]. An
explicit pairing-mediated spin current pattern is shown based
on the present wavefunction ansatz, which illustrates how
a strong binding can be indeed realized by eliminating the
phase-string effect through the pairing of two holes.

The rest of the paper is organized as follows. In Sec. II,
we introduce the two-leg anisotropic t-J model and construct
a single-hole-doped wavefunction ansatz under the PBC. A
systematical comparison between the DMRG and VMC meth-
ods are shown on both sides of the QCP at αc. In Sec. III,
the properties of the wavefunction at α > αc are further an-
alyzed to show that, different from a Landau quasiparticle,

FIG. 2. Illustration of a two-leg ladder with anisotropic coupling
parameters ti j and Ji j of the t-J model under the PBC (see text). Here
the total number of the ladder sites is N = Nx × 2 with Nx denoting
the total number along each of the two legs, which are embedded
in 2D with a spatial ring configuration. Note that the two legs of
the ladder as rings are with different radii: rin = 2 − λ and rout =
2 + λ, respectively, in which λ is a variational parameter to specify
the phase-string operator �̂i of Eq. (9). Here the angle field θi(l ),
satisfying Eq. (10), is defined accordingly in the 2D configuration.

here the “twisted” quasiparticle carries a finite spin current
in the degenerate ground state but vanishing charge current in
the thermodynamic limit. In Sec. IV, a further discussion of
the underlying physics of the non-Landau quasiparticle be-
havior is made. In particular, how the incoherent charge
component is crucial to the pairing between doped holes is
pointed out. Finally, the conclusion and perspectives are given
in Sec. V.

II. BENCHMARKING WAVEFUNCTION ANSATZ WITH
ED AND DMRG VIA VMC CALCULATION

A. The two-leg anisotropic t-J model

In this paper, we shall study the single-hole-doped ground
state of the t-J model on an anisotropic two-leg ladder with
system size N = Nx × 2. Here the t-J Hamiltonian is given
by H = Ps(Ht + HJ )Ps, where

Ht = −
∑
〈i j〉,σ

ti j (c
†
iσ c jσ + H.c.), (5)

HJ =
∑
〈i j〉

Ji j

(
Si · S j − 1

4
nin j

)
, (6)

with 〈i j〉 denoting a nearest-neighbor (NN) bond. Here
Si and ni are spin and electron number operators on
site i, respectively. The strong correlation nature of the
t-J model originates from the no double occupancy constraint∑

σ c†
iσ ciσ � 1 on each site, which is imposed via the pro-

jection operator Ps. Generally, a two-leg ladder is anisotropic
along the chain direction (denoted as x direction) and the rung
direction (denoted as y direction) as illustrated in Fig. 2 under
PBC, where we choose the rung-direction couplings as ti j = t
and Ji j = J , and the chain-direction couplings as ti j = αt
and Ji j = αJ , with α > 0 as the anisotropic parameter. The
superexchange coupling constant J is taken as the unit and
the hopping term t/J = 3 is used throughout the paper. The
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DMRG calculation of this paper is done with 2500 saved
states to fit a truncation error up to 10−10 with 200 sweeps for
convergence. Most of the VMC calculations in this paper are
done on a 48 × 2 lattice, but no obvious change of the results
is seen as the system size changes up to 64 × 2.

B. Single-hole wavefunction ansatz

At half-filling, where the t-J model is reduced to the
Heisenberg spin model on a bipartite square lattice, the ground
state is a spin singlet state, with a finite spin-gap opened up for
the two-leg ladder case [16]. In the following, we shall denote
it as |φ0〉.

Then, based on a bare hole state created at site i by remov-
ing an electron of spin ↓ from the spin-singlet background,
i.e., ci↓|φ0〉, a Bloch-wave-like single-hole state may be con-
structed as

|�B〉1h =
∑

i

ϕB
h (i)ci↓|φ0〉, (7)

where the variational wavefunction ϕB
h (i) ∝ eikxi is a Bloch-

wave with a momentum k along the quasi-1D ladder direction
under the translation symmetry. In general, the doped hole
will induce a many-body response from the spin back-
ground, known as the phase-string effect [8,9], such that the
single-hole state can be significantly renormalized beyond the
Bloch-wave-like one in Eq. (7). How to treat such an effect
is therefore the central issue in the study of the doped Mott
physics.

An ansatz ground state has been previously proposed for
the t-J model, which is generally given in the one-hole case
as follows [12,24,25]:

|�G〉1h =
∑

i

ϕh(i)e−i�̂i ci↓|φ0〉, (8)

where a new phase factor e−i�̂i is explicitly introduced to
represent the many-body phase shift or the phase-string effect
from the spin background when a hole is created at site i. In
other words, the corresponding spin background is modified
from |φ0〉 to e−i�̂i |φ0〉. Here ϕh(i) is a variational wavefunc-
tion to be optimized, and �̂i is explicitly given by [12,24,25]

�̂i =
∑
l ( 
=i)

θi(l )nl↓, (9)

where nl↓ is the number operator of the down spin at site l .
The statistical angle θi(l ) must satisfy the condition

θi(l ) − θl (i) = ±π, (10)

for two NN sites i and l such that a sign change can be
instantly produced by the phase factor e−i�̂i when the hole
exchanges with a spin of σ = −1 during an NN hopping.
As the result, the singular part of the phase-string effect of
the t-J model can be precisely compensated via e−i�̂i due to
Eq. (10) [12,24,25]. It is important to point out that the phase
string cannot be truly “gauged away” by e−i�̂i , which only
serves as a unitary/duality transformation to turn the singular
phase string into a smooth nonlocal/topological effect such
that ϕh(i) may be still treated as a conventional (Bloch-type)
wavefunction (see below).

Note that Eq. (10) alone does not completely specify θi(l ).
A simple choice of θi(l ) satisfying Eq. (10) may be given by
θi(l ) = ±Im ln(zi − zl ) in an isotropic 2D plane [12], with
zi = xi + iyi being the complex coordinate of site i. For the
two-leg ladder case, previously an anisotropic definition of
θi(l ) was introduced [25] with an extra variational parameter.
But it can only apply to a finite ladder with an open boundary
condition (OBC). In the present paper, in order to study the
one-hole ground-state properties under the PBC, a distinct
choice of �̂i will be needed. Here we shall still use the same
isotropic definition of the statistical phase θi(l ) given above
for the isotropic 2D [12,24] but put the two-leg ladder in a 2D
plane with a spatial configuration shown in Fig. 2. With the
two legs of the ladder being bent into two rings, the PBC is re-
alized. By making two rings with distinct radii of rin = 2 − λ

and rout = 2 + λ, respectively, λ can be taken as a variational
parameter to tune the anisotropy (due to the two-leg instead of
2D) in the phase-string operator �̂i in place of an anisotropic
θi(l ) originally defined in Ref. [25].

It is emphasized that such a detailed spatial configuration
in Fig. 2 is useful for implementing the phase-string operator
�̂i without changing the model Hamiltonian, which is ap-
parently translational invariant along the ladder direction due
to PBC. We point out that some basic important features of
the single-hole-doped two-leg ladder have been already well
captured by the wavefunction approach in Ref. [25], including
the existence of the QCP and the charge modulation pattern in
the non-Landau quasiparticle regime. But in contrast to OBC
used in Ref. [25], the two-leg ladder under PBC will enable us
to study the whole problem under the translational symmetry,
where the spin and charge currents, total momentum, and
the response under inserting magnetic flux, etc., can be well
defined to characterize the ground state. In other words, in
the sense that thermodynamic limit is taken and the middle
uniform regime of the OBC system is considered, the present
PBC approach will consistently cover all the main results
obtained under the OBC in Ref. [25] and at the same time
provide a more complete understanding of the single-hole
problem as to be presented below.

