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Excitonic bound states are characterized by a binding energy εb and a single-particle band gap �b. This
work provides a theoretical description for both strong (εb ∼ �b) and weak (εb � �b) excitonic bound states,
with particular application to biased bilayer graphene. Standard description of excitons is based on a wave
function that is determined by a Schrödinger-like equation with screened attractive potential. The wave function
approach is valid only in the weak-binding regime εb � �b. The screening depends on frequency, i.e., dynamical
screening, and this implies retardation. In the case of strong binding, εb ∼ �b, a wave function description is
not possible due to the retardation. Instead we appeal to the Bethe-Salpeter equation, written in terms of the
electron-hole Green’s function, to solve the problem. So far only the weak-binding regime has been achieved
experimentally. Our analysis demonstrates that the strong-binding regime is also possible and we specify
conditions in which it can be achieved for the prototypical example of biased bilayer graphene. The conditions
concern the bias, the configuration of gates, and the substrate material. To verify the accuracy of our analysis
we compare with available data for the weak-binding regime. We anticipate applying the developed dynamical
screening Bethe-Salpeter techniques to various 2D materials with strong binding.
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I. INTRODUCTION

Graphene layers, and the manipulation thereof, are the
model hunting ground for peculiar single-particle quantum
phases of matter, such as topological insulators, as well as
many-body phases, including superconductivity. An impor-
tant many-body phase actively pursued in graphene layers
is the excitonic insulator [1–3]—a many-body ground state
comprising condensed particle-hole pairs. This phase holds
promise for novel superfluidity that could be harnessed for
low-energy technology [4–8]. Understanding of an isolated
exciton is a necessary step for understanding the exciton con-
densation.

An exciton is a particle-hole bound state in a band insu-
lator. Excitons in biased bilayer graphene (BBG) have been
observed several years ago [9]. Theoretically the exciton prob-
lem in BBG has been considered in Refs. [10–13]. These
works ultimately employ the instantaneous screened Coulomb
approximation to find the binding energy and the wave func-
tion of the exciton. Often this approach is referred to as
the Bethe-Salpeter equation (BSE); however, it is necessary
to clarify the terminology: For an instantaneous interaction,
a Hamiltonian approach is valid, known generically as the
Lippmann-Schwinger equation (LSE). In the case of retarda-
tion the approach is the BSE. The distinction is important; the
LSE provides a relatively simple wave function description,
whereas for the BSE a wave function is not possible, and
instead the correct object is the two-particle Green’s function
[14].

In this work we address the issue of retardation in electron-
hole binding in BBG. There are two main parameters in the
problem, exciton binding energy εb and single-particle band

gap �b induced by bias. In the weak-binding limit, εb � �b,
retardation is negligible. This is the limit addressed in the
existing experiment [9] as well in previous theoretical works
[10–13]. Contrary to this, we find that in the case of strong
binding, εb ∼ �b, the retardation is non-negligible, and acts to
significantly enhance the binding energy. Notably, the strong-
binding regime is essential to understand the possibility of
exciton condensation. However, we leave the pursuit of con-
densation for future work. The importance of retardation in
some two-dimensional semiconductor exciton problems has
been previously pointed out in Ref. [15]. The authors of
Ref. [15] replace the zero frequency in the screened potential
by some effective frequency, and ultimately solve the LSE.

Full solution of the BSE is numerically challenging, and
presents a bottleneck. In this work we develop a systematic
method to account for retardation, and at a low numerical cost.
This is achieved through a perturbative expansion of the BSE.
Employing such techniques in the case of BBG, our analysis
demonstrates that the strong-binding regime in BBG is pos-
sible and we specify conditions in which it can be achieved.
The conditions concern the bias, the configuration of gates,
and the substrate material. To confirm the validity of our per-
turbative treatment, we also implement the numerically exact
solution to the BSE; comparison shows that the perturbation
theory (to first order) accounts for the majority retardation
correction in the weak-to-intermediate binding regime, and
still captures approximately 50%, or more, of the correction
deep in the strong-binding regime εb ∼ �b. The first-order
perturbation theory is therefore an efficient means to establish
the importance of retardation.

In BBG, the single-particle band gap �b is proportional to
a perpendicular (to the BBG plane) displacement field, which

2469-9950/2023/107(8)/085104(10) 085104-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8969-6064
https://orcid.org/0000-0001-7828-5569
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.085104&domain=pdf&date_stamp=2023-02-06
https://doi.org/10.1103/PhysRevB.107.085104


HARLEY D. SCAMMELL AND OLEG P. SUSHKOV PHYSICAL REVIEW B 107, 085104 (2023)

is generated via metallic gates above and below the plane; e.g.,
[16]. We will assume that the gates are symmetrically placed.
Screening, in general, has a significant affect on the exci-
tonic binding energy, εb. There are three sources of screening:
(i) dielectric due to a material between BBG and the gates,
(ii) metallic gates, and (iii) in-plane, captured using the ran-
dom phase approximation (RPA). We will see that to get to the
strong-coupling regime, εb ∼ �b, it is necessary to eliminate
the dielectric material and use suspended BBG; suspended
BBG has been experimentally achieved [17,18]. Typical ener-
gies that we consider are below 100 meV. Within this range the
gate metallic screening is practically frequency independent,
but (iii) is frequency dependent. This is the origin of the effect
that we address.

The rest of the paper is structured as follows: In Sec. II
we establish the single-particle Hamiltonian and the behavior
of the screened Coulomb interaction. Section III introduces
the LSE approach, which allows for a particularly straight-
forward treatment of the two-body exciton problem, without
account of retardation. Section IV moves onto the BSE,
which accounts for retardation (due to dynamical screening).
The approach is more demanding numerically, so we first
develop a perturbative expansion which allows for a relatively
simple numerical implementation. We subsequently provide a
numerically exact treatment of the BSE. Together, we find that
with account of retardation, binding energies are significantly
enhanced and we predict that the strong binding/exciton con-
densation is possible to implement experimentally. As an
additional consistency check we analyze existing experimen-
tal data for weakly bound excitons in BG. Without introducing
fitting parameters, we show excellent quantitative agreement.
Finally, we discuss our findings and their relation to future
experiments in Sec. V.

II. SINGLE-PARTICLE HAMILTONIAN AND SCREENED
COULOMB INTERACTION

A. Single-particle Hamiltonian

We will see that the spatial size of the exciton is about r ∼
1/

√
m�b, where m ∼ 3 × 10−2me is the effective mass; here-

after we set h̄ = 1. Even at a large band gap �b = 100 meV
the size is about 5 nm; the continuum approximation is there-
fore sufficient for analysis of the problem. The low-energy
single-particle Hamