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Localization as a consequence of quasiperiodic bulk-bulk correspondence

Dan S. Borgnia1,* and Robert-Jan Slager2,1,†

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Received 27 December 2021; revised 23 June 2022; accepted 23 January 2023; published 8 February 2023)

We report on a direct connection between band theory, quasiperiodic topology, and the almost-Mathieu
(Aubry-André) metal insulator transition (MIT). By constructing the transfer matrix equations of one-
dimensional (1D) quasiperiodic operators from rational approximate projected Green’s functions, we relate the
quasiperiodic Lyapunov exponents to the chiral edge modes of rational-flux Hofstadter Hamiltonians. We thereby
show that the insulating phase is rooted in a topological “bulk-bulk” correspondence, a bulk-boundary correspon-
dence between the 1D Aubry-André system (boundary) and its two-dimensional (2D) parent Hamiltonian (bulk).
We extend this connection to random disorder via a Fourier expansion in quasiperiodic modes, demonstrating
our results are widely applicable to systems beyond this paradigmatic model. The uncorrelated disorder limit is
characterized by the breakdown of bulk-boundary driven quasiperiodic localization.
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I. INTRODUCTION

Quasiperiodic systems have played and continue to play
a prominent role in condensed matter physics [1–9]. The
Aubry-André-Harper (AAH) model, or the almost-Mathieu
operator in the mathematics community, is the prototypical
example of quasiperiodic systems. In contrast to periodic or
randomly disordered systems, the AAH model hosts many
exotic properties, including a metal insulator transition (MIT),
a well-established duality between the two phases [10–12],
and a connection to a two-dimensional (2D) quantum Hall
system on a lattice, nearest neighbor (n.n.) Hofstadter model.
Here, we report a new relation between this 2D quasiperi-
odic topology, the famous metal insulator transition, and
translation-invariant band topology—we directly compute the
Lyapunov exponents and corresponding spectral measure us-
ing the constraint of bulk-boundary correspondence in the
2D Harper Hamiltonian. This complements existing works
showing the existence of edge modes [1,2,13,14], promoting
this topological constraint on the existence of edge modes to
a bulk-bulk correspondence.

Following the ideas in Ref. [15] and constructing a
sequence of rational approximate transfer matrix equa-
tions (TMEs) from projected Green’s functions (pGFs), we
construct an explicit map between the dynamical invariants
from SL(2,R) cocycle theory [16–21] describing the eigen-
function localization and higher dimensional band topological
invariants. In particular, we show that the quasiperiodic local-
ization is an exotic example of bulk-boundary correspondence
where 1D bulk localized states reflect a virtual 2D bulk topo-
logical invariant; see Table I. This behavior does not occur
with random disorder as nontrivial Chern markers are in-
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compatible with localization [22], adding to the repertoire of
exotic quasiperiodic phenomena. Indeed, random disorder is
the multimodal quasiperiodic limit for which this correspon-
dence fails [15].

We proceed by reviewing the AAH model including the
connection between the one-dimensional (1D) AAH model
and the 2D Hofstadter model [1,2,11,23–25] and the metal
insulator transition [16–21]. We then construct 2D rational
approximate TMEs following Ref. [15] and link 2D chiral
topological edge modes to a lack of 1D TME solutions by
computing bulk Lyapunov exponents. We conclude with a
comparison to random disorder.

II. ALMOST-MATHIEU REVIEW

When we set � = 2πα and α ∈ R − Q, the AAH Hamil-
tonian takes the form

Ĥ =
∑

x

t (ĉ†
x+1ĉx + ĉx+1ĉ†

x ) + 2V cos(�x + δy)ĉ†
x ĉx. (1)

Considering Eq. (1) as a Landau gauge of a 2D tight bind-
ing model with irrational flux per plaquette � and the

TABLE I. For diophantine α, the table lists AAH phases, the
convergent 2D Hamiltonian Landau gauge, and number of TME
discontinuities per spectral gap from chiral edge modes.

Horizontal Vertical Phase Discontinuities

V < t Yes No Metal One
V > t No Yes Insulator All
V = t Yes/no Yes/no Transition N/A
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y-momentum δy uncovers a topological gap structure [1,15],

H2D(�) =
∑
x,δy

t ĉ†
x+1,δy

ĉx,δy + t∗ĉ†
x,δy

ĉx+1,δy

+ 2V cos(�x + δy)ĉ†
x,δy

ĉx,δy . (2)

Varying � produces the Hofstadter butterfly, Fig. 3, with gaps
labeled by integers, {m + n�|m, n ∈ Z}, the gap-labeling
theorem [1,15,24,26]. The MIT is understood through the
corresponding transfer matrix equation (TME) for Eq. (1)
(t = 1),