Besides λ in the definition of �̂i [via θi(l ) defined in
the geometry of Fig. 2], another variational parameter is the
single-hole wavefunction ϕh(i) in Eq. (8), which may be deter-
mined by optimizing the total ground energy variationally. A
further simplification is that ϕh(i), up to a U (1) phase, is also
Bloch-wave-like: ϕh(i) ∝ eik0xi , since generally the spin-spin
correlation is short-ranged in |φ0〉 such that the new “twisted”
hole created by c̃i↓ ≡ e−i�̂i ci↓ should be of a finite scale,
which is translationally invariant moving on |φ0〉. Namely,
evaluating the variational parameter of ϕh(i) reduces to de-
termining k0, which will become nontrivial in general. The
detailed VMC procedure is a generalization of Refs. [12,25],
which is outlined in Appendix C.

Finally, the wavefunction ansatz in Eq. (8) can be further
improved by introducing a “longitudinal spin-polaron” cor-
rection to make |φ0〉 → �̂i|φ0〉 around the hole site i, such
that the spin background becomes e−i�̂i�̂i|φ0〉. Such a proce-
dure will be straightforward as discussed in Appendix B. But
as we shall see below, the main body of the physical properties
of the single-hole problem is already excellently captured by
the simplest form in Eq. (8), even though some quantitative
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TABLE I. The energies and quantum number of the single-hole
variational ground states in comparison with the ED results on a 8 ×
2 ladder with α = 1.0 and α = 0.4. EG is the total energy; Et and
EJ are the kinetic and the superexchange energies, respectively; k0

denotes the corresponding momentum along the x-direction. Ground
states |�B〉1h and |�G〉1h are given in Eqs. (7) and (8), respectively;
|�̃B〉1h and |�̃G〉1h denote the corresponding variational states further
improved by incorporating the longitudinal spin-polaron effect (see
the main text and Appendix B).

α EG Et EJ k0

|�B〉1h 1.0 −15.84 −2.46 −13.37 0
|�̃B〉1h 1.0 −18.03 −6.26 −11.77 0
|�G〉1h 1.0 −18.15 −5.55 −12.60 ±π/2
|�̃G〉1h 1.0 −19.43 −6.96 −12.47 ±π/2
ED 1.0 −19.77 −7.30 −12.47 ±π/2
|�B〉1h 0.4 −11.78 −2.90 −8.88 π

|�̃B〉1h 0.4 −13.03 −4.44 −8.60 π

|�G〉1h 0.4 −12.67 −3.89 −8.78 π

|�̃G〉1h 0.4 −13.10 −4.42 −8.69 π

ED 0.4 −13.14 −4.42 −8.71 π

results can be slightly improved by the extra variational pa-
rameters, such as the total energy and the position of the
QCP point αc (cf. Appendix B). Physically such a longitudinal
spin-polaron effect can serve as a key improvement for the
Bloch-wave state in Eq. (7) without changing its nature as a
Landau’s quasiparticle. Similarly, its correction to the present
one-hole state in Eq. (8) will not change its non-Landau
features either, with only a quantitative improvement in the
variational energy as to be shown in the following.

C. Variational ground-state energy

Based on the wavefunction ansatz |�G〉1h in Eq. (8), the
ground-state energy EG can be determined variationally by
the VMC method outlined above. Table I presents the VMC
results of EG and the hopping and superexchange energies,
Et and EJ , at two typical values of the anisotropic parameter:
α = 1.0 and α = 0.4, respectively, in comparison with the ED
results for a 8 × 2 ladder. In the same table, the corresponding
energies of the Bloch-wave state |�B〉1h [Eq. (7)] are also
given for comparison.

Table I shows that the ansatz state |�G〉1h gives a much bet-
ter ground energy than the Bloch-like state |�B〉1h at α = 1.0.
Most importantly, the ansatz state |�G〉1h captures the cor-
rect ground-state momenta k±

0 = ±π/2 mod 2π at α = 1.0,
which is totally missed by |�B〉1h. By contrast, at α = 0.4,
both |�G〉1h and |�B〉1h have the same momentum k0 = π

and the ground-state energies are also relatively closer even
though Et in the former is still much improved.

According to the phase diagram of Fig. 1(a), which is to be
elaborated below, the single-hole ground states at α = 1.0 and
α = 0.4 are on the two sides of the critical αc � 0.68, e.g.,
α = 0.4 < αc is in the Landau quasiparticle regime where
|�G〉1h and |�B〉1h may be adiabatically connected, but α =
1.0 > αc is a distinct regime where |�G〉1h cannot be reduced
to |�B〉1h because of a nontrivial “transverse spin-polaron
effect” due to the phase-shift factor e−i�̂i .

Before we explore such distinction between the two phases
and the quantum transition at αc below, we further examine an
improvement of the ground-state energy by incorporating the
aforementioned “longitudinal spin-polaron effect”, which will
turn |�G〉1h and |�B〉1h into |�̃G〉1h and |�̃B〉1h, respectively
(cf. Appendix. B for the details). The corresponding varia-
tional energies on a 8 × 2 ladder are also shown in Table I. At
α = 1.0, the ground-state energy of |�̃G〉1h can be optimized
to be within the precision of 1.7% as compared to the ED
result, with k±

0 unchanged. But for the Landau quasiparticle
state |�̃B〉1h, the energy is still relatively much worse than
that of the ansatz wavefunction, with the wrong momentum
of k0 = 0 unchanged. However, at α = 0.4, both |�̃G〉1h and
|�̃B〉1h get optimized to be within 0.3% and 0.8% of the exact
ED value, consistent with the fact that the longitudinal spin-
polaron effect is solely responsible for the renormalization of
the doped hole in the Landau quasiparticle regime.

D. Phase diagram

The ground-state phase diagram of the single hole doped
anisotropic two-leg t-J ladder has already been carefully stud-
ied by DMRG calculations [17–20]. A key finding is that
the analyticity of the ground-state energy has a singularity as
a function of the anisotropic parameter α at α = αc ≈ 0.68
(t/J = 3), which resembles a second-order phase transition
[17]. Across the critical point αc, the physical properties are
also qualitatively changed. For example, the nondegenerate
ground state at α < αc becomes double-degenerate at α > αc

(for a given total spin-1/2). The corresponding hole density
distribution changes from flat to a charge modulation charac-
terized by a wavevector Q0 for each of the degenerate (real
wavefunction) states, where the wave length 2π/Q0 is gener-
ally incommensurate with the lattice constant a0 at large Nx

limit (note that Q0 = 2π/a0 × integer/Nx). In Fig. 1(b), the
critical point αc is well indicated by the emergence of a finite
Q0 as a function of α as calculated by DMRG under PBC for
an N = 48 × 2 ladder.

Such a QCP at αc can be well quantitatively reproduced
based on the ansatz wavefunction given in Eq. (8). The VMC
result is also presented in Fig. 1(b) obtained by optimization
with regard to the variational parameters of λ and ϕh(i), which
is then further improved by incorporating the longitudinal
spin-polaron effect in |φ0〉 as discussed in the previous sub-
section (cf. Appendix B). One can see an excellent overall
agreement between the VMC and the DMRG result. We
mention that a similar QCP has been previously determined
under the OBC [25] based on the singularity in second-
derivative of the ground-state energy. In the following, to
illustrate the quantum transition and distinct behaviors mani-
fested in Fig. 1(b), we present two benchmarking calculations,
at α = 1.0 > αc and α = 0.4 < αc, with the DMRG results
given in Fig. 3 and the corresponding VMC results in Fig. 4,
respectively.

As comparatively shown in Figs. 3(a) and 4(a), respec-
tively, the hole average density nh

xi
on a rung xi of the ladder at

α = 1.0 (> αc) is presented. Here the density profile shows a
two-component structure: a flat background plus a modulation
with the wavevector Q0 
= 0, with the Fourier transformation
along the ladder direction further illustrated in Figs. 3(b) and
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FIG. 3. Ground-state hole density distributions nh
xi

and its Fourier transformation Nq = ∑Nx
xi=1 nh

xi
eiqxi calculated by DMRG method on a

48 × 2 PBC ladder for α = 1.0 > αc [(a),(b)] and α = 0.4 < αc [(c),(d)], respectively. The results for a 
 = π flux inserting through the
center of the PBC rings are also shown. Note that at α = 1.0 the ground states are double degenerate, and a real wavefunction state is used for
the measurement.
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FIG. 4. Ground-state hole density distributions nh
xi

and its Fourier transformation Nq = ∑Nx
xi=1 nh

xi
eiqxi calculated by VMC based on the

ground-state ansatz in Eq. (8). The parameters are the same as in Fig. 3 for a 48 × 2 PBC ladder at α = 1.0 > αc [(a),(b)] and α = 0.4 < αc

[(c),(d)], respectively. The results for a 
 = π flux inserting through the center of the PBC rings are also shown.
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FIG. 5. (a) The quasiparticle weight Zk calculated by VMC at
α = 0.4 and α = 1.0, respectively, on a 48 × 2 ladder with PBC;
(b) Momentum distribution of the hole subtracted by the spectral
weight, nh

k − Zk . Here the dashed lines mark the positions of the
peaks of the quasiparticle weight. For α > αc a real wavefunction
state is used.

4(b), respectively. In particular, if a flux 
 = π is inserted
into the center of the rings formed by the ladder (cf. Fig. 2),
a shift of Q0 by 2π/Nx is shown for the charge modulation
component, while the flat component at the momentum q = 0
remains unchanged as Figs. 3(b) and 4(b) indicate.

By contrast, at α = 0.4 (< αc), a distinct hole profile is
given in Figs. 3(c) and 4(c), whose Fourier transformation is
shown in Figs. 3(d) and 4(d), respectively. They show that
the hole profile is uniform with Q0 = 0. Upon inserting a π

flux into the rings, however, a node is exhibited in Figs. 3(c)
and 4(c), which corresponds to a momentum shift by ±2π/Nx

in Figs. 3(d) and 4(d). It is consistent with the change of the
PBC to an antiperiodic boundary condition (APBC) for a free
Bloch wave, indicating that the single-hole state is a Landau
quasiparticle which carries a spin-1/2 and charge +e to satisfy
both the translation and U (1) symmetries [17,19].

Such a Landau quasiparticle picture at α = 0.4 is consis-
tent with a finite overlap between Eq. (8) and Eq. (7). As a
matter of fact, for α = 0.4 < αc, a single sharp peak of Zk0 [cf.
Eq. (4)] at momentum at k0 = π is always seen [cf. Fig. 5(a)
or the left inset of Fig. 1(b)], which is in agreement with the
DMRG [19,20]. However, as first indicated [20] by DMRG,
at α > αc, each of the double-degenerate ground states still
has a finite overlap with the Bloch states in Eq. (7), such that
Zk±

0

= 0 at momenta k±

0 = π ± κ mod 2π with Q0 = 2κ , as
indicated by Fig. 5(a) or the right inset of Fig. 1(b), which
is confirmed by the present VMC. Two typical Zk’s at α =
0.4 < αc and α = 1.0 > αc as determined by VMC are shown
in Fig. 5(a), respectively.

However, in contrast to the speculation in Ref. [20], the
present ansatz wavefunction will directly show that the single-
hole state is no longer a Landau quasiparticle state at α > αc

even though Zk±
0


= 0. Based on the ansatz wavefunction in
Eq. (8), one can calculate the momentum distribution of the
hole by nh

k = 1 − ∑
σ nkσ , where

nkσ = 1

N

∑
i j

eik(xi−x j )
1h〈�G|c†

iσ c jσ |�G〉1h, (11)

with k the momentum along the chain direction (ky = 0).
Then, besides Zk shown in Fig. 5(a), the VMC results of
nh

k − Zk are presented in Fig. 5(b) at α = 0.4 and α = 1.0,
respectively, which clearly shows a residual broad peak at α =
1.0, which will be related to an incoherent charge component.
In fact, Figs. 3(a) and 3(b) and Figs. 4(a) and 4(b) have already
indicated the two-component structure of the spatial hole den-
sity: the charge modulation with a finite wavevector Q0 and
the uniform background. The former responds to inserting a
π flux into the ring center of the ladder by 2π/Nx shift in Q0,
which is consistent with two quasiparticle components with
Zk±

0

= 0 at k±

0 = π ± κ , whereas the latter has no response
as it relates to the incoherent background of Fig. 5(b). In
the next section we shall see that such an incoherent part is
characterized by a hidden spin current, which continuously
carries away momentum from the hole. Note that a rather
weak broad peak is also seen nh

k − Zk for α = 0.4 in Fig. 5(b),
which has been argued based on DMRG [19] as completely
contributed by the conventional many-body “cloud” effect of a
Landau quasiparticle. In fact, it does not lead to an incoherent
component as shown in Figs. 3(c) and 3(d) and Figs. 4(c) and
4(d). Furthermore, the hidden spin current will be completely
absent at α < αc as to be discussed later.

III. FURTHER CHARACTERIZATION: NOVEL CHARGE
RENORMALIZATION AT α > αc

In the last section, the wavefunction ansatz based on
Eq. (8) has been shown to very accurately capture the essential
physics of the single-hole ground state at both α > αc and
α < αc, including the critical point αc, in comparison with
both DMRG and ED results. In the following, we shall focus
on the unconventional case at α > αc and demonstrate that the
charge carried by the doped hole is renormalized to zero. In
other words, the QCP at αc marks the transition of the doped
hole from a Landau quasiparticle to a charge-neutral spinon.

A. Emergent spin-current around the hole at α > αc:
Incoherent charge component

Let us start by emphasizing that the double-degenerate
ground states at α > αc have a two-component structure. In
the real wavefunction description as shown by DMRG and
VMC in Figs. 3 and 4, respectively, the spatial distribution of
the doped hole has a charge modulation component composed
of two Bloch-like waves with momenta k±

0 = π ± κ and a
uniform background. The latter is not sensitive to the change
of the boundary condition via inserting a flux into the ring
of the ladder and has been argued to be an incoherent charge
component, which we shall examine more carefully below.
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(a)   DMRG

(b)   VMC

FIG. 6. Neutral spin current Js
i j [cf. Eq. (12)] (blue arrows) sur-

rounding the hole, which is projected onto a fixed position (read
circle) at momentum k−

0 = π − κ for α = 1.0. (a) DMRG on a
24 × 2 ladder and (b) VMC on a 48 × 2 ladder. The thickness of
the blue lines represents the strength of the spin current, which
conserves Sz.

One may also focus on a translational invariant ground
state with a total momentum, say, k−

0 = π − κ , which has a
finite overlap with the Bloch-wave state in Eq. (2) at the given
k = k−

0 . Then the incoherent charge component in the ground
state can be distinguished from the Landau quasiparticle com-
ponent by the presence of a spin current pattern around the
hole, which is shown in Fig. 6 as calculated by (a) DMRG
and (b) VMC at α = 1.0, respectively. Here the neutral spin-
current operator Js

i j , which conserves Sz, is defined on the NN
link of i and j by

Js
i j = i

J

2
(S+

i S−
j − S−

i S+
j ), (12)

while the backflow spin current of the hopping term is zero
as the hole is projected onto a given site (marked by open-
red circle) as shown in Fig. 6. Since the Landau component
(Bloch-wave) does not contribute to Js

i j , the spin current
pattern in Fig. 6 should entirely come from the non-Landau-
component in the ground state. The above results are also
consistent with the chiral spin currents observed previously
for the single-hole problem in the 2D t-J systems by ED and
DMRG [11] and verified by VMC [12,26].

So the spin currents around the hole indicate that the spin
partner Sz = 1/2 is only loosely bound to the hole, which
forms a spin current vortex in the hole composite. On the other
hand, no spin currents are seen by both VMC and DMRG
methods at α < αc, where the non-Landau-component disap-
pears completely. The “longitudinal spin-polaron” correction
here does not create a transverse spin current surrounding the
hole. The absence of the spin currents can be understood as
that the spin partner is tightly bound to the doped hole in the
strong rung limit to form a conventional Landau quasiparticle
with charge +e and spin-1/2.

This picture can be also confirmed by measuring the
spin-charge correlator 〈nh

i Sz
j〉, which characterizes the relative

distance between the doped hole and an unpaired spin-1/2.
The results calculated by VMC are shown in Fig. 7 for both
α = 0.4 and α = 1.0, respectively. At α = 0.4, the spin-1/2
and the hole are tightly bound at the same rung as 〈nh

i Sz
j〉

decays quickly at r > 1 [cf. Fig. 7(a)]. On the other hand, the
unpaired spin is only loosely bound with the doped hole at
α = 1.0 as shown in Fig. 7(b). Both behaviors are again in
good agreement with the DMRG results [17,20].
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FIG. 7. Spin-charge correlator 〈nh
i Sz

i+r〉 (solid circle) calculated
by VMC on a 48 × 2 ladder. It shows a qualitative change from a
tight hole-spin binding to a loosely-bound hole-spin composite from
(a) α = 0.4 < αc to (b) α = 1.0 > αc in agreement with the DMRG
result [17,20]. The label r is defined in the inset of (a). The red line
and the dashed line in (b) are the fitted curve and envelope function.

B. Response to external electromagnetic flux

Even though the single-hole ground state at α > αc still
has a finite overlap with the Bloch-wave state, i.e., Zk0 
= 0,
the presence of an intrinsic incoherent component makes the
Landau’s one-to-one hypothesis invalid as the latter cannot
be completely specified by a total momentum k0 alone. In
the above, one has seen that the hopping of the hole will
always generate a spin current via the backflow, which means
that the momentum k0 is now shared between the (bare) hole
and its S = 1/2 partner, which result in a broad momentum
distribution of the bare hole as has been carefully examined
by DMRG [19]. In other words, the origin of the incoherent
component comes from the internal relative motion inside the
loosely-bound hole-spin composite at α > αc.

The non-Landau behavior may be understood as follows.
Because of the finite off-diagonal transition between the co-
herent and incoherent components, the hole composite as a
single entity cannot exhibit a definite charge in response to an
external electromagnetic field. Imaging that such a hole circles
through the ladder once with a flux 
 inserting in the hole
of the rings formed by the ladder. A charge q will pick up a
Berry phase q
, which has been well demonstrated by DMRG
[17] at α < αc, but an exponentially diminished effect of the
flux with the increase of the ladder length Nx has been seen at
α > αc [16,17]. In the following, we repeat the calculation of
the same effect based on the wavefunction ansatz in Eq. (8).
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FIG. 8. The ground-state energy change �EG under a π flux
insertion ladder as a function of lattice size Nx , which is determined
by VMC at α = 1.0. The red-solid line is a fitted curve whose equa-
tion is given in Eq. (13) and the blue dashed lines are the envelope
function of an exponential decay with a correlation length ξ ≈ 14.6
in agreement with the DMRG result [16].

In Sec. II, the response of the charge density distribution
to an external 
 = π flux insertion has already been shown.
The vanishing charge response for the incoherent component
is clearly demonstrated there. Here we calculate the change of
the ground-state energy EG under the flux insertion: �EG ≡
EG(
 = π ) − EG(
 = 0). Figure 8 shows �EG as a function
of the ladder length Nx calculated by VMC at α = 1.0. The
black dots are the calculated data, which is fitted by the red-
solid curve with the following expression:

�EG = �E0e−Nx/ξ cos(k0Nx + φE ), (13)

where k0 is the ground-state momentum at α = 1.0, �E0, ξ

and, φE are fitting parameters. The blue-dashed curves are the
envelope functions of Eq. (13), which show an exponential
decay behaviors ±�E0e−Nx/ξ with a length scale ξ ≈ 14.6.
It agrees with a previous calculation by DMRG [16] with an
exponential decay ξ ≈ 14.5.

C. Vanishing charge

The vanishing response to an external electromagnetic field
can be seen in a more explicit way by directly measuring the
charge currents of the ground state,

Jc
i j = iqt

∑
σ

(c†
iσ c jσ − c†

jσ ciσ ), (14)

where i, j are NN bonds of the ladder direction and q = +e is
the charge of a bare hole. For a given momentum k0, a Landau
quasiparticle with charge q is expected to carry a finite charge
current Jc

‖ along the ladder direction

Jc
‖ ≡ 2Jc

i,i+x̂ = ρ
q

m∗ sin k0, (15)

where ρ = 1/Nx is the density of a single doped hole on every
rung of the ladder, m∗ is the effective mass of the quasiparticle,
which is found finite on both sides of the QCP [17], and
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FIG. 9. The doped hole becomes a novel spinon at α = 1.0 > αc:
the scaling behaviors of the neutral spin current NxJs

‖ (open trian-
gular) and the charge current NxJc

‖ (open square) along the ladder
direction for a doped hole with given momentum k±

0 . The charge
current oscillates and decays to zero, while the neutral spin current
saturates to a fixed value (dashed blue) in the long ladder limit. The
solid-black line is a fitted curve given in Eq. (17) with the red-dashed
line as the envelope function.

j = i ± x̂ is an NN site of i along the chain direction. On the
other hand, the neutral spin current of the spin background is
expected to vanish

Js
‖ ≡ 2Js

i,i+x̂ = 0. (16)

The above results can be easily verified at α < αc (for a
low-lying excited state with k0 deviates from π ). However,
at α = 1.0 > αc, one finds that the currents associated with
the doped hole of momentum k−

0 = π − κ are dramatically
changed as shown in Fig. 9. Instead of the finite charge current
Jc
‖/ρ = NxJc

‖ as predicted by Eq. (15), an oscillating decay
behavior of the charge currents is seen, satisfying a fitted curve

NxJc
‖ = 9.6

({
k0

2π
(Nx − φJ ) + 0.5

}
− 0.5

)/
N0.94

x , (17)

where the curly bracket in the expression takes the decimal
part of the number inside it, k0 is the momentum of the ground
state, and φJ is a phase parameter to be optimized. The overall
N0.94

x in the denominator approximate a 1/r decay of the
envelope function.

On the other hand, the neutral spin current NxJs
‖ in the spin

background (not the spin current associated with the hopping
of the hole), which is expected to vanish in the quasiparticle
picture as Eq. (16), saturates to a finite value NxJs

‖ ∼ 1.6J
instead. These results confirm that the doped hole is no longer
a charged object. Instead, the finite neutral spin current Js

‖/ρ
indicate that the true quasiparticle is now a spinon.

IV. DISCUSSION

As described in the previous sections, the systematic agree-
ments between the VMC and exact numerical calculations
indicate that the wavefunction ansatz of Eq. (1) has reason-
ably captured all the fundamental physics of the single-hole
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ground state in the two-leg ladder. It therefore enables one
to further examine the underlying mechanism based on the
analytic structure of the wavefunction.

The sole distinction between the wavefunction in Eq. (1)
and a conventional bare-hole state in Eq. (2) lies in the
phase-string factor e−i�̂i , which contributes to a many-body
phase shift to the quasiparticle wavefunction ϕh(i) ∝ eik0xi .
Here �̂i involves the background spins nonlocally according
to the definition given in Eq. (9), which is apparently non-
perturbative in nature. Since the undoped spin system |φ0〉
is short-range-AF correlated in the two-leg ladder, the exotic
quantum entanglement between the doped hole with the sur-
rounding spins are also short-ranged. In particular, the AF
correlation length along the ladder direction can be continu-
ously tuned by the anisotropic parameter α, which results in a
quantum transition at αc as shown in Fig. 1.

A. QCP at αc

At the QCP, the ground-state momentum k0 splits from π

to π ± κ . The incommensurate wavevector Q0 ≡ 2κ shown
in Fig. 1 is directly related to the phase-shift operator �̂i in
Eq. (1). As a matter of fact, based on Eq. (2) without �̂i, one
always finds k0 = π without αc.

In the strong-rung limit α � 1, the singlet-pairing of spins
in |φ0〉 is mainly concentrated along rungs. In this limit e−i�̂i

is ineffective along the ladder such that the ansatz state (1) re-
duces to the Bloch-wave one in Eq. (2) at a single momentum
k0 = π . It has been shown that a longitudinal spin-polaron
correction may further improve the ground-state energy, but
the hole as a rigid entity of spin-1/2 and charge +e with the
same k0 remains robust, which thus satisfies the one-to-one
correspondence principle for a Landau quasiparticle, so long
as the spin-spin correlation is sufficiently short (than a lattice
constant) along the quasi-1D direction.

In the opposite limit of α � 1, the longer-range spin sin-
glet pairing along the chain direction become more and more
important. As previously shown, in the 1D case, e−i�̂i will
play a crucial role to result in a momentum at k0 = ±π/2 [27].
Indeed Q0 → π at α � αc as shown in Fig. 1(a).

Thus, α = αc is the point where e−i�̂i starts to play a
nontrivial role. Note that because of the spin-singlet pairing,
|φ0〉 itself does not significantly contribute to a phase shift
in e−i�̂i . But in the bare hole state ci↓|φ0〉 with removing a
spin ↓ at site i, a spin from the original singlet pair in |φ0〉
will be left unpaired, which in general can make a nontrivial
contribution to the momentum shift via e−i�̂i acting on ci↓|φ0〉.
In the limit of α � 1, this unscreened spin mainly stays at the
rung direction across the hole as already shown in Fig. 7(a),
which does not contribute to a momentum shift along the
ladder direction. At α > αc, the unpaired spin (spinon) is
loosely separated from the hole along the ladder direction, as
previously shown in Fig. 7(b). Due to the presence of e−i�̂i ,
such a composite effect is clearly manifested by a chiral spin
current surrounding the hole in Fig. 6, which contributes to the
finite momentum splitting, i.e., k±

0 = π ± κ with Q0 
= 0. The
VMC calculation shows a self-consistent procedure, which
minimizes the total energy, giving rise to a QCP at αc 
= 0
and the total momentum k0 as a function of α. One may find

some more detailed account of the underlying mechanism in
Appendix. A.

B. The two-component structure at α > αc

We have seen that the double-degenerate ground state at
α > αc must be characterized by a two-component structure,
i.e., a Landau-like quasiparticle with Zk±

0

= 0, charge +e,

and spin 1/2, and an incoherent component with Zk±
0

= 0
and charge 0. The latter exhibits a chiral spin current pattern
around the hole, which cannot be produced by the quasipar-
ticle component as shown in Sec. III A. Generally for the
left-moving and right-moving hole states at momenta k±

0 , the
chiralities of the spin currents are opposite. In a real wavefunc-
tion representation discussed in Sec. II D by a superposition
of the k+

0 = π + κ and k−
0 = π − κ states, the incoherent

component corresponds to a charge uniform component with
no response to an external inserting flux.

Let us first consider a conventional Landau quasipar-
ticle with momenta k±

0 = π ± κ . Mathematically, a real-
wavefunction state as a superposition of the π + κ and π − κ

states may take the form

|ψB〉1h ∝
∑

i

(−1)xi (e−iκxi + c.c.)ci↓�̂i|φ0〉, (18)

where �̂i is a local spin-polaron operator around the doped
hole, which is translationally invariant. Equation (18) will
result in a hole density modulation by

nh
xi

∝
∑

yi

〈φ0|�̂†
i ni↓�̂i|φ0〉(1 + cos(2κxi )), (19)

which has nodes at 1 + cos(2κxi ) = 0 with κ 
= 0.
In contrast, for the wavefunction ansatz in Eq. (1) with a

nontrivial phase factor e−i�̂i . By similarly constructing a real-
wavefunction state via a superposition of k±

0 = π ± κ states
as follows:

|ψG〉1h ∝
∑

i

(−1)xi (e−iκxi−i�̂i + c.c.)ci↓|φ0〉, (20)

one finds a hole density modulation given by

nh
xi

∝
∑

yi

(〈φ0|ni↓|φ0〉 + 〈φ0|ni↓ cos(2κxi + 2�̂i )|φ0〉). (21)

The first term is just the uniform density background shown
Figs. 3(a) and 4(a), while the second term corresponds to
the modulation part. (For simplicity the longitudinal spin-
polaron effect has been set as �̂i = 1 here.) Different from
the modulation of a quasiparticle in Eq. (19), the phase factor
of modulation part in the cosine function is scrambled by the
phase operator �̂i. As a result, it is smaller than the first term
because of the inequality

|〈φ0|niσ e−2i�̂i |φ0〉| � |〈φ0|niσ |φ0〉|, (22)

which leads to a nodeless charge modulation at α > αc (cf.
Fig. 4 in Sec. II D).
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C. Disappearance of charge response to external magnetic
flux at α > αc

A simple Landau-like quasiparticle state at small α expe-
riences a quantum phase transition to a novel quasiparticle as
the AF correlation length is increased, leading to the nontrivial
(incommensurate) momenta in the ground state at α > αc. In
a sharp contrast to a conventional Landau-like quasiparticle
with a finite momentum, the new particle no longer carries a
finite charge current like the former, even though it still carries
a spin current contributed by spin-1/2 as a quasiparticle, i.e.,
a spinon, as shown in Sec. III.

To understand how the charge current of twisted quasi-
particle c̃iσ is renormalized to zero, one may inspect the
averaged charge current Jc

‖ in terms of the ground state
of Eq. (8),

Jc
‖ =

∑
yi

1h〈�G|Jc
i, j |�G〉1h

∼ σ t

Nx
〈φ0| sin

(
k±

0 ∓ (
Âs

i j − φ0
i j

))
(niσ̄ n jσ̄ − Sσ

i Sσ̄
j )|φ0〉,

(23)

where we have used ϕh(i) ∼ 1√
2Nx

eik±
0 xi . In addition to the

phase factor eik±
0 contributed by the variational parameter,

a gauge field induced by the spins Âs
i j = ∑

l ( 
=i, j) (θi(l ) −
θ j (l ))Sz

l , and a uniform π flux φ0
i j = 1

2

∑
l ( 
=i, j) (θi(l ) − θ j (l ))

emerges from the phase factor e−i�̂i . For the present single-
hole doped case where a single unpaired spin S = 1/2 is
present in the spin background, the local flux fluctuation of Âs

i j
is large (∼π ) as the unpaired single spin is not tightly bound
to the doped hole along the ladder direction at α > αc. As the
result, the charge current contributed by the finite momentum
wavefunction Im(eik±

0 ) is well compensated by the internal
gauge field generated by the background spins, i.e., Âs

i j .
In the same spirit, the strong fluctuating gauge field Âs

i j
(with strength ∼π ) can effectively screen out a weak ef-
fect from the external electromagnetic field Ae

i j . Indeed, an
exponential decaying behavior in the response to inserting
an external 
 = π flux has been shown in Fig. 8, which is
in contrast to the power law (1/N2

x ) behavior of a charged
Landau quasiparticle state at α < αc.

D. Binding force between two doped holes

Finally, we briefly discuss the ground state of two doped
holes in the two-leg ladder based on the present single-hole
wavefunction. Previously the DMRG calculation has also in-
dicated [17,23] that the pairing between two holes can be
significantly enhanced at α > αc beyond a simple RVB pic-
ture. In the following, an underlying mechanism is discussed
based on the incoherent behavior of a single doped hole found
in this paper at α > αc.

According to the single-hole wavefunction in Eq. (8), the
two-hole ground state may be constructed accordingly in the
following form [26]:

|�〉2h =
∑

i j

g(i, j)ci↑c j↓e−i(�̂i−�̂ j )|φ0〉 + · · · , (24)

FIG. 10. Neutral spin currents with on a 40 × 2 OBC ladder with
α = 1.0. The two holes are projected at the red circle positions.
While the spin currents is indicated by the blue arrows. The strength
of the spin currents is represented by the thickness of the arrows.

where the two-hole wavefunction g(i, j) will be taken as the
variational parameter and the · · · term denotes the opposite
chirality (the complex conjugate) of the phase-shift operator
e−i(�̂i−�̂ j ). Such a two-hole state has been already variation-
ally studied in Ref. [26] for both the 2D square lattice and the
isotropic two-leg ladder and an extremely anisotropic two-leg
ladder in Ref. [28]. The results are in good and systematic
agreement with the exact numerics.

Our variational study of the wavefunction in Eq. (24) con-
firms the strong binding between the two holes at α > αc. In
particular, for each term in Eq. (24), the distribution of the spin
currents around the holes is shown in Fig. 10 at different hole
configurations (an opposite chirality is not shown) at α = 1.0.
It shows that as two holes are separated spatially, opposite
chiral spin currents emerge around the individual holes similar
to the pattern in Fig. 6. Note that since the opposite chirality
of the spin current in Fig. 6 corresponds to the opposite
momentum k±

0 , such a pairing state is Cooper-pair like with
a zero total momentum and zero total spin. Once two holes
are tightly paired in Fig. 10, the spin currents are completely
canceled out.

Such a spin current pattern for two holes is quite similar
to the 2D case [26] where a roton-like (vortex-antivortex)
pattern of the spin current has been identified as mediating the
important pairing force between the holes. On the other hand,
at α < αc, the spin current is absent in the single-hole-doped
case, where the hole simply behaves like a Landau quasipar-
ticle with diminishing pairing strength [17]. Therefore, the
spin current associated with a non-Landau quasiparticle at
α > αc is important to the pairing between the holes. In other
words, the incoherent motion of the doped hole becomes the
critical source for pairing by which the dynamic frustration
as an intrinsic component of the single hole’s motion can
get eliminated. It is pointed out that by forming a tight pair,
a charge 2e of two holes can be recovered [17,23], which
otherwise is diminished to zero in the unpaired single-hole
case as studied in this paper.

V. CONCLUSIONS

The single-hole problem of a t-J ladder is one of the sim-
plest of doped Mott insulators, given the gapped (undoped)
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spin background for an even-leg ladder. Nevertheless, a novel
phenomenon emerges in such a quasi-1D system, which can
be entirely attributed to a quantum entanglement between the
doped hole with the spin background via the nonlocal phase-
string factor e−i�̂i in the ground-state ansatz of Eq. (1). It is
nonperturbative in nature, whose effect is thoroughly explored
by the VMC calculation in comparison with the exact numer-
ics in this paper.

Generally speaking, the phase-string effect incorporated by
e−i�̂i in the single-hole wavefunction of Eq. (1) is important to
facilitate the hopping of the doped hole on a (short-range) AF
spin background as illustrated by the ground-state energies in
Table I. Since each hole is always accompanied by a spin-1/2
from a broken spin singlet pair, the effect of e−i�̂i can further
get explicitly exhibited via the behavior of such a hole-spin
composite, whole size depends on the spin-spin correlation in
the background. The detailed consequences as determined by
the present VMC study are as follows.

Such a single-hole wavefunction ansatz can produce an
excellent description of the phase diagram for the anisotropic
two-leg t-J ladder. It covers two distinct regions at α < αc

and α > αc, respectively. At α < αc, it is a conventional
Landau-like quasiparticle, which can be adiabatically con-
nected to a Bloch-wave of the bare hole created in the spin
background |φ0〉,

ck0↓|φ0〉 (25)

at a nondegenerate k0 = π mod 2π with a total spin Sz =
1/2. On the other hand, at α > αc, a “twisted” quasiparticle
emerges as

c̃k±
0 ↓|φ0〉 (26)

with double-degenerate ground state at k±
0 = π ± κ mod 2π

(κ 
= 0). Here c̃k0↓ may be regarded as a 1D Bloch wave
(the Fourier transformation along the chain direction) of a
twisted particle created by c̃i↓ ≡ ci↓e−i�̂i . Since the half-
filling ground state |φ0〉 is gapped, the usual longitudinal
spin-polaron correction to either Eq. (25) or Eq. (26) is pertur-
batively weak, which has been incorporated by the Lanczos
method via |φ0〉 → �̂i|φ0〉 with only quantitative improve-
ments of the variational results.

It is found that at α > αc, Eq. (26) still has a finite overlap
with Eq. (25) with the quasiparticle spectral weight Zk±

0

= 0.

But it does not mean that the two states can be smoothly
connected to each other at the same k±

0 . The Landau’s one-
to-one correspondence principle is broken down here as there
are two components in Eq. (26) for a loosely bound hole-
spin composite. Namely, besides a finite amplitude [20] for a
Landau quasiparticle, an incoherent component is also present
in which a relative motion between the hole and spin-1/2
emerges inside the composite. In the latter, the relative spin
current around the hole can carry away a continuum spectrum
of momentum such that the hole becomes incoherent, which
violates the charge translational invariance [19] and leads to
a null response to an external magnetic flux. In fact, it is
explicitly shown that the doped hole created by c̃k±

0 ↓ becomes
a charge-neutral spinon at α > αc. The charge current carried
by the doped hole disappears in the long ladder limit, while
the spin current still remains unchanged as contributed by a

spin Sz = 1/2 at a finite momentum k±
0 . In contrast to the

spin-charge separation in the 1D t-J model chain, the charge
of the doped hole simply “vanishes” in the two-leg ladder as
the novel consequence of the transverse spin-polaron effect
introduced by e−i�̂i .

In short, the earlier DMRG discovery [16] that the charge
of the doped hole is self-localized while a neutral object
(spinon) still behaves like a free particle at α = 1 may be well
reconciled with the latter DMRG result [20] that there is no
1D-like spin-charge separation and the quasiparticle Zk 
= 0.
Based on the present wavefunction description, the doped hole
actually becomes a loosely bound hole-spin composite here
such that it still carries a well-defined spin-1/2 but its charge
degree of freedom becomes incoherent due to the unscreened
phase-string effect. As the essence of the doped Mott physics,
the latter will generally break the charge translational sym-
metry, which may only be recovered either at α < αc or by
pairing up of two holes [23,26]. Lastly it is noted that the two-
component structure in the present single-hole wavefunction
may be further considered as a precursor of the “Fermi arc”
physics at finite doping as recently explored in Ref. [29].

Finally, we have examined the pairing between two doped
holes. As shown by DMRG [17], the pairing strength is rather
weak at α < αc, but gets substantially enhanced at α > αc. It
is due to the spin-current-carrying component that is strongly
compensated once two holes form a tightly-bound pair to
gain a substantial binding energy at α > αc. It means that a
novel pairing mechanism is also crucially related to the non-
Landau behavior of the single hole at α > αc via the nonlocal
phase-shift factor originated from the hidden phase-string sign
structure in the t-J model.
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APPENDIX A: PHASE-SHIFT OPERATOR ON A TWO-LEG
LADDER WITH PBC

Despite that the essential physics should not be affected
by boundary conditions in the long ladder limit, using PBC
makes it more convenient to detect translationally invariant
properties, such as momentum and any nonzero current con-
figurations at finite-size calculations. It also makes it simpler
to measure the response to external electromagnetic fields by
inserting flux into the ring formed by the ladder. However,
the original phase-shift operator �̂i is defined on a lattice
under OBC [25]. To capture these properties explicitly in the
variational wavefunction Eq. (8), we need to generalize the
original single-hole wavefunction [25] to the case under PBC,

|�G〉1h =
∑
i,a

ϕ
(a)
h (i)e−i�̂a

i ciσ̄ |φ0〉, (A1)

where the phase-shift operator is defined by

�̂a
i =

∑
l ( 
=i)

θa
i (l )nl↓, (A2)
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and the definition of the statistical angles θa
i (l ) on a PBC

ladder is shown in Fig. 2. The two legs of the ladder are
bent into two rings with different radii on the same plane,
i.e., rin = 2 − λ and rout = 2 + λ, with λ a variational param-
eter to be determined by minimizing the variational energy.
The phase θa

i (l ) can be defined as a conventional 2D angle:
θa

i (l ) = ±Im ln(zi − zl ) where zi = xi + iyi is the complex
coordinate of site i. The superscript a = 1, 2 here labels two
choices of the radii for the two chains of the ladder, i.e., for
a = 1 the first chain is bent into the inner ring and the second
chain into the outer ring; while for a = 2 the second chain
becomes the inner ring and the first chain the outer one.

Under the PBC with explicit translational invariant sym-
metry, the variational parameter ϕ

(a)
h is constraint to be a plane

wave

ϕ
(a)
h (i) ∝ eik̃±·ri , (A3)

where k̃± = (k̃±
x , k̃±

y ) is a variational parameter to be deter-
mined by minimizing the ground-state energy. The relation
between k̃±

x and the total momentum of the ground state k±
x

along the chain direction can be derived by a one-step trans-
lational transformation T̂ along the chain direction acting on
the translational invariant ground state |�G〉1h,

T̂ |�G〉1h ≡ e−ik±
x |�G〉1h

=
∑

i

ϕ
(a)
h (i)e−i

∑
l ( 
=i) θa

i (l )nT l,↓cT i,σ̄ |φ0〉

=
∑

i

ϕ
(a)
h (T −1i)e−i

∑
l ( 
=i) θa

T −1 i
(T −1l )nl↓ciσ̄ |φ0〉

= e−ik̃±
x

∑
i

ϕ
(a)
h (i)e−i

∑
l ( 
=i) (θ

a
i (l )∓2π/Nx )nl↓ciσ̄ |φ0〉

= e−ik̃±
x ∓i(σ+1)π/Nx |�G〉1h, (A4)

where we use T i and T −1i to represent the site obtained by
translating site i one lattice constant along the positive and
negative chain direction. The relation θa

T −1i(T −1l ) = θa
i (l ) ∓

2π/Nx is used in deriving the fourth line of the equation.
The above expression shows that k±

x = k̃±
x + K±

x (�̂), Where
K±

x (�̂) = ±(σ + 1)π/Nx denotes the momentum contributed
by the phase factor e∓i�̂i . As Kx vanishes for σ = −1, and can
be canceled for σ = +1 by a redefinition of the phase factor
�̂i → ∑

l ( 
=i) θ
a
i (l )nl↑, we no longer distinguish kx and k̃x by

only considering the σ = −1 case without loss of generality.
For the y component momentum ky, we can get a similar

expression k±
y = k̃±

y + K±
y (�̂). But for a given index a, the

Z2 symmetry by exchanging the two chains is broken in a
single configuration shown in Fig. 2. This symmetry can be
restored after the summation over the index a, and the total
momentum k±

y remains a good quantum number. For all the
parameter regions we are interested in this article, we always
find k±

y = 0 for the ground state. We therefore keep only the
x component momentum kx in the main text and denote it
simply as k, keeping in mind that it represents a momentum
along the chain direction with ky = 0.

The advantage of the circular configuration shown in Fig. 2
can be explicitly seen by taking the single-hole doped 1D t-J
chain as an example, which is detailed studied in Ref. [27].
By constructing a similar circular configuration to define θi(l )

in a 1D ring, one sees that every time when the hole hops
from site i to its neighboring site i ± 1, it will pick up a phase
shift θi(l ) − θi±1(l ) = ±π/Nx from each down spin at site l
(which is just the circular angle and thus independent to i
and l). When the phase shifts from all the down spins are
summed over, one gets an effective phase ±N↓π/Nx ≈ ±π/2
every time when the doped hole hops. Such ±π/2 phase as
contributed by all the background spins just constitutes the
ground-state momentum of a single hole doped t-J chain,
giving rise to a simple example of Anderson’s phase shift idea.

APPENDIX B: LONGITUDINAL SPIN-POLARON EFFECT
ON THE VARIATIONAL ANSATZ

In the main text, we have shown that the phase-shift op-
erator e−i�̂i plays the essential role in the non-Landau-type
single-hole state of Eq. (8). It represents the singular phase-
string effect, which results in the transverse spin current
surrounding the doped hole to facilitate its hopping. The novel
physical properties of the non-Landau quasiparticle at α > αc

can be entirely attributed to such a transverse spin distortion
as a many-body “cloud” associated with the hole.

On the other hand, the conventional spin distortion or the
“longitudinal spin-polaron effect” should be generally present
in both regimes of α < αc and α > αc. Since the spin back-
ground is gapped at half-filling, such a local spin distortion
is expected to be perturbatively weak such that one may use
an approximation similar to the power 1 Lanczos method
to incorporate it to further improve the variational ground
state |�G〉. In the following we outline the corresponding
procedure.

For a trial state |�G〉, the power 1 Lanczos method is to
construct a new trial state |�G〉 + γ H |�G〉. Here H is the
system Hamiltonian, and γ is a new variational parameter
to be optimized. Physically, such a one-step evolution of the
Hamiltonian H on |�G〉 takes a local distortion into consider-
ation, and the exact ground state can be achieved if the above
procedure is iterated continuously until convergence.

In the spirit of power 1 Lanczos method, then we consider
ci↓|φ0〉 → ci↓�̂i|φ0〉 with �̂i incorporating the local hopping
effect produced by Ht to the first order of correction,

ci↓�̂i = ci↓ +
∑

j∈NN(i)

[a1(i, j)ci↓n j↓ + a2(i, j)ci↑S+
j ] (B1)

where a1(i, j) and a2(i, j) are two new variational parameters.
Then a new variational wavefunction is constructed

|�̃G〉1h =
∑

i

ϕ
(a)
h (i)e−i�̂a

i ci↓�̂i|φ0〉. (B2)

Figure 11 shows the phase diagram determined by VMC
before and after the above power 1 Lanczos method is applied.
It shows that the overall line shape of Q0 vs. α is unchanged,
but there is a global shift along the α axis, which makes the
VMC result in excellent agreement with the DMGR result as
shown in Fig. 1(b). We therefore conclude that although the
qualitative physics are unchanged by the longitudinal local
spin-polaron effect, which is solely decided by the transverse
phase-shift field due to the phase-string, the local spin dis-
tortion can still effectively improve the variational energy,
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FIG. 11. The phase diagrams based on Q0 calculated by VMC
before (green) and after (red) a power 1 Lanczos procedure is applied
to incorporate a longitudinal spin-polaron effect. Note that the two
phase diagrams are in qualitative agreement with only a global shift
along the α axis with the correction.

momentum k±
0 , and even the value of αc to be in quantitative

agreement with the DMRG results.
Finally, we mention that the standard power Lanczos

method up to power 2 is used in the benchmarking calculation
of the ground-state energy in a small lattice size as shown
in Table. I, with the optimized wavefunction also denoted as
|�̃G〉 and |�̃B〉. All the other VMC results presented in the
main text are optimized based on Eq. (B2).

APPENDIX C: VARIATIONAL MONTE CARLO
PROCEDURE

The procedures of the variational Monte Carlo calcu-
lations were already explained in great detail in previous
papers [12,25,26,28]. For completeness of the article, in this
Appendix, we briefly introduce the variational Monte Carlo
procedures used to optimize the variational ground state and
to measure other observables.

1. Variational procedure for optimizing ground-state energy

There are total two sets of variational parameters to be opti-
mized, i.e., the anisotropic phase parameter λ in the definition
of �̂ and the variational wavefunction ϕh(i). To optimize the
ground-state energy, we first fix the value of λ, and calculate
the ground-state energy as a function of ϕh(i), which turns out
to be a quadratic form as shown later in Eq. (C9). The pro-
cedure to optimize the energy EG with fixed λ then turns out
to be a generalized eigenvalue problem, which can be done by
standard mathematic packages. Next, we plot the ground-state
energy EG as a function of different λ, and fit it with spline
functions. The minimized energy and the corresponding λ are
then fixed by the minimal point of this fitted curve.

2. Monte Carlo procedure to calculate physical observables

Before turning to the hole doped problem, we first need
a wavefunction |φ0〉 of the half-filling state, where the t-J
model reduces to the Heisenberg spin model on a bipar-

tite square lattice. It was shown that the ground state |φ0〉
can be well simulated by the Liang-Doucot-Anderson type
wavefunction [30],

|φ0〉 =
∑

v

ωv|v〉, (C1)

where the valence bond (VB) state

|v〉 = |(a1, b1) · · · (an, bn)〉 (C2)

consist of singlet pairs |(a, b)〉 = | ↑a↓b〉 − | ↓a↑b〉. Here a
and b comes from the two different sublattices A and B of the
bipartite lattice, respectively. According to the Marshall sign
rule on a bipartite lattice, the variational parameter wv of each
valence bond state |v〉 is always positive, which can therefore
be used to construct a probability distribution for the Monte
Carlo procedure

P(v′, v) = wv′wv〈v′|v〉
〈φ0|φ0〉 , (C3)

which satisfies
∑

v′,v P(v′, v) = 1 and P(v′, v) > 0. The ex-
pectation value of any observable Ô can then be evaluated as

〈φ0|Ô|φ0〉
〈φ0|φ0〉 =

∑
v′,v

P(v′, v)O(v′, v), (C4)

as long as one gets the expression of O(v′, v).
After a hole is doped into the spin background |φ0〉, we

follow the same idea to express all the observables on |�G〉 in
terms of expectation values of the spin background |φ0〉. By
fixing the normalization condition of |�G〉1h as

1h〈�G|1̂|�G〉1h

〈φ0|φ0〉 = 1, (C5)

the expectation value of an arbitrary observable Ô is then a
quadratic form of the variational parameters ϕa

h (i),

〈Ô〉 ≡ 1h〈�G|Ô|�G〉1h

〈φ0|φ0〉 = ϕ†Oϕ, (C6)

where the variational parameters ϕa
h (i) are written as a vector

ϕ, and O is a Hermitian matrix with its matrix elements as

Oi′a′
ia =

∑
v′,v

P(v′, v)
〈v′|e+i�̂a′

i′ c†
i′↓Ôci↓e−i�̂a

i |v〉
〈v′|v〉 . (C7)

The Monte Carlo sampling procedure can then be used here
to measure the matrix elements in Eq. (C7) by sampling
different transposition-graph covers (v′, v). To improve the
Monte Carlo sampling efficiency, the loop update procedure
introduced in Ref. [31] is used here in the updating progress
of (v′, v).

We note that Eq. (C5) actually also falls into the form of
Eq. (C6), with Ô taken as the identity operator 1̂,

1 = 〈1̂〉 = ϕ†Aϕ, (C8)

which is also a quadratic form with the corresponding matrix
denoted as A here. To get the variational energies, we take the
operator Ô in Eq. (C6) as the Hamiltonian Ĥ ,

EG ≡ 〈Ĥ〉 = ϕ†Hϕ. (C9)
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Combined with the normalization condition Eq. (C8), the
procedure to optimize EG then turns out to be a generalized
eigenvalue problem

Hϕ = EGAϕ. (C10)

To explicitly calculate the matrix elements Eq. (C7), we
follow Ref. [26] to transform all the operators to the following
form:

〈v′|e+i�̂a′
i′ nk1σ1 nk2σ2 · · · nknσn Sσ1

l1
Sσ2

l2
· · · Sσs

ls
e−i�̂a

i |v〉
〈v′|v〉 . (C11)

Then for every pair of v′ and v, one can check the compati-
bility of the nkiσi s and S

σ j

l j
s with the loop configurations in

the transposition-graph covers (v′, v), as well as calculate the
phase factors ei�̂a

i for every loop. In the following we give the
explicit formulas of Eq. (C7) for some important operators
measured in the main text.

For the normalization condition where Ô = 1̂, the matrix
elements of A are given by

Ai′a′
ia =

∑
v′,v

P(v′, v)
1

〈v′|v〉δii′ 〈v′|e+i�̂a′
i′ ni↓e−i�̂a

i |v〉. (C12)

The hole density at every site nh
i can be directed evaluated

from the A matrix with

nh
i =

∑
a,a′

Aia′
ia . (C13)

The hopping Hamiltonian Ĥt Eq. (5) connects two NN sites
i and i′ ± eα ,

(Ht )
i′a′
ia = t

∑
v′,v,α=x,y

P(v′, v)
1

〈v′|v〉δii′±eα

×〈v′|e+i�̂a′
i′ (ni↓ni′↓ + S+

i S−
i′ )e−i�̂a

i |v〉, (C14)

where ex,y are the x and y direction unit vectors. The charge
current Jc

i j can also be derived from the hopping matrix by just

taking the imaginary part of it

Jc
i j = 2

∑
a,a′

Im
(
(ϕa′

h ( j))∗(Ht )
ja′
ia ϕa

h (i)
)
. (C15)

The superexchange Hamiltonian ĤJ Eq. (6) does not
change the position of the hole

(HJ )i′a′
ia = J

2

∑
v′,v,〈kl〉( 
=i)

P(v′, v)
1

〈v′|v〉δii′ 〈v′|e+i�̂a′
i′ ni↓

× (S+
k S−

l + S−
k S+

l − nk↑nl↓ − nk↓nl↑)e−i�̂a
i |v〉.
(C16)

The neutral spin current Ĵ s
kl defined in Eq. (12) has similar

matrix elements with the superexchange term,

(
Js

kl

)i′a′

ia = −i
J

2
(1 − δik )(1 − δil )

∑
v′,v

P(v′, v)
1

〈v′|v〉δii′

× 〈v′|e+i�̂a′
i′ ni↓(S+

k S−
l − S−

k S+
l )e−i�̂a

i |v〉.
(C17)

Finally, for the quasiparticle weight, Zk , we need to nor-
malize Eq. (4) as

Zk =
∣∣∣∣∣

〈φ0|c†
k↓|�G〉1h√〈φ0|φ0〉[1h]〈�G|�G〉1h

∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
i,a

ϕa
h (i)

〈φ0|c†
k↓ci↓e−i�̂a

i |φ0〉
〈φ0|φ0〉

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
i′a′,ia

1

N
eikxi′ ϕa

h (i)
∑
v′,v

P(v′, v)
〈v′|ni↓e−i�̂a

i |v〉
〈v′|v〉

∣∣∣∣∣∣
2

,

(C18)

which is a similar quadratic formula with Eq. (C6) if we treat
1
N e−ikxi′ as a new wavefunction with a = 0 as ϕ0

h (i′).
When the Lanczos procedure in Appendix B is taken into

considered, the above expressions will become too compli-
cated to be calculated by hands. Actually, we write a program
to generate the expressions automatically in realistic calcula-
tions, and the explicit expressions will be not given here.
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