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Linear response functions respecting Ward-Takahashi identity and fluctuation-dissipation
theorem within the GW approximation

Hui Li ,1 Zhipeng Sun ,2,* Yingze Su ,1 Haiqing Lin,2,† Huaqing Huang ,1,‡ and Dingping Li 1,§

1School of Physics, Peking University, Beijing 100871, China
2Beijing Computational Science Research Center, Beijing 100193, China

(Received 22 August 2022; revised 4 December 2022; accepted 18 January 2023; published 6 February 2023)

Fundamental equalities, such as the Ward-Takahashi identity (WTI) and the fluctuation-dissipation theorem
(FDT), are important in the calculation of the response functions, which are defined as the variations of physical
quantities with respect to the external sources. In this paper, the formalism of calculating the response functions
according to their original definitions is presented, based on the generalized GW (GGW) method which was
developed for the electronic systems including spin-dependent interaction. This formalism automatically ensures
the FDT, and is theorectically proved to respect the WTI. By contrast, the commonly used random phase
approximation (RPA) within the GGW method violates both the WTI and the FDT, and the Bethe-Salpeter
equation (BSE) satisfies the WTI but does not fulfill the FDT. The validity of this methodology is demonstrated
on the two-dimensional one-band Hubbard model, and the results show that our formalism makes significant
improvements over the RPA formula. Due to the similar computational cost to the BSE, our formalism is
expected to be applied to realistic materials.
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I. INTRODUCTION

Response functions, such as the spin susceptibility, the
charge compressibility and the electronic conductivity, are
important quantities to describe the physical properties of
realistic materials. The numerical computation of the re-
sponse functions has always been a central issue in condensed
matter physics, which directly relates to the experimental
results [1]. Even for a given many-body model, such as the
Hubbard model, the existing theoretical framework cannot
provide an accurate and strict calculation. Approximations
are necessary to be introduced, and thus the accuracy of the
calculation is concerning. Also, respecting the fundamental
equalities is also particularly important. Baym and Kadanoff
[2] pointed out the importance of the charge conservation
for many-body systems, and proposed a scheme to ensure
the Ward-Takahashi identity (WTI). However, the commonly
used random phase approximation (RPA) and Bethe-Salpeter
equation (BSE) within the GW framework in realistic ma-
terials do not strictly follow the Baym-Kadanoff framework
[3]. Therefore, their deviation from the fundamental equali-
ties is worrying and worth studying. As shown in Ref. [4],
the deviation of the WTI is negatively related to the quality
of the calculation accuracy within the GW � framework. In
Ref. [5], it is pointed out that the charge compressibility
is larger by about three times than the value given by the
renormalized RPA within the fluctuation-exchange approx-
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imation, which is exactly the consequence of violating the
fluctuation-dissipation theorem (FDT). It can be said that it
is very important to ensure the fundamental equalities in the
calculation of the response functions.

It should be pointed out that the physical response func-
tions are defined as the variations of the physical quantities
with respect to the external sources, and are functional deriva-
tives in the mathematical forms. This definition automatically
satisfies the FDT, so as to guarantee the Kubo’s formula [6]:
the bridge between the response functions and the correla-
tion functions. For this reason, the response functions should
be calculated from their own definitions, i.e., the functional
derivatives, and such an idea began with Ornstein and Zernike
[7]. Such an idea is also applied to the mean-field analysis
of the Ising model in the statistical mechanics, where the
physical spin susceptibility is calculated by the functional
derivative of the mean local spin with respect to the external
magnetic field (for example in Ref. [8]). In quantum field
theory, the propagator calculated by the functional derivative
can restore the important Goldstone theorem and higher-order
WTIs [9–11]. Therefore, in the realistic materials, we believe
it is also important to calculate the response functions from
their original definitions.

In this paper, we study the scheme of calculating the
response functions according to their definitions, based on
the existing generalized GW (GGW) approximation [12–19],
which was developed for the systems including the spin-
dependent interaction. We theorectically proved that the
functional derivative scheme preserves the WTI, as is required
for a self-consistent method. We calculated the deviations
of the RPA, the BSE and the functional derivative scheme
approaches from the WTI and FDT in the two-dimensional
Hubbard model. The results show that the RPA has an obvious
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deviation from both the WTI and the FDT; the BSE satisfies
the WTI whereas violates the FDT; the functional derivative
respect both of them, as proved theorectically. We also made
some numerical comparisons with the results obtained with
the determinantal quantum Monte Carlo (DQMC) and dy-
namical mean field theory (DMFT). The results show that the
functional derivative scheme makes a significant improvement
over the RPA, and competes with the DMFT within the range
of parameters considered. Noting that the functional derivative
scheme has a similar computation complexity to the BSE, it
could also be applied to some realistic materials.

The paper is organized as follows. In Sec. II we present the
formalism of the GGW approximation for general electronic
systems, and apply the functional derivative scheme to the
GGW approximation. Next in Sec. III, we apply our method to
the two-dimensional Hubbard model. In Sec. IV, we present
the numerical results of our approach. The conclusion is given
in Sec. V.

II. FORMALISM

A. GGW approximation in general cases

The generalized GW approximation was proposed to deal
with explicitly spin-dependent interaction, and can be applied
to various kinds of electronic systems. We reformulate it in
the functional path integral formalism, and start with the Mat-
subara action:

S[ψ∗, ψ] = −
∑
α1α2

∫
d (12)ψ∗

α1
(1)Tα1α2 (1, 2)ψα2 (2)

+ 1

2

∫
d (12)

∑
ab

σ a(1)V ab(1, 2)σ b(2). (1)

Here, the charge/spin composite operator σ a(1) =∑
αα′ ψ∗

α (1)τ a
αα′ψα′ (1), τ a(a = 0, x, y, z) are Pauli matrices,

Greek letters like α indicate spin up and spin down.
ψ,ψ∗ are Grassmannian fields. Notation (1) = (τ1, �x1)
contains the space coordinate x1, and the imaginary time
coordinate 0 � τ1 � β, where β is the inverse temperature.
The notation

∫
d (1) stands for integral over all space and

time coordinates in the continuous system, and stands for
the summation over all space and time coordinates in the
discrete system. The two-body interaction is symmetric, i.e.,
V ab(1, 2) = V ba(2, 1), and it can describe the usual Coulomb
interaction, the spin-spin interaction, and the spin-orbit
interaction.

The one-body Green’s function is defined in an ensemble
average form:

Gα1α2 (1, 2) = 〈
ψ∗

α2
(2)ψα1 (1)

〉
. (2)

〈· · · 〉 presents for 1
Z

∫
D[ψ∗, ψ] · · · e−S , with Z =∫

D[ψ∗, ψ]e−S the grand partition function, and D[ψ∗, ψ] =
�nd (ψ∗

n , ψn) defines the measure (for each field index n we
have an integration over a coherent state basis) [20]. Since the
interaction has a spin structure, it is convenient to denote the
matrix in the spin space as

X =
[

X↑↑ X↑↓
X↓↑ X↓↓

]
. (3)

Note that its trace is denoted by Tr[X ] = X↑↑ + X↓↓.