T̂ E ,V
α,x (δy )︷ ︸︸ ︷(

E − 2V cos(�x + δy) −1

1 0

)(
ψx

ψx−1

)
=
(

ψx+1

ψx

)
. (3)

A cocycle (α, AE
V (δy)) is generated from the irrational

parameter α and corresponding AE
V (δy + �x) = T̂ E ,V

α,x (δy) ∈
SL(2,R). Lyapunov exponents are defined as

LV (E , α) = lim
n→∞

[
1

n

∫ 2π

0
ln

∣∣∣∣∣
∣∣∣∣∣

n∏
x=1

AE
V (δy + �x)

∣∣∣∣∣
∣∣∣∣∣dδy

2π

]
, (4)

where ||A|| = supψ∈H(||Aψ ||/||ψ ||) is the operator norm.
Lyapunov exponents characterize the log growth of trans-
fer matrix eigenvalues (normalization of eigenfunctions) with
LV (E , α) = 0 corresponding to extended TME solutions
[17,27]. They are continuous in V [27], can be analytically
continued, δy → δy + iε ⇒ LV (E , α) → LV

ε (E , α), and have
quantized acceleration [28],

ωV (E , α) = lim
ε→0+

1

2πε

(
LV

ε (E , α) − LV (E , α)
)
. (5)

The acceleration forms a discretization of almost-Mathieu
dynamics and was used to prove the phase diagram [28]; i.e.,
the spectrum is as follows (see Appendix A):

(1) Absolutely continuous (metallic) for all � and all δ if
V < t ; LV (E , α) = 0 for E ∈ 	.

(2) Singularly continuous (critical) for all � and all δ if
V = t ; LV (E , α) = 0, ωV (E , α) = 1 for E ∈ 	.

(3) Pure pointlike (insulator) for almost all � and almost
all δ if V > t ; LV (E , α) = ln(V/t ) for E ∈ 	.

References [19,29,30] connected this dynamical classifica-
tion to the gap-labeling theorem, topological invariants of the
almost-Mathieu spectral gaps [24].

III. RATIONAL APPROXIMATES

We connect the almost-Mathieu spectral gaps to ratio-
nal flux lattice Integer quantum Hall effect (IQHE) gaps
(band topology) through a sequence of transfer matrix
equations (TMEs) constructed by substituting � = 2πα in
Eq. (2) with its N th continued fraction approximation �N =
2π pN/qN ,

pN

qN
= a0 + 1/{a1 + 1/[a2 + 1/(· · · + 1/aN )]}. (6)

Following Ref. [15], we consider two different regimes: V < t
and V > t (for α diophantine).

IV. HORIZONTAL UNIT CELL (V < t)

For each δy, consider HN,δy = H2D(�N )|δy and define a qN -
site unit cell in the x direction,



δy

x,N = (ψxqN +1,δy . . . ψxqN +qN ,δy

)T
, (7)

the projected Green’s function (pGF) onto one unit cell,

GN (E , δy) = 

δy,†
x,N

(
E − HN,δy

)−1



δy

x,N , (8)

and a corresponding TME (setting t = 1),

T̂ E ,V
qN ,qN x (δy )︷ ︸︸ ︷

1

G1,qN
N (E , δy)

(
1 −GqN ,qN

N (E , δy)

G1,1
N (E , δy) GqN ,1

N (E , δy)G1,qN
N (E , δy) − G1,1

N (E , δy)GqN ,qN
N (E , δy)

)(
ψqN x+1,δy

ψqN x,δy

)
=
(

ψqN (x+1)+1,δy

ψqN (x+1),δy

)
(9)

with Gi, j
N (E , δy) = 〈i| GN (E , δy) | j〉, {i, j ∈ (1, . . . , qN )}.

For V < t , the (operator norm) difference between the ra-
tional pGF and the full irrational Green’s function vanishes as
qN → ∞GN (E , δy) = Gα (E , δy) [15], such that Eq. (9) is just
qN applications of Eq. (3) as qN → ∞. We project to the 1D
Hamiltonian in Eq. (1) by fixing δy (Fig. 1), and compute the
Lyapunov exponents,

LV (E , α) = lim
qN →∞

[
LV

(
E ,

pN

qN

)]
. (10)

In Eq. (9), if G1,1
N (E , δy) 	= 0 and GqN ,qN

N (E , δy) 	= 0,
T̂ E ,V

qN ,x (δy) is unitary and has reciprocal eigenvalues, λT,1λT,2 =
1. The spectrum, E ∈ 	HN , is formed by energies for which

|λT | = 1. Energies for which |λT | ∈ (0, 1) ∪ (1,∞) form the
spectral gaps, E ∈ R − 	; Fig. 1. Thus, for all E ∈ 	HN ,
LV (E , α) and ωV (E , α) = 0, and for E /∈ 	HN , L(E , α) > 0.

If det GN (E , δy) = 0, then by the convergence argument
in Ref. [15] and Appendix D, ||T̂ E ,V

qN ,x (δy)|| > (t/V )qN and
L(E ,

pN

qN
) > ln(t/V ), i.e., a bound state of the half-infinite

chain. The rational Lyapunov exponents are continuous in
E ,V [27] and converge to zero for E ∈ 	Hα

, forming an
absolutely continuous spectrum (by excluding the pure-point
spectrum).

The bound states, generated by zeros of det GN (E , δy),
arise from topological winding of the bulk Green’s
function in Eq. (8) [31–39], correspond to edge
modes, and are a direct consequence of bulk-boundary
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FIG. 1. Top panels (taken from Ref. [15]) shows magnetic unit cells chosen in the 2D parent Hamiltonian (center). For diophantine α in
Eq. (2), the regimes V < t and V > t dictate a horizontal or vertical cell respectively. Bottom panel shows the transfer matrix eigenvalues, the
corresponding numerically computed AAH spectrum (green), corresponding spectral gaps (grey), and 2D pGF zeros (red cross) for parameters
t = 1, N = 2048, α = 1

2 (
√

5 − 1), and V = 2 (left) or V = 0.5 (right). The spectrum (green) has transfer matrix eigenvalues on the unit circle,
|λT | = 1. Zero eigenvalues of the pGF (red cross) imply the transfer matrix is rank deficient, λT = 0. Note the many small gaps (gray) and
zeros in every gap (right), and the continuum of rank-deficient points (left).

correspondence in the rational approximate models
[15,32,36,39]. While they do not contribution to the bulk
Lyapunov exponents, the presence of boundary fixes the
gauge choice δy, and the corresponding edge mode is
formed [1,40].

V. VERTICAL UNIT CELL (V > t)

For each �N , Fourier transform the vertical Landau gauged
Hamiltonian along the x coordinate, ĉx,y =∑kx

eikxxĉkx,y,
build a unit cell along the y coordinate of size qN , and Fourier
transform into the δy basis [15],

H̃2D =
∑
δy,kx

[
qN∑

n=1

(
2t cos(�N n + kx )ĉ†

n,δy,kx
ĉn,δy,kx + V ĉ†

n+1,δy,kx
ĉn,δy,kx

)
+ Veiδy ĉ†

N,δy,kx
ĉ1,δy,kx + h.c.

]
, (11)

with HN,kx = H̃2D(�N )|kx for each kx. Then, define a qN -site
unit cell on the xth lattice site,



δy

x,N = (ψ1,x . . . ψqN ,x
)T

, (12)

the projected Green’s function (pGF) onto one unit cell,

GN (E , δy) = 

δy,†
x,N (E − H̃2D)−1


δy

x,N ,

GN (E , δy) =
∫ 2π

0

dkx

2π

(
E − HN,kx

)−1
, (13)

and the corresponding TME (t = 1),

T̂ E ,V
qN ,x (δy )︷ ︸︸ ︷(

G−1
N (E , δy) −1qN

1qN 0

)(



δy

x,N



δy

x−1,N

)
=
(



δy

x+1,N



δy

x,N

)
. (14)

We again project back to the 1D Hamiltonian by fixing δy;
see Fig. 1. However, following Ref. [28], we write x → x + 1
as δy → δy + �x such that

1

n
ln

∣∣∣∣∣
∣∣∣∣∣

n∏
x=1

T̂ E ,V
qN ,x (δy)

∣∣∣∣∣
∣∣∣∣∣ = ln

∣∣∣∣∣
∣∣∣∣∣

n∏
x=1

T̂ E ,V
qN ,0 (δy + �x)

∣∣∣∣∣
∣∣∣∣∣

1
n

(15)

and the rational Lyapunov exponents is

LV

(
E ,

pN

qN

)
= lim

n→∞

∫ 2π

0

dδy

2π
ln
∣∣∣∣(T̂ E ,V

qN ,0 (δy)
)n∣∣∣∣ 1

n , (16)

where all δy contribute.

Notice, bulk-boundary correspondence [1,41] guaran-
tees the 2D rational approximates will host edge modes
corresponding to the nontrivial magnetic flux per plaquette
(the IQHE), and for ∀E , ∃δE

y such that det GN (E , δE
y ) = 0 in

Eq. (13); see Fig. 2. Thus,

LV

(
E ,

pN

qN

)
�
{

0, if E ∈ 	HN

ln(V/t ), if E /∈ 	HN

. (17)

The rational Lyapunov exponents, LV (E ,
pN

qN
), must be jointly

continuous in E ,V as qN → ∞ [27]. The irrational spectrum,
	Hα

, must have zero overlap with the complement of the
rational spectra, limqN →∞ 	̄HN . Thus, the Lyapunov exponents
must converge to LV (E , α) = V for E ∈ 	Hα

, as the spectrum
is a cantor set (nowhere dense) [19]. This implies the absence
of an absolutely continuous spectrum, i.e., a pure-point-like
spectrum (up to singular continuous contributions [16]).

We make this explicit using the ideas in Refs. [15,28]. The
Lyapunov exponents, LV (E , α), are computed away from the
real axis with δy → δy + iε for ε > 0, such that LV

ε (E ,
pN

qN
) is

almost everywhere (a.e.) continuous. By Refs. [8,15,28], for
any ε > 0 and large enough qN ,

det(E − HN,δy+iε ) = det(E − HN,δy ) + (−Ve2πε )qN . (18)

Thus, for E ∈ 	HN , det(E − HN,δy ) = 0 and

∣∣∣∣(T̂ E ,V
qN ,0 (δy)

)qN
∣∣∣∣1/qN = Ve2πε, (19)
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FIG. 2. (Top) Concatenated transfer matrices for vertical unit
cells. For each ω there exists a δy such that det (T̂qN ,δy ) = 0; (bottom)
rational approximate pGF zeros plotted as a function of δy (ky) for
qN = 8 in golden mean approximation. Notice the presence of a zero
for each energy (up to numerical precision) in the spectral gaps.

taking t = 1. Then, Eq. (16) reduces to

LV
ε

(
E ,

pN

qN

)
= ln(V ) + 2πε. (20)

Consistent with Ref. [28], this implies for E ∈ 	HN ,

LV
ε (E , α) = lim

qN →∞ LV
ε (E , α) = ln(V ), (21)

ωV (E , α) = lim
N→∞

ωV

(
E ,

pN

qN

)
= 1, (22)

such that the spectrum is localized [28].

VI. TOPOLOGICAL LOCALIZATION

The transition from a convergent horizontal unit cell to
a convergent vertical unit cell [15] corresponds to a lo-
calization transition and bulk-boundary correspondence—the
quasiperiodic bulk topology and the corresponding chiral
edge modes—forces bulk localization, a “bulk-bulk” cor-
respondence. In contrast, the Fibonacci quasicrystal lacks
bulk-boundary correspondence [1,26] and, consistent with the
discussion above, is power-law (not exponentially) localized
for any parameter regime [42,43].

A similar argument can be applied to uncorrelated disorder
and 1D Anderson localization. Consider a n.n. Hamiltonian
with an on-site potential generated from the uniform distribu-
tion {Vx ∈ (−V,V )}, V̂ =∑x Vxĉ†

x ĉx, and Fourier decompose
Vx in a quasiperiodic basis,

Vx =
∑

n

[Vnei(2παnx+nδy ) + V ∗
n e−i(2παnx+nδy )] (23)

The corresponding 2D multimodal quasiperiodic Hamiltonian
is n.n. in the horizontal direction and ∼ 1

a range in the vertical

direction (lattice constant a),

Ĥx,y = t ĉ†
x+1,yĉx,y +

∑
n

[Vnei(2παnx)ĉ†
x,y+nĉx,y]

+ t∗ĉ†
x,yĉx+1,y +

∑
n

[V ∗
n e−i(2παnx)ĉ†

x,yĉx,y+n]. (24)

These long-range hopping models have subtle phase dia-
grams beyond the scope of this article, especially in the limit
when hopping magnitudes decay slowly [44,45]. Instead, we
consider a prime number high-pass filter, choosing a prime
P such that Vn = 0 for all |n| > P, and taking the limit as
P → ∞. For all qN > P, define a (qN × P)-dimensional unit
cell such that all sites are effectively n.n. coupled, the flux per
unit cell is zero, and Eq. (14) applies. Then, by choosing P
large enough for a given V , the rational Lyapunov exponents
take the same form as in Eq. (17), a.e. discontinuous. By
similar arguments as above, the irrational spectrum, 	Hα

, must
be pure-point like and localized. The finite-frequency, random
disorder localization defines a natural limit from single-mode
quasiperiodic systems to uncorrelated disorder and provides
insight into the stability of Anderson localization in finite-size
systems.

The uncorrelated disorder limit corresponds precisely to
the breakdown of the quasiperiodic construction due to nonde-
caying long-range hopping. In the P → ∞ limit, the spectral
gaps are not guaranteed to stay open, Chern markers must
be trivial [22], and the convex hull generated by the disorder
pattern (Refs. [1,26]) is deformable to a point such that the the
bulk-boundary correspondence argument leading to Eq. (17)
does not apply. The gap closings separate quasiperiodic sys-
tems from disorder as the integrated density of states is no
longer quantized [19,24,46] and the Lyapunov exponents can
vary with energy. We leave the exploration of this limit to
future work.