Then one can derive the generalized Hedin’s equations for
the action Eq. (1), and the lowest approximation for the
Hedin’s vertex function leads to the GGW approxima-
tion. The full Green’s function, G, is determined from the
bare Green’s function T and self-energy, through Dyson’s
equation: G−1(1, 2) = T (1, 2) − 	H − 	(1, 2). In the GGW
approximation, the Hartree self-energy is given by

	H(1, 2) = δ(1, 2)
∑

ab

∫
d (4)τ aV ab(1, 4)Tr[τ bG(4, 4)],

(4)
and the GGW self-energy is given by

	(1, 2) = −
∑

ab

τ aG(1, 2)τ bW ba(2, 1), (5)

where W is the dynamic effective charge/spin potential and
determined by the polarization function P through the relation
(W −1)ab(1, 2) = (V −1)ab(1, 2) − Pab(1, 2). The polarization
function is approximated by

Pab(1, 2) = Tr[τ aG(1, 2)τ bG(2, 1)]. (6)

These equations can be solved self-consistently. It is worth
mentioning that, in the GGW approximation, the Green’s
function G and the self-energy 	 are spin-dependent, the
screened potential W and the polarization function P are 4 × 4
matrices containing the coherence between charge and spin
channels. Next, we will address the problem of the two-body
correlation functions.

B. Covariant scheme for the GGW method

For the generalized Hartree (GH) approximation, which
only contains Hartree self-energy in Eq. (4), the two-body cor-
relation function obtained by RPA formula can preserve the
FDT and WTI (the vertex at the two-body level only contains
the first two diagrams in Fig. 1). However, the higher-order
approximation, such as GW, cannot preserve both the FDT
and the WTI when using the RPA formula to calculate the
two-body correlation. Therefore, in this subsection, we take
the GGW approximation as an example to derive the physical
response function calculation for the higher-order approxima-
tion theory.

According to the FDT, the two-body correlation functions
should be defined as the response of the physical quantity
in the presence of an external potential, which we refer to
as the covariant scheme. The scheme for calculating a gen-
eral connected two-body correlation function χXY (1, 2) =
〈X (1)Y (2)〉c within the GGW framework, where X,Y are
binary composite operators, is formulated as follows.

First, one adds the corresponding source term to the action,
S[ψ∗, ψ ; φ] = S[ψ∗, ψ] − ∫

d (1)φ(1)X (1) and the correla-
tion can be obtained by χXY (1, 2) = δ〈Y (2)〉

δφ(1) . Then, we write
down the off-shell GGW equations (keep φ 	= 0), and cal-
culate the functional derivative of the GGW equations with
respect to φ. Finally, let the source φ tend to 0 to obtain the
on-shell results. Although we restrict our discussion to the
GGW, this scheme can also be applied to different many body
approaches.

We consider the calculation of a general connected
two-body correlation function χXY (1, 2) = 〈X (1)Y (2)〉 −
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FIG. 1. The Feynman diagram of the full cGGW vertex function in Eq. (12) for translation invariant systems in the momentum space.

〈X (1)〉〈Y (2)〉, where X,Y are local binary operators and take
the form

X (1) =
∑
α2α3

∫
d (23)ψ∗

α2
(2)KX ;α2α3 (1, 2, 3)ψα3 (3). (7)

The expression for the kernel K depends on the opera-
tor X . As for the spin operator, the kernel K for σ a(1) =∑

α1α
′
1
ψ∗

α1
(1)τ a

α1α
′
1
ψα′

1
(1) is

Kσ a;α2,α3 (1, 2, 3) = δ(1, 2)δ(1, 3)τ a
α2α3

. (8)

First, we add an external local source φ(1) coupled to the
operator X (1) and thus the perturbed action becomes

S[ψ∗, ψ, φ] = S[ψ∗, ψ] −
∫

d (1) φ(1)X (1). (9)

The additional term
∫

d (1) φ(1)X (1) is explicitly expressed
as ∫

d (123)
∑
α1α2

ψ∗
α1

(1){φ(3)KX ;α1α2 (3, 1, 2)}ψα2 (2). (10)

Note that the additional term can be regarded as a variation of
the T term:

T (1, 2; φ) = T (1, 2) +
∫

d (3)φ(3)KX (3, 1, 2). (11)

The functional derivative of the off-shell GGW equa-
tions with respect to the external source φ leads to the
covariant GGW (cGGW) equations. The equation involves the
full vertex function φ (1, 2, 3) = δG−1(1,2)

δφ(3) , which consists of
five terms shown in Fig. 1:

φ (1, 2, 3) = γ
φ

(1, 2, 3) + φ,H(1, 2, 3) + φ,MT(1, 2, 3)

+φ,AL1(1, 2, 3) + φ,AL2(1, 2, 3). (12)

Here, the bare vertex γ
φ

depends on the operator X , is calcu-
lated through

γ
φ

(1, 2, 3) ≡ δT (1, 2; φ)

δφ(3)
= KX (3, 1, 2). (13)

In the charge/spin response case, X a = σ a, the bare vertex
takes the form γ

φ
(1, 2, 3) = τ aδ(1, 2)δ(1, 3). The “bubble”

vertex is induced by the Hartree self-energy, i.e., φ,H =
−δ	H/δφ, and takes the form

φ,H(1, 2, 3) = −δ(1, 2)
∑
cd

∫
d (456)τ cV cd (1, 4)Tr[τ d G(1, 5)φ (5, 6, 3)G(6, 2)]. (14)

Note that the conventional RPA-like formula only consists of the first two terms in Eq. (12). The Maki-Thompson-like
(MT) vertex and two distinct Aslamazov-Larkin-like (AL) vertices [21] are induced by the self-energy, i.e., φ = −δ	/δφ,
representing the vertex corrections beyond the RPA, and take the form

φ,MT(1, 2, 3) = −
∑
cd

∫
d (45)τ cG(1, 4)φ (4, 5, 3)G(5, 2)τ dW dc(2, 1), (15)

φ,AL1(1, 2, 3) = −
∑
cde f

∫
d (4567)τ cG(1, 2)τ dW de(1, 4)W f c(5, 2)Tr[τ eG(4, 6)φ (6, 7, 3)G(7, 5)τ f G(5, 4)], (16)

φ,AL2(1, 2, 3) = −
∑
cde f

∫
d (4567)τ cG(1, 2)τ dW de(1, 4)W f c(5, 2)Tr[τ eG(4, 5)τ f G(5, 6)φ (6, 7, 3)G(7, 4)]. (17)

Finally, let φ → 0 and solve the self-consistent Eqs. (12)–(17) to obtain the full vertex function φ .
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Since the average 〈Y (2)〉 is a function of the Green’s function G, the two-body correlation function χXY (1, 2) can be obtained
by the vertex φ :

〈X (1)Y (2)〉c ≡ δ〈Y (2)〉
δφ(1)

=
∫

d (34)Tr

[
KY (2, 3, 4)

δG(4, 3)

δφ(1)

]
= −

∫
d (3456)Tr[KY (2, 3, 4)G(4, 5)φ (5, 6, 1)G(6, 3)]. (18)

For example, when calculating the spin-spin correlation
χab

s (1, 2) = 〈σ a(1)σ b(2)〉, the above equation can be simpli-
fied as

χab
s (1, 2) = −

∫
d (56)Tr[τ bG(2, 5)φ (5, 6, 1)G(6, 2)].

(19)

Such response functions satisfy the FDT by definition, and the
preserving of the WTI is proven in the next subsection.

C. Ward-Takahashi identity

Notice that there is the charge U (1) symmetry in the
system, thus we consider the U (1) WTI here. Without loss
of generality, the discussion and the proof are based on the
continuous system and the T - term in the Eq (1) takes the
following form:

T (1, 2) = δ(1, 2)

[
−∂τ2 + ∇2

�x2

2m
− μ

]
τ 0. (20)

Here m is the mass of the electron and ∇2
�x2

is the Laplace
operator acting on the coordinate �x2. Due to the global charge
U(1) symmetry, one can obtain the lowest order WTI, i.e., the
well-known charge current conservation equation,

∂〈ρ(1)〉
∂τ

−
∑

ν

∂ν〈 jν (1)〉 = 0, (21)

where ρ(1) = ∑
α ψ∗

α (1)ψα (1) is the charge density, ν =
x, y, z, .. is the direction of the current. The current operator
is given by [22,23]

jν (1) = 1

2m

∑
α

[ψ∗
α (1)∂νψα (1) + ψα (1)∂νψ

∗
α (1)]

� 1

2m

∑
α

ψ∗
α (1)(

−→
∂ ν − ←−

∂ ν )ψα (1), (22)

where
−→
∂ ν acting on the right function and

←−
∂ ν acting on

the left. This lowest order WTI can be directly verified by
rewritten in the form (for the derivation of the WTI, see
Appendix A 1):

∫
d (2)Tr[T (1, 2)G(2, 1)] =

∫
d (2)Tr[T (2, 1)G(1, 2)].

(23)

One can also derive the high-order WTI based on the U (1)
gauge symmetry:〈

∂μ jμ(1)ψ∗
α2

(2)ψα3 (3)
〉 − 〈

∂τρ(1)ψ∗
α2

(2)ψα3 (3)
〉

= −δ(1, 2)δα1α2 Gα3α2 (3, 2) + δ(1, 3)δα1α3 Gα3α2 (3, 2).
(24)

Such a WTI relates the current correlation function to the
Green’s function, representing the charge current conservation
on the two-body correlation level. This WTI can be written in
terms of the current vertex and the density vertex functions:∑

ν3

∂ν3
ν3 (1, 2, 3) − ∂τ3

ρ (1, 2, 3)

= δ(3, 1)G−1(3, 2) − δ(3, 2)G−1(1, 3). (25)

Here the vertex corresponding to the current jν is defined as

ν3
α1α2

(1, 2, 3) = −
∫

d (45)
∑
α4α5

G−1
α1α4

(1, 4)

× 〈
ψ∗

α5
(5)ψα4 (4) jν (3)

〉
G−1

α5α2
(5, 2), (26)

and the vertex corresponding to the density operator ρ is
defined as

ρ
α1α2

(1, 2, 3) = −
∫

d (45)
∑
α4α5

G−1
α1α4

(1, 4)

× 〈
ψ∗

α5
(5)ψα4 (4)ρ(3)

〉
G−1

α5α2
(5, 2). (27)

Then we will prove the vertex Eq. (12) in the cGGW
method is compatible with the WTI (25) below. The bare
vertices in the cGGW equations can be obtained through the
current operator kernel K jν (1, 2, 3) = δ(1, 2)δ(1, 3)(

−→
∂ ν1 −

←−
∂ ν1 )τ 0/2m and the density operator kernel Kρ (1, 2, 3) =
δ(1, 2)δ(1, 3)τ 0:

γ ν3 (1, 2, 3) = δ(1, 2)δ(1, 3)
1

2m
[
−→
∂ ν3 − ←−

∂ ν3 ]τ 0, (28)

γ ρ (1, 2, 3) = δ(1, 2)δ(1, 3)τ 0, (29)

and the corresponding cGGW vertex is determined by
Eqs. (12)–(17).

We start the proof from the right-hand side of Eq. (25), i.e.,
δ(3, 1)G−1(3, 2) − δ(3, 2)G−1(1, 3). By virtue of the Dyson’s
equation, it can be rewritten as

[δ(3, 1)T (3, 2) − δ(3, 2)T (1, 3)]

+ [−δ(3, 1)	(3, 2) + δ(3, 2)	(1, 3)]. (30)

The first term in Eq. (30) can be rewritten in form of the bare
vertices directly:∑

ν3

∂ν3γ ν3 (1, 2, 3) − ∂τ3γ
ρ (1, 2, 3) � WTI

1 (1, 2, 3). (31)
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By virtue of Eq. (5), the second term in Eq. (30) can be rewritten as

−
∑
cd

∫
d (45)τ cG(1, 4)[δ(3, 4)G−1(3, 5) − δ(3, 5)G−1(4, 3)]G(5, 2)τ dW dc(2, 1). (32)

Then substituting the WTI (25) into Eq. (32), one obtains

−
∑
cd

∫
d (45)τ cG(1, 4)

[ ∑
ν3

∂ν3
ν3 (4, 5, 3) − ∂τ3

ρ (4, 5, 3)

]
G(5, 2)τ dW dc(2, 1) � WTI

2 (1, 2, 3). (33)

Then one concludes the right-hand side of Eq. (25) equals to WTI
1 (1, 2, 3) + WTI

2 (1, 2, 3). Now we substitute the cGGW vertex
Eq. (12) into the left-hand side of Eq. (25), and obtain∑

ν3

∂ν3
ν3 (1, 2, 3) − ∂τ3

ρ (1, 2, 3)

=
∑
ν3

∂ν3γ
ν3 (1, 2, 3) − ∂τ3γ

ρ (1, 2, 3) +
∑
ν3

∂ν3
ν3
H (1, 2, 3) − ∂τ3

ρ
H(1, 2, 3) +

∑
ν3

∂ν3
ν3
MT(1, 2, 3) − ∂τ3

ρ
MT(1, 2, 3)

+
∑
ν3

∂ν3
ν3
AL1(1, 2, 3) − ∂τ3

ρ

AL1(1, 2, 3) +
∑
ν3

∂ν3
ν3
AL2(1, 2, 3) − ∂τ3

ρ

AL2(1, 2, 3). (34)

The first term in the right-hand side of Eq. (34) equals to
WTI

1 (1, 2, 3), and the third term equals to WTI
2 (1, 2, 3). In

Appendix A 2, we show the second term is zero, and the
sum of the fourth and fifth terms is also zero. Therefore, the
compatibility of the WTI and the vertex equation is proved.
Although we prove the cGGW vertex satisfies the U (1) WTI
for the continuous system, such proof can be extended to the
lattice system, which will be shown in the two-dimensional
Hubbard model.

Note that, in the BSE approach, the two AL vertices in
Eq. (12) are ignored. Therefore, the BSE approach also pre-
serves the WTI, however, violates the FDT.

III. IMPLEMENTATION IN THE TWO-DIMENSIONAL
HUBBARD MODEL

A. Matsubara action in the discretized time path
integral formalism

The Hamiltonian of the Hubbard model is

Ĥ = −t
∑
〈i j〉

∑
α=↑,↓

ψ̂
†
iαψ̂ jα + U

∑
i

n̂i↑n̂i↓ − μ
∑

iσ

n̂iσ , (35)

where ψ̂
†
�x1α

creates an electron with spin α at lattice site �x1 and

n̂iσ = ψ
†
iσ ψiσ denotes the spin-resolved density operator. t is

the (nearest-neighbor) hopping amplitude and all energies are
given in units of t = 1 in this paper. 〈 �x1 �x2〉 denotes summation
over nearest-neighbor lattice sites, U is the on-site interaction,
and μ is the chemical potential. The widely used GW approx-
imation for the Hubbard model is based on the Hamiltonian
Eq. (35) and denoted by GW in the following.

One should notice that the intrinsic symmetries of the
Hubbard are not only global charge U (1) but also spin SU (2),
where the latter one constrains the spin-spin correlation satis-
fying χ xx

sp = χ
yy
sp = χ zz

sp in the paramagnetic phase. However,
we find the spin-spin correlation function obtained by the
traditional GW in the different directions is not equal to each
other. (The traditional GW equations and related results are
shown in Appendix C).

To preserve the spin SU (2) symmetry, we rewrite the Hub-
bard Hamiltonian as [24]

H = −t
∑

〈�x1�x2〉α
ψ

†
�x1α

ψ�x2α − U

6

∑
�x

∑
a=x,y,z

σ a
�x σ a

�x

−
(

μ − U

2

)∑
α�x

ψ
†
α�xψα�x. (36)

Here we use the relation

Un̂i↑n̂i↓ = Is

2

∑
a=x,y,z

σ̂ a
i σ̂ a

i + U

2

∑
iα

n̂iα, (37)

where Is = −U
3 .

We use the discretized Matsubara time path integral
formalism [25] for the numerical implementation. The
discretized-time action for the Hubbard Hamiltonian reads

SM[ψ∗, ψ]=
M−1∑
l=0

∑
α=↑,↓

∑
�x

{ψ∗
α (�x, τl )(ψα (�x, τl+1)−ψα (�x, τl ))}

+
M−1∑
l=1

�τH[ψ∗
α (�x, τl )ψα (�x, τl )]. (38)

Here M is the number of time slices, and �τ = β/M. The
integer l labels the discretized Matsubara time, and τl ≡ l�τ .

Compare the action (38) with the form (1), and one obtains

T (1, 2)

=
[
− 1

�τ
δ�x1�x2

(
δl1,l2−1 − δl1,l2

)+t�x1�x2δl1,l2 + μδ�x1�x2δl1,l2

]
τ 0,

(39)

and

V ab(1, 2) = δ�x1�x2δl1l2δ
abIs, (40)

with a, b taking values of x, y, z. Here the label 1, 2 denotes
for (�x1, τ1), (�x2, τ2), respectively. The hopping strength t�x1�x2

equals to -t if sites �x1, �x2 are nearest neighbors and 0 other-
wise. One can use the GGW and cGGW equations to solve
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the Hubbard model, and the results of such GW method are
denoted by GGW and cGGW in the numerical calculation.
In the two-dimensional (2D) lattice, we only consider the
paramagnetic phase and make the ansatz,

G(1, 2) = G(1, 2)τ 0, 	(1, 2) = 	(1, 2)τ 0, (41)

and

W ab(1, 2) = W (1, 2)δab, Pab(1, 2) = P(1, 2)δab. (42)

One can substitute the paramagnetic ansatz into the GGW
equations to obtain the spin-independent Green’s function
G(1, 2). As for the spin-density vertex a (corresponding to
the source term − ∫

d (1)φ(1)σ a(1)) calculation, we make the
ansatz a(1, 2, 3) = (1, 2, 3)τ a in the cGGW equations, and
the spin-spin correlation function can be obtained through
such spin-independent vertex (1, 2, 3). The details for the
calculation in the paramagnetic phase are presented in the
Appendix B 3.

B. The Ward-Takahashi identity for the two-dimensional
Hubbard model

For the 2D Hubbard lattice system, the WTI related to the
U (1) gauge symmetry can be derived as in Sec. II C. The
lowest order, i.e., the charge current conservation equation is

〈ρ(�x1, τ1) − ρ(�x1, τ1 − �τ )〉
�τ

−
∑

ν

〈 jν (x1, τ1) − jν (x1 − eν, τ1)〉

= 0, (43)

where ν = x, y is the direction of the current. The current
operator in the Hubbard system and the density operator cor-
responding to the discrete time WTI takes the form:

jν (x1, τ1) = it
∑
α1

[
ψ∗

α1
(x1, τ1)ψα1 (x1 +�,τ1eν )

− ψ∗
α1

(x1 + �eν, τ1)ψα1 (x1, τ1)
]
,

ρ(�x1, τ1) =
∑
α1

ψ∗
α1

(�x1, τ1)ψα1 (�x1, τ1 + �τ ), (44)

and similar to the continuous case, the U (1) WTI at the two-
body level is

i
∑
ν=x,y

[ν (1, 2, 3) − ν (1, 2, 3 − �eν )]

− ρ (1, 2, 3) − ρ (1, 2, 3 − �τ )

�τ

= δ(3, 1)G−1(3, 2) − δ(3, 2)G−1(1, 3). (45)

One can also prove the cGGW vertex satisfies this equa-
tion. The bare vertices in the cGGW equations can be
obtained through the current operator kernel K jν (1, 2, 3) =
it[δ(1, 2)δ(3, 1 + �eν ) − δ(1 + eν, 2)δ(1, 3)]τ 0 and the den-
sity operator kernel Kρ (1, 2, 3) = δ(1, 2)δ(1 + δτ, 3)τ 0:

γ ν (1, 2, 3) = it[δ(1, 3)δ(2, 1 + �eν ) − δ(3 + eν, 1)δ(2, 3)]τ 0,

γ ρ (1, 2, 3) = δ(2, 1 + �τ )δ(1, 3). (46)

Then the cGGW vertex can be solved with Eqs. (12)–(17).
The starting point of the proof is the right-hand side of

Eq. (45) and one can rewrite it as Eq. (30). The first term can
be rewritten in terms of the bare vertex in the cGGW method:

i
∑
ν=x,y

[γ ν (1, 2, 3) − γ ν (1, 2, 3 − �eν )]

− γ ρ (1, 2, 3) − γ ρ (1, 2, 3 − �τ )

�τ

= δ(3, 1)T (3, 2) − δ(3, 2)T (1, 3). (47)

The proof for the MT vertex and AL vertex is the same as
the continuous situation, therefore, the cGGW vertex in the
Hubbard lattice system preserves the WTI of U (1) symmetry.

In the momentum and frequency space, such a WTI takes
the form:

i
∑

ν

ν (p, q)[1 − eiqν

] + e−iπ2mq/M − 1

�τ
ρ (p, q)

= G−1(p) − G−1(p + q). (48)

Here ν, 0 are the current vertex and the charge vertex.
The fermionic momentum and Matsubara frequency are de-
noted by p = ((px, py), ωp = (2mp + 1)πT ), and the bosonic
momentum and Matsubara frequency are denoted by q =
((qx, qy), ωq = 2mqπT ). The equation above establishes a re-
lation between the vertex ν, ρ and the Green’s function, and
represents the charge current conservation law at the two-body
level in the Hubbard model.

IV. cGGW NUMERICAL RESULTS FOR THE
TWO-DIMENSIONAL HUBBARD MODEL

A. Numerical verification of preserving the WTI and FDT

We numerically verify our approach preserves the FDT and
WTI on the 16 × 16 half-filled lattice with U = 2 for different
temperatures.

The FDT relates the response function to the correla-
tion function. We focus on the static antiferromagnetic spin
susceptibility and the spin-spin correlation function χsp at
momentum �Q = (π, π ) in the Hubbard model, which satisfy
the equality as required by the FDT [20],

∂m

∂h

∣∣∣∣
h=0

= χsp( �Q, iωn = 0), (49)

where h is the staggered field, m is the staggered magneti-
zation, and χsp(p) is the spin-spin correlation. We directly
calculate the static antiferromagnetic susceptibility (∂m/∂h)
by adding a staggered field h in the GGW equations, and
compared it with the spin-spin correlation function χsp ob-
tained from different methods. It is found that only the cGGW
method preserves the FDT at all temperature ranges, as shown
in Fig. 2(a). However, the RPA and BSE methods lead to a
violation of the FDT, and the BSE is even more destructive to
the FDT.

We measure the deviation of the WTI by

D(p, q) =
∥∥∥∥Tr[LHS(p, q) − RHS(p, q)]

Tr[LHS(p, q)]

∥∥∥∥, (50)
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FIG. 2. (a) The comparison of the static antiferromagnetic spin susceptibility obtained by ∂m
∂h |h=0, cGGW, GGW-RPA, and GGW-BSE.

Only the cGGW respects the FDT. (b) shows the deviation D(p, q) of the WTI with momentum �p = (π/2, π/2), �q = (π, π ) and frequencies
mp = 1, mq = 2 obtained by cGGW, GGW-RPA, and GGW-BSE. The deviation for cGGW and GGW-BSE are 0, while GGW-RPA are not.

where (LHS) and (RHS) are the left- and the right-hand sides
in Eq. (48), and the results are shown in Fig. 2(b). The devi-
ations D(p, q) calculated by the cGGW and BSE approaches
are negligible, which means preserving the WTI as expected.
Meanwhile, the GGW-RPA violates the WTI significantly,
indicating a rather poor description of conversion laws.

B. Antiferromagnetic susceptibility compared
with other methods

To demonstrate the effectiveness of the method, we com-
pare the antiferromagnetic susceptibility from the cGGW
method with that obtained from the DQMC method [26–28],
which is numerically exact and often serves as a benchmark
for approximate methods. As a prototypical example, here we
set a typical value of U = 2 for the static results, so as to
compare with previous studies of the 2D Hubbard model using
multiple methods [29].

We consider the case at half-filling and away from half-
filling for different interacting strengths (U = 2 and 4) in
Fig. 3. For the weak-coupling U = 2, all the approaches in the
Fig. 3 can obtain good imaginary time antiferromagnetic sus-
ceptibility results compared to the DQMC benchmark, and the
cGGW exhibits more precise results than the GH-RPA and the
GGW-RPA. For the immediate coupling U = 4 at half-filling,
all these approaches cannot obtain precise enough suscepti-
bilities, while the cGGW presents a significant improvement
over the GGW-RPA. For the coupling U = 4 at filling n =
0.918, only the cGGW exhibits a highly precise agreement in
comparison to the benchmark. However, the GH-RPA results
diverge for U = 4 at both fillings, i.e., the GH-RPA predicts
an incorrect broken phase. It should be noted that, the analytic
continuation to real time is extremely sensitive to some fea-
tures of the imaginary time susceptibility, such as the slope of
the χsp(τ ) in the τ → 0 limit χ ′

sp(τ → 0) and the χsp(τ = β

2 ).
For the deviation of χ ′

sp(τ → 0) from DQMC, the cGGW
results remain near 4% for all these parameters, while the
GGW-RPA results show near 9% for U = 2 and near 30%
for U = 4, the GH-RPA show near 7% for U = 2 and diverge
for U = 4. As for the deviation of χsp(τ = β

2 ) from DQMC,
the cGGW results remain below 6% in Figs. 3(a), 3(b), and
3(d) and show 36% in Fig. 3(c), while the GGW-RPA results
present above 35% for U = 2 and above 55% for U = 4, the
GH-RPA show above 11% for U = 2 and diverge for U = 4.

The corresponding data is shown in Appendix B 4. Thus, for
the covariant spin fluctuation calculation, the GGW approxi-
mation is better than the generalized Hartree approximation,
especially for the immediate or the stronger coupling. And for
the GGW approximation, the covariant approach can improve
the accuracy of the susceptibilities significantly compared to
the RPA formula.

To calculate the static antiferromagnetic susceptibility for
infinite lattice, we use the finite-size scaling to approach the
thermodynamic limit and choose samples with lattice sizes
from L = 32 to L = 128. We take time slices M of 8 val-
ues from 512 to 2048, extrapolating to infinite M results.
Figure 4 shows χsp( �Q, iωn = 0) for various methods as a
function of the inverse temperatures on a logarithmic scale.
The cGGW curve (green line) displays a quantitative agree-
ment with the numerically exact DQMC method (red line)
until β ≈ 8. Since the thermodynamic transition manifests
itself as a divergence of the susceptibility at the corresponding
wave vector, our cGGW results also indicate an antiferro-
magnetic transition at (β ≈ 13.1). Figure 4(a) demonstrates
that the cGGW and GH-RPA present similar results, and
are much better than the GGW-RPA. Figure 4(b) shows the
cGGW result is comparable with the DMFT or cellular DMFT
(CDMFT) methods which, however, usually require expensive
computational costs. By contrast, the computational complex-
ity of the cGGW susceptibility at a specific momentum is
O(Ld Mlog(LM )), with d the lattice dimension. For a typical
parameter set in the discussion (lattice size 16 × 16, time
slices M = 1024), the numerical cost of calculation for spin
fluctuation for a single momentum and frequency is only 3.11
seconds on a 4-core CPU(1.8GHz), indicating a computation-
ally efficient method.