VII. CONCLUSIONS

In summary, we report that the quasiperiodic metal
insulator transition is the consequence of bulk-boundary cor-
respondence and quasiperiodic topology, generated by the
chiral edge modes of the rational approximates, and connect
band topology to the metal insulator transition. This makes
precise the intuition presented by Aubry and André in [10,47]
that the MIT resembles a U (1) gauge-symmetry-breaking
transition. The metallic eigenfunctions are invariant under
phase shifts of the AAH on-site potential, a gauge freedom
of the TME in Eq. (9), and the corresponding Lyapunov
exponents are not averaged over the phase δy. By contrast,
there is no such gauge freedom in the 1D transfer matrix
in Eq. (14), and the corresponding Lyapunov exponents are
averaged over all phases δy. The self-interference generates
localized eigenfunctions.

In practice, the construction generalizes to 1D quasiperi-
odic patterns with bulk-boundary correspondence, even if not
analytically tractable, by the methods in Ref. [15] and the
gap labeling for virtual topological invariants in Ref. [26].
Indeed, we extend the connection between band topology
and eigenfunction localization to uncorrelated disorder via
a sequence of long-range hopping models. While similar in
numerical simulation due to the finite-size truncation of ran-
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dom disorder and resulting finite hopping in Eq. (24), the
random disorder limit corresponds to the breakdown of these
topological constraints. We leave to future work connections
between localization and higher order topological invariants
in higher dimensional quasiperiodic systems.w
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APPENDIX A: AAH BACKGROUND

The main results of this work generalize to multiple classes
of quasiperiodic models, but the Aubry-André model (almost-
Mathieu operator) is the most well studied. We introduce
it and some background on current methods in the study
of single-particle quasiperiodic models. The Hamiltonian is
simple but presents a rich playground for new techniques in
analysis and single-particle physics:

Ĥ =
∑

x

t (ĉ†
x+1ĉx + ĉx+1ĉ†

x ) + 2V cos(�x + δy)ĉ†
x ĉx. (A1)

Here � = 2πa, and we will take a ∈ R − Q.
To understand why the almost-Mathieu operator is math-

ematically interesting, beyond the physically interesting
metal-insulator transition, we introduce the notion of a spec-
tral measure:

For any self-adjoint linear operator, T , one can decompose
its measure on the target Hilbert space, H as an absolutely
continuous, singularly continuous, and pure-point-like com-
ponents. The spectral measure of T is defined with respect
to a vector h ∈ H and a positive linear functional f : T →
〈h| f (T ) |h〉 = ∫

σ (T ) f dμh, where σ (T ) is the spectrum of the
operator T and μh is the unique measure associated with h
and T .

The portion of the Hilbert space, i.e., the subspace of
vectors, for which μh is dominated by the Lebesgue mea-
sure on the same subspace—for every measurable set A, if
the Lebesgue measure L(A) = 0, μh(A) = 0—is absolutely
continuous. By contrast, the pure-point-like component is the
discrete portion of the spectrum where points can have finite
measure in terms of μh, but points have zero Lebesgue mea-
sure. The singularly continuous part of the spectrum is defined
as the singular part of the spectrum—the subspace which can
be formed by a disjoint union of sets A and B for which
μh(A) = 0 when L(B) = 0—which is not pure-point-like.

The original metal-insulator transition was shown non-
rigorously through the duality of the Aubry-André under a
Fourier transform-like operation, ĉk =∑x exp(i�kx)ĉx,

˜̂H =
∑

k

V (ĉ†
k+1ĉk + ĉk+1ĉ†

k ) + 2t cos(�k + δk )ĉ†
k ĉk; (A2)

see Appendix B. The model has a self-dual point for V =
t , fixing a transition from momentum-like to position-like
eigenfunctions. A more complete formulation of the problem,
however, was constructed and proven for almost-Mathieu op-
erators. It was proven that the spectrum of the almost-Mathieu
operator is (setting t = 1) as follows:

(1) Absolutely continuous for all � and δx when V < 1.
(2) Singularly continuous for all � and δx when V = 1.
(3) Pure-point-like for almost all � and δx when V > 1.
A pure-point-like spectrum guarantees Anderson localiza-

tion as it corresponds to eigenfunctions having finite measure
at the eigenvalues and zero measure elsewhere. Intuitively,
only a finite number can effectively participate (exponentially
decaying weight) in generating discretely separated eigenval-
ues, and the eigenfunction is exponentially decaying on the
lattice. More formally, the pure-point-like spectrum forces
eigenfunctions to be semiuniformly localized eigenstates [48].
By contrast, an absolutely continuous spectrum guarantees de-
localization if the spectrum has finite measure, which has been
shown to be the case for the almost-Mathieu operator. Much
less is known about the singularly continuous case, and it has
been the topic of multiple famous problems proposed by Barry
Simon [49–51]. One of the few results on the singularly con-
tinuous spectrum is its existence deep in the pure-point-like
regime for Liouville a = 2π/�—sequence of rational ap-
proximates {pn/qn} exists such that |a − pn/qn| < n−qn [52].
In fact, for Liouville numbers, the pure-point-like transition
occurs for λ = eβ with β = limn→∞ ln(qn)/qn+1 [20].

In this language, the almost-Mathieu operator becomes a
clear bridge between the well-understood Mathieu operator
(periodic operators) and random disorder. Understanding lo-
calization for the almost-Mathieu operator directly links to
our understanding of chaos and localization in disordered
systems. Yet, we still do not understand the full parameter
space of a 1D nearest neighbor hopping lattice model with
a cosine potential. The almost-everywhere part of this prob-
lem is important as it determines the physical stability of the
model. Modern techniques in the field rely on cocycle theory
[16,17,19,27], and the absolutely continuous part of the spec-
trum is conjectured to be equivalent to the almost-reducibility
of the corresponding cocycle [17]. The connection with cocy-
cle theory further highlights the importance of this problem,
as the reducibility classes of SL(2,R) cocycles are known to
describe the onset of quantum chaos and directly link to the
Lyapunov exponent [17,18,27].

APPENDIX B: ANDRÉ-AUBRY’S ARGUMENT

Early studies of quasiperiodic system dynamics focused
on the construction of eigenstates from sequences of ra-
tional approximates, inductively [11,53]. While the original
work by André and Aubry [10] relied on the continuity
of the Thouless parameter and self-dual models to explain
the transition. The RG-like induction methods proved rigor-
ously the existence of a localized phase. For the AAH model
[11,53] and similar quasiperiodic potentials [11], these meth-
ods demonstrated the emergence of a pure-point-like spectrum
for strong enough onsite potentials (relative to hopping terms).
A pure-point-like spectrum enforces localized eigenstates as
eigenstates lack support across any continuous energy win-
dows [3,11,16,53,54]. Below we introduce the simple AAH
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model and note key insights about the breakdown of eigen-
state ergodicity.

The original paper by André and Aubry [10] rests on
two fundamental requirements for a quasiperiodic Hamilto-
nian, its self-duality and its fidelity to a sequence of rational
approximates. It proposed a Hamiltonian, the AAH model,
which satisfies a self-duality constraint under a real-space to
dual-space (momentum space in the continuum limit) trans-
formation, ĉk =∑x exp(i�kx)ĉx:

Ĥ =
∑

x

t (ĉ†
x+1ĉx + ĉx+1ĉ†

y ) + 2V cos(�x + δx )ĉ†
x ĉx, (B1)

˜̂H =
∑

k

V (ĉ†
k+1ĉk + ĉk+1ĉ†

k ) + 2t cos(�k + δk )ĉ†
k ĉk . (B2)

Here � is some irrational parameter relative to π and
clearly for t = V the Hamiltonian is self-dual, indicating
the existence of a transition. One can introduce a sequence
of rational approximates, {an/bn}n∈N with an, bn ∈ Z and
limn→∞ an/bn = �. The sequence of Hamiltonians with pe-
riodic potentials links the density of states on either side
of the duality transformation because there are well-defined
bands. One can then write down the corresponding Thouless
exponent for each side of the transition:

γ (E ) =
∫ ∞

−∞
ln |E − E ′|dN (E ′), (B3)

For rational an/bn, with t = 1 and V = λ, the transformation
from Eq. (B1) to Eq. (B2) takes Ṽ → 1/λ and E → Ẽ/λ,
which implies Nλ,k (E ) = Ñ1/λ,k (E/λ) [10]. So,

γ (E ) =
∫ ∞

−∞
ln

∣∣∣∣E − E ′

λ

∣∣∣∣dÑ

(
E ′

λ

)
+ ln |λ|

γ (E ) = γ̃

(
E

λ

)
+ ln |λ|. (B4)

Since quasiperiodic systems do not have bands but rather
protected band gaps (discussed below [3,16,54–57]), the
Thouless exponent must be non-negative by construction in
1D [10]. Thus, for λ > 1, γ (E ) > 0 and states are expo-
nentially localized. This all relies on the continuity of the
Thouless exponent, only proven in 2002 [27]. Here, the ra-
tional approximates differ drastically from the irrational limit,
but the density of state is well described by the approximation.
In fact, these spectral properties are topologically protected by
the quasiperiodic pattern’s robustness [1], further expanded
below.