It should be noted that the generalized Hartree-RPA cal-
culation, preserving both the WTI and the FDT, can obtain
accurate susceptibility results for the small U case. However,
the GH-RPA for the larger U sometimes leads to failure at
a qualitative level, which can be overcome by a higher-order
approximation, such as cGGW.

V. CONCLUSION

We presented the formalism of the functional derivative
scheme based on the GGW method for a general action, and
theoretically proved that this scheme preserves the WTI. We
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FIG. 3. Antiferromagnetic spin susceptibility χsp(�k = �Q, τ ) as a function of imaginary time for DQMC, cGGW, GH-RPA, traditional
GW-RPA and GGW-RPA at β = 4 for different parameters: (a) U = 2, n = 1, (b) U = 2, n = 0.921, (c) U = 4, n = 1, (d) U = 4, n = 0.918.
The error of DQMC is 10−3, other methods are all calculated through the discrete time algorithm with L = 16 and M = 1024 (almost M
reaches to infinite limit). In (c) and (d), the GH-RPA results diverge, so the corresponding curves are not shown.

numerically verified that this scheme satisfies both the WTI
and the FDT in the 2D Hubbard model. At the same time, we
calculated the deviations of the commonly used RPA and BSE
from the WTI and FDT. We found that RPA has an obvious
derivations from both two equalities, and BSE satisfies WTI
but violates the FDT.

We numerically calculated the antiferromagnetic spin-spin
correlation function at the Matsubara time axis within GGW-
RPA, GH-RPA, and the cGGW methods, and compared them
with the numerically exact results obtained by the DQMC
simulations. The GH-RPA also yields a pretty good result in
the weak-coupling cases, and cGGW only makes a slight im-
provement. Both in the weak and intermediate coupling cases,

the results show that the cGGW method makes a significant
improvement over the GGW-RPA method. We also calculated
the antiferromagnetic spin susceptibility at half-filling and
weak coupling for different temperatures, and compared the
result with those obtained by DQMC, DMFT, and CDMFT
approaches. The results show that the cGGW method can
compete with the DMFT calculation within the range of pa-
rameters considered.

Due to the acceptable computational cost and numerical
quality, the cGGW method is expected to be applied in real-
istic material computation in the future for the calculations of
the various susceptibilities, especially the transport properties
of the correlated systems with spin-dependent interaction.

FIG. 4. Antiferromagnetic static susceptibility χsp(�k = �Q, iωn = 0) as a function of (inverse) temperature on a logarithmic scale at U = 2
and n = 1 in the thermodynamic limit for various methods: (a) cGGW, DQMC, GGW-RPA, GH-RPA; (a) cGGW, DQMC, DMFT, CDMFT.
Data of DQMC, DMFT, CDMFT(Nc = 8 × 8) is taken from Ref. [29].
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APPENDIX A: WARD-TAKAHASHI IDENTITY

1. Derivation of Ward-Takahashi identity

The invariance of the functional integral measure D[ψ∗, ψ] under the infinitesimal gauge transformation of the complex field
yields an equality

δ

∫
D[ψ∗, ψ]F[ψ∗, ψ]e−S[ψ∗,ψ] = 0, (A1)

with F an arbitrary functional, which is identical to

∑
α1

∫
D[ψ∗, ψ]

[
δψ∗

α1
(1)

δ

δψ∗
α1

(1)
+ δψα1 (1)

δ

δψα1 (1)

]
F[ψ∗, ψ]e−S = 0. (A2)

Consider the infinitesimal U (1) transformation,

ψ∗
α1

(1) → ψ∗
α1

(1)eiδθ , ψα1 (1) → ψα1 (1)e−iδθ , (A3)

where δθ is the infinitesimal phase, one can obtain

∑
α1

∫
D[ψ∗, ψ]

[
ψ∗

α1
(1)

δ

δψ∗
α1

(1)
− ψα1 (1)

δ

δψα1 (1)

]
F[ψ∗, ψ]e−S = 0. (A4)

Letting F = 1 in Eq. (A4) yields the WTI for the one-body Green’s function:∫
d (2)Tr[T (1, 2)G(2, 1)] =

∫
d (2)Tr[T (2, 1)G(1, 2)]. (A5)

Letting F = ψ∗
α3

(3)ψα2 (2) yields the WTI for the two-body Green’s function:

∑
α1β4

∫
d (4)Tα1β4 (1, 4)

〈
ψ∗

α3
(3)ψα2 (2)ψ∗

α1
(1)ψβ4 (4)

〉 − ∑
α1β4

∫
d (4)Tβ4α1 (4, 1)

〈
ψ∗

α3
(3)ψα2 (2)ψ∗

β4
(4)ψα1 (1)

〉

= −
∑
α1

(δ(1, 3)δα1α3 − δ(1, 2)δα1α2 )Gα2α3 (2, 3). (A6)

For the continuous system with T -term Eq. (20), the equations above can be rewritten as Eqs. (21) an (24).

2. Preserving of the Ward-Takahashi identity within cGGW

In the main text, we find the first term and the third term in the right-hand side of Eq. (34) equals to WTI
1 (1, 2, 3),

WTI
2 (1, 2, 3). Now we prove other terms in the right hand of side in Eq. (34) equal to 0.

We can define

W T I
3 ≡δ(1, 2)

∑
cd

∫
d (456)τ cV cd (1, 4)Tr[τ d G(1, 5)

⎡
⎣∑

ν3

∂ν3
ν3 (5, 6, 3) − ∂τ3

ρ (5, 6, 3)

⎤
⎦G(6, 2)]. (A7)

Substituting the WTI (25) in to Eq. (A7), one can obtain

δ(1, 2)
∑
cd

∫
d (456)τ cV cd (1, 4)Tr[τ d G(1, 5)(δ(3, 5)G−1(3, 6) − δ(3, 6)G−1(5, 3))G(6, 2)] = 0, (A8)

and we define

W T I
4 ≡ −

∑
cde f

∫
d (567)τ cG(1, 2)τ dW de(1, 4)�W f c(5, 2), (A9)
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where

� ≡
∫

d (567)Tr
[
τ eG(4, 6)

⎡
⎣∑

ν3

∂ν3
ν3 (6, 7, 3) − ∂τ3

ρ (6, 7, 3)

⎤
⎦G(7, 5)τ f G(5, 4)

+ τ eG(4, 5)τ f G(5, 6)

⎡
⎣∑

ν3

∂ν3
ν3 (6, 7, 3) − ∂τ3

ρ (6, 7, 3)

⎤
⎦G(7, 4)

]
. (A10)

Substituting the WTI (25) in to Eq. (A10), one can obtain∫
d (567)Tr[τ eG(4, 6)[−δ(3, 6)G−1(3, 7) + δ(3, 7)G−1(6, 3)]G(7, 5)τ f G(5, 4)

+ τ eG(4, 5)τ f G(5, 6)[−δ(3, 6)G−1(3, 7) + δ(3, 7)G−1(6, 3)]G(7, 4)] = 0. (A11)

So, for the GGW Green’s function, the WTI (25) is identical to∑
ν3

∂ν3
ν3 (1, 2, 3) − ∂τ3

0(1, 2, 3) = W T I
1 + W T I

2 + W T I
3 + W T I

4 , (A12)

and one can notice the cGGW vertex and BSE vertex satisfy the WTI automatically.

APPENDIX B: IMPLEMENTATION IN THE
TWO-DIMENSIONAL HUBBARD MODEL

1. Fourier transformation for a translational invariant lattice

For a lattice with the translation symmetries, we use the
discrete Fourier transformation to simplify our equations. The
Fermionic array XF takes the form

XF(1, 2) = 1

N
∑

k

XF(k)EF(k, 1 − 2), (B1)

and the Bosonic array XB takes the form

XB(1, 2) = 1

N
∑

k

XB(k)EB(k, 1 − 2). (B2)

Here the transformation kernels EF and EB are defined as

EF(k, 1 − 2) ≡ ei�k·(�x1−�x2 )e−i
2mk +1

M (l1−l2 ), (B3)

EB(k, 1 − 2) ≡ ei�k·(�x1−�x2 )e−i
2mk
M (l1−l2 ), (B4)

respectively. Here N = βL2, k = (�k, mk ) and mk takes the
integer value from 0 to M − 1. Note that the transformation
of the T term is

T (k) =
[
− 1

�τ
(e−iπ (2mk+1)/M − 1) − ε(�k) + μ

]
τ 0, (B5)

with ε(�k) the noninteracting dispersion. For the two-
dimensional Hubbard model, ε(�k) = −2t (cos kx + cos ky)
with t the nearest-neighbor hopping strength.

2. GGW and covariant GGW equations in Fourier space

Note that the one-body Green’s function G and the self-
energy 	 are Fermionic arrays, and the dynamical potential
W ab and the polarization Pab are Bosonic arrays. It is easy to

derive the GGW equations in Fourier space

G−1(k) = T −1(k) − 	H(k) − 	(k),

	(k) = − 1

N
∑
q,ab

τ aG(k + q)τ bW ba(q),

(W −1)ab(q) = (V −1)ab(q) − Pab(q),

Pab(q) = 1

N
∑

k

Tr[τ aG(q + k)τ bG(q)]. (B6)

To derive the covariant GGW equations in Fourier space,
we first make ansatz for the vertex function

(1, 2, 3) = 1

N 2

∑
p,q

(p, q)EF(k, 1 − 2)EB(q, 1 − 3).

(B7)

Then one obtains

(p, q) = γ (p, q) + H(p, q) + MT(p, q)

+ AL1(p, q) + AL2(p, q). (B8)

The bare vertex is

γ (p, q) = K (−p − q, p). (B9)

The bubble vertex is

H(p, q) = 1

N
∑
cd

∑
k

τ cV cd (q)Tr[τ d G(k + q)(k, q)G(k)].

(B10)

The MT vertex is

MT(p, q) = − 1

N
∑
cd

∑
k

τ cG(p + k + q)

× (p + k, q)G(p + k)τ dW dc(k). (B11)
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The two AL vertices are

AL1(k, q) = − 1

N 2

∑
cde f

∑
kk′

τ cG(p + q + k)

× τ dW de(k + q)W f c(k)

× Tr[τ eG(k + k′ + q)(k + k′, q)

× G(k + k′)τ f G(k′)], (B12)

AL2(k, q) = − 1

N 2

∑
cde f

∑
kk′

τ cG(p + q + k)

× τ dW de(k + q)W f c(k)

× Tr[τ eG(k + q + k′)τ f G(k′ + q)

× (k′, q)G(k′)]. (B13)

The diagrammatics for these vertices are presented in Fig. 1.
Note that in the RPA, the vertex is given by

RPA(p, q) = γ (p, q) + 1

N
∑
cd

∑
k

τ cV cd (q)

× Tr[τ d G(k + q)RPA(k, q)G(k)]. (B14)

The RPA formula is usually used to calculate the density-
density or spin-spin correlation functions. In the Bethe-
Salpeter equation approach, the MT vertex is taken into
account, but the AL vertices are neglected.

3. GGW and covariant GGW equations
for the 2D Hubbard model

For the 2D Hubbard model, T (k) takes the form T (k)τ 0

and V ab(k) takes the form Isδab with a, b taking values of
x, y, z. To find the paramagnetic solutions, we can make the
ansatz

G(k) = G(k)τ 0, 	(k) = 	(k)τ 0, (B15)

and

W ab(k) = W (k)δab, Pab(k) = P(k)δab. (B16)

The GGW equation is then simplified as

G−1(k) = T (k) − 	(k), 	(k) = − 3

N
∑

q

G(k + q)W (q),

W −1(q) = 1/Is − P(q), P(q) = 2

N
∑

k

G(p + k)G(p).

(B17)

The simplification of the covariant GGW equations related
to the species of correlation functions. We take the spin-spin
correlation function as an example here. The spin-spin corre-
lation function χab

s (p) relates to the vertex function through

χab
s (p) = −

∑
q

Tr[G(p + q)a(q, p)G(q)τ b]. (B18)

Here a refers to the vertex function corresponding to
the spin operator σ a. By the ansatz a(q, p) = τ a(q, p),
the spin-spin correlation function χab

s (p) = −2δab
∑

q G(p +

TABLE I. The deviation of χ (τ = 0) from D QMC.

Parameters cGGW GGW-RPA GH-RPA

U = 2,n = 1 0.00026 0.172 0.0661
U = 2, n = 0.921 0.00792 0.145 0.0522
U = 4,n = 1 0.270 0.576 diverge
U = 4,n = 0.918 0.0321 0.355 diverge

q)(p, q)G(q), and the equation for the vertex function is
simplified as

(p, q) = γ (p, q) + H(p, q) + MT(p, q)

+ AL1(p, q) + AL2(p, q), (B19)

with the bare vertex γ (p, q) = 1, the “bubble” vertex

H(p, q) = 2Is

N
∑

k

G(k + q)(k, q)G(k), (B20)

the MT vertex

MT(p, q)

= − 1

N
∑

k

G(p + k + q)(p + k, q)G(p + k)W (k),

(B21)

and two AL vertices

AL1(p, q) = 2

N 2

∑
kk′

G(p + q + k)W (k + q)G(k + k′ + q)

× (k + k′, q)G(k + k′)G(k′)W (k), (B22)

AL2(p, q) = − 2

N 2

∑
kk′

G(p + q + k)W (k + q)

× G(k + k′ + q)G(k′ + q)(k′, q)G(k′)W (k).
(B23)

As for the density case, the density-density correlation
function relates the vertex through

χρ (p) =
∑

q

Tr[G(p + q)ρ (q, p)G(q)τ 0], (B24)

ρ here refers to the charge vertex. With the ansaz ρ =
τ 0ρ , the density-density can be evaluate through χρ (p) =
2

∑
q G(p + q)ρ (q, p)G(q). The equation for the vertex is

simplified as

ρ (p, q) = γ ρ (p, q) + 
ρ
H(p, q) + 

ρ
MT(p, q)

+ 
ρ

AL1(p, q) + 
ρ

AL2(p, q), (B25)

with the bare vertex γ ρ (p, q) = 1, the “bubble” vertex


ρ
H(p, q) = 0, and the MT vertex


ρ
MT(p, q)

= − 3

N
∑

k

G(p + k + q)ρ (p + k, q)G(p + k)W (k),

(B26)
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TABLE II. The deviation of χ ′(τ = 0) from DQMC.