Via the above arguments, André and Aubry demonstrated
the existence of nonzero Thouless parameter for V > 1. And,
by the duality of the model, γ (E ) must be zero for V < 1. This
transition is unusually sharp, exhibiting exponential localiza-
tion on either side due to the relation between the Thouless
parameters of the self-dual models. Further, the methodology

is quite general in 1D and can be extended to other self-dual
models, even if the duality is energy dependent [15]. The
argument breaks down in higher dimensions as the Thouless
exponent is no longer guaranteed to be non-negative [10].

Returning to the Hamiltonian in Eq. (B1), note the phase
δx sets the “origin” of the pattern. The eigenvalues cannot
depend on the phase δx in the thermodynamic limit. How-
ever, for λ > 1, if a state of energy E is localized to site
x when δx = 0, then the state localized to site x − δ/� has
energy E for the shifted Hamiltonian with phase δx = δ. Thus,
the eigenstates of each eigenvalue do depend directly on the
phase. In Refs. [10,47], this is described as a gauge-group
symmetry-breaking transition.

APPENDIX C: AAH ALGEBRA

We follow the work of Prodan [1] in deriving explicit topo-
logical invariants in the AAH model context. We construct the
unital algebra and use it to label the resulting spectral gaps of
the AAH Hamiltonian. Recall that it reads

Hδx =
∑

n

t ĉ†
n+1ĉn + H.c. + 2V cos(�n + δx )ĉ†

nĉn, (C1)

in terms of the creation operators c†
i , lattice constant a,

and potential V that depends on the position n and is in-
dexed by phase δx. The model exhibits a duality under the
pseudo-Fourier transformation ck =∑n exp(−ikn)ck [10].
Considering δx = 0, one obtains

H̃(k) =
∑
k,k′,n

teik(n+1)−ik′nĉ†
k ĉk′ + t∗eikn−ik′ (n+1)ĉ†

k ĉk′

+V (e2π ian+i(k−k′ )n + e−2π ian+i(k−k′ )n)ĉ†
k ĉk′ ,

H̃φ =
∑

k

2t cos(�k)ĉ†
k ĉk + V (ĉ†

k+1ĉk + H.c.), (C2)

where in the last line we have set k = �m and de-
fined

∑
n exp(i�n(m − m′)) = δ(m − m′) in the limit n →

∞. A natural equivalence emerges between H and H̃ un-
der V → t , implying the model undergoes a transition for
V = t , being the well-known 1D metal-insulator transition.
Considering the limits V = 0 and t = 0, the duality re-
lates extended (momentum-localized) eigenstates to position-
localized states.

The duality in the AAH model has been focus of many
localization studies, past and present [3,10]. The model took
on new light, however, when the authors of Ref. [2] noticed
it could be parameterized by the phase choice δx [2,3,18,23].
Naively, this phase choice is irrelevant as it corresponds to a
shift in initial position of an infinite chain, but the 2D parent
Hamiltonian, as function of x and δx, has a topological notion.
In particular, it corresponds to a 2D tight-binding model with
an irrational magnetic flux per plaquette. Explicitly,

H =
∑
n,δx

t ĉ†
n+1,δx

ĉn,δx + t∗ĉ†
n,δx

ĉn+1,δx + 2V cos(�x + δx )ĉ†
n,δx

ĉn,δx ,

H̃ =
∑

n,m,m′
tδm,m′ (ĉ†

n+1,mĉn,m′ + t∗ĉ†
n,mĉn+1,m′ ) + V (ei�xδm+1,m′ + e−i�xδm−1,m′ )ĉ†

n,mĉn,m′ ,

H̃ =
∑
n,m

t (ĉ†
n+1,mĉn,m + ĉ†

n,mĉn+1,m) + V (ei�nĉ†
n,m+1ĉn,m + e−i�nĉ†

n,m−1ĉn,m). (C3)
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FIG. 3. (a) Quasiperiodic spectrum as function of plaquette flux. Note the gap labeling, where gaps are generated by lines of different
slopes—lines curved in spectrum, but straight in Integrated Density of States (IDoS)[1]. (Panel (b) is taken from Ref. [15].) Illustration of
quasiperiodic pattern generating a minimal surface (convex hull [1]). This forms the underlying unital algebra, taking the place of a Brillouin
zone.

The 2D spectrum amounts to a Hofstadter butterfly when varying the flux per plaquette, �. For any rational flux, �/2π = p/q ∈
Q, one can define a magnetic unit cell specifying bands that have a Chern number, which sum to zero, see Fig. 3. This is however
not possible for an irrational flux. In this case, strategies outlining sequences of rational approximates, with similar band gaps,
to find topological invariants were employed [58].