Parameters cGGW GGW-RPA GH-RPA

U = 2,n = 1 0.035 0.095 0.070
U = 2,n = 0.921 0.038 0.097 0.073
U = 4,n = 1 0.049 0.322 diverge
U = 4,n = 0.918 0.033 0.298 diverge

and two AL vertices


ρ

AL1(p, q)= − 6

N 2

∑
kk′

G(p+ q + k)W (k + q)G(k + k′ + q)

× ρ (k + k′, q)G(k + k′)G(k′)W (k), (B27)


ρ

AL2(p, q) = − 6

N 2

∑
kk′

G(p + q + k)W (k + q)

× G(k + k′ + q)G(k′ + q)ρ(k′, q)G(k′)W (k).
(B28)

As for the current case, the current-current correlation
function relates the vertex through

χνν ′
j j (p) = it

∑
q

Tr[G(p+ q)ν ′
(q, p)G(q)τ 0]

× (e−iqν′ − eiqν′ + ipν′
). (B29)

ν refers to the current vertex along the lattice vector �eν . With
the ansaz ν = τ 0ν , the current-current can be evaluate

through χνν ′
j j (p) = 2it

∑
q G(p + q)ν ′

(q, p)G(q)(e−iqν′ −
eiqν′ +ipν′

). The cGGW vertex is simplified as

ν (p, q) = γ ν (p, q) + ν
H(p, q) + ν

MT(p, q)

+ ν
AL1(p, q) + ν

AL2(p, q), (B30)

with the bare vertex γ ν (p, q) = it[e−i(pν
1+pν

2 ) − eipν
1 ], the “bub-

ble” vertex ν
H(p, q) = 0, and the MT vertex

ν
MT(p, q)

= − 3

N
∑

k

G(p + k + q)ν (p + k, q)G(p + k)W (k),

(B31)

and two AL vertices

ν
AL1(p, q) = − 6

N 2

∑
kk′

G(p + q + k)

× W (k + q)G(k + k′ + q)

× ν (k + k′, q)G(k + k′)G(k′)W (k), (B32)

TABLE III. The deviation of χ (τ = β/2) from DQMC.

Parameters cGGW GGW-RPA GH-RPA

U = 2,n = 1 0.0463 0.388 0.130
U = 2,n = 0.921 0.0643 0.350 0.112
U = 4,n = 1 0.355 0.780 diverge
U = 4,n = 0.918 0.0154 0.599 diverge

TABLE IV. DQMC data (Errors are around 10−3).

Parameters χ (τ = 0) χ ′(τ = 0) χ (τ = β/2)

U = 2,n = 1 1.41 2.87 0.476
U = 2,n = 0.921 1.32 2.86 0.399
U = 4,n = 1 3.57 2.54 2.57
U = 4,n = 0.918 2.22 2.58 1.23

ν
AL2(p, q)= − 6

N 2

∑
kk′

G(p+ q + k)W (k + q)G(k + k′ + q)

× G(k′ + q)ν (k′, q)G(k′)W (k). (B33)

Note that the calculation can be fasten by discrete Fourier
transformation algorithm, and as a result, the computational
complexity of the cGGW susceptibility at a specific momen-
tum is O(Ld Mlog(LM )), with d the lattice dimension.

4. Details of the imaginary time spin correlation functions

In the description of Fig. 3, we state the slope of the
χsp(τ ) in the τ → 0 limit χ ′

sp(τ → 0) and the χsp(τ = β

2 ) are
important to the analytic continuation. Here we present the
corresponding data in Tables I, II, III, and IV.

APPENDIX C: TRADITIONAL GW

1. The GW and covariant GW equations

For the Hamiltonian Eq. (35), one can derive the traditional
GW equations from the lowest order of the Hedin’s equations,
where the Hartree self-energy, self-energy and the effective
potential take the form:

	GW
H (1̄, 2̄) = −δ(1̄, 2̄)

∫
d 3̄V (1̄, 3̄)G(3̄, 3̄), (C1)

	GW (1̄, 2̄) = −G(1̄, 2̄)W (2̄, 1̄), (C2)

W −1(1̄, 2̄) = V −1(1̄, 2̄) − G(1̄, 2̄)G(2̄, 1̄), (C3)

where 1̄ = (σ1, 1) = (σ1, �x1, τ1) and V (1̄, 2̄) =
Uδ(1, 2)δσ1,−σ2 . The covariant and RPA correlation functions
can be derived with the same procedure in the Sec. II B.

H(1̄, 2̄, 3)

= δ(1̄, 2̄)
∫

d (4̄5̄6̄)V (1̄, 4̄)G(4̄, 5̄)(5̄, 6̄, 3)G(6̄, 4̄),

(C4)

MT(1̄, 2̄, 3) = −
∫

d (4̄5̄)G(1̄, 4̄)(4̄, 5̄, 3)G(5̄, 2̄)W (2̄, 1̄),

(C5)

AL1(1̄, 2̄, 3) = −
∫

d (4̄5̄6̄7̄)G(1̄, 2̄)W (1̄, 4̄)G(4̄, 6̄)

× (6̄, 7̄, 3)G(7̄, 5̄)G(5̄, 4̄)W (5̄, 2̄), (C6)

AL2(1̄, 2̄, 3) = −
∫

d (4̄5̄6̄7̄)G(1̄, 2̄)W (1̄, 4̄)G(4̄, 5̄)G(5̄, 6̄)

× (6̄, 7̄, 3)G(7̄, 4̄)W (5̄, 2̄). (C7)
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The response function can be obtained from such self-
consistent vertex through Eq. (18).

2. Numerical results

There is the SU(2) gauge symmetry in the Hubbard
model, and accordingly, the spin-spin correlation functions
in the different directions need to be equal in the para-
phase. We compare the static antiferromagnetic susceptibility
χ xx

sp ( �Q, iωn = 0), χ yy
sp ( �Q, iωn = 0), χ zz

sp( �Q, iωn = 0) in Fig. 5
for different temperatures. The spin susceptibility obtained
by cGGW and GGW-RPA both satisfy the constrain of the
SU (2), while the covariant GW (cGW) results violate this
basic spin symmetry. Thus, we cannot point out which suscep-
tibility from cGW is the static antiferromagnetic susceptibility
clearly, and the calculation is nonsense.

FIG. 5. The different components of the static antiferromagnetic
spin susceptibility χ xx

sp , χ yy
sp , χ

zz
sp obtained by cGGW, GGW-RPA and

cGW. The cGW violates the symmetry χ xx
sp (p) = χ yy

sp (p) = χ zz
sp(p).
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