APPENDIX D: TRANSFER MATRIX COMPUTATIONS

A benefit of the rational approximate transfer matrices is the reduction of a concatenated product of transfer matrices to a
2 × 2 transfer matrix with four relevant elements: G1,qN

N (E , δy), GqN ,1
N (E , δy), G1,1

N (E , δy), and GqN ,qN
N (E , δy). For any rational

approximate, these can be computed explicitly. Start with the projected Green’s function, but taking the non-Hermitian Peierls
phase substitution teiδk → tei(δk−iε) and the gauge transformation moving all phases to the corner elements:

GN =
∮
S1

dz

2π iz

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E1 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2V cos (�N + δy) 1 0 . . . zeiqN (δk−iε)

1 2V cos (�N 2 + δy) 1 . . . 0

0 1 2V cos (�N 3 + δy) . . . 0
...

. . .
. . .

. . .
...

1/ze−iqN (δk+iε) 0 . . . 1 2V cos (�N qN + δy)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(D1)

For any ε > 0 there exists a large enough qN , such that e−qN ε < δ for any δ > 0. We can thus ignore the 1/z term in what follows
even in the limit ε → 0 by choosing first qN → ∞. It then follows from the cofactor method for computing inverses that

G1,qN
N (E , δy) =

∮
dz

2π iz

1

det
(
E − HN,δy

) , (D2)
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where

det(E − HN,δy ) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E1 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2V cos (�N + δy) 1 0 . . . zeiqN (δk−iε)

1 2V cos (�N 2 + δy) 1 . . . 0

0 1 2V cos (�N 3 + δy) . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 1 2V cos (�N qN + δy)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −(−1)qN +1zeiqN (δk−iε) + [E − 2V cos (�N + δy)] det(E − HN,δy )′ − det(E − HN,δy )′′. (D3)

The zeros of [E − 2V cos (�N + δy)] det(E − HN,δy )′ −
det(E − HN,δy )′′ are the characteristic solutions of HN,δy .
Indeed, we notice that det(E − HN,δy ) is generated
by a recursion relation detn+1 = (E − 2V cos(�N (n +
1))) detn − detn−1,which is the same recursion relation for the
quasiperiodic transfer matrix equation,(

E − 2V cos(�N (n) + δy) −1

1 0

)(
detn

detn−1

)
=
(

detn+1

detn

)
.

(D4)

However, we have the boundary condition det1 = E −
2V cos(�N + δy) and det2 = (E − 2V cos (�N + δy))(E −
2V cos (�N 2 + δy)) − 1. This is just the semi-infinite trans-
fer matrix equation. We need energies in the band gap of
the rational approximates (not characteristic solutions); the
remaining solutions to this transfer matrix equation can only
come in three distinct forms: Uniformly hyperbolic growth,
uniformly hyperbolic decay, and constant norm. The constant
norm solutions correspond to bulk states of the infinite trans-
fer matrix equation and are always slightly shifted into the
contour by the iε prescription above. However, we care about
energies in the band gaps of the full bulk operator, E /∈ 	,
and we know that | detn | → 0 for decaying solutions, i.e.,
edge modes. Thus, for energies, E∗, such that there exists an
edge mode for the operator HN with semi-infinite boundary
conditions, det(E − HN,δy ) → 0. For such E∗, it follows that

G1,qN
N (E∗, δy) =

∮
dz

2π iz

1

z
= 0 (D5)

and

GqN ,1
N (E∗, δy) =

∮
dz

2π iz

z − detn−2
(
E∗ − HN,δy

)
z − det

(
E∗ − HN,δy

)
→
∮

dz

2π iz
= 1. (D6)

Similarly,

G1,1
N (E∗, δy) = GqN ,qN

N (E∗, δy) →
∮

dz

2π iz

1

z
= 0, (D7)

resulting in the transfer matrix equation for E∗,

T̂ E∗ ,V
qN ,qN x (δy )︷ ︸︸ ︷((

t
V

)qN eεqN −1

1 0

)(
ψqN x+1,δy

ψqN x,δy

)
=
(

ψqN x+qN +1,δy

ψQN x+qN ,δy

)
, (D8)

where the 1,1 entry comes from the convergence condition
on ||GN (E , δ − y) − Gα (E , δy)|| from Ref. [15]. By contrast,
if det(E − HN,δy ) → ∞ the integrals are nonuniversal and
reproduce the effective qN -site transfer matrix,

T̂ E 	=E∗,V
qN ,x (δy) =

qN∏
n=1

(
E − 2V cos(�N (n) + δy) −1

1 0

)
.

(D9)

Of course, if det(E − HN,δy ) = 0, the Green’s function does
not exist and we must take a small iη offset to compute
the relevant quantities. For constant norm solutions (the bulk
delocalized solutions) we have divergent behavior, but this is
consistent with a Green’s function pole in the limit qN → ∞.
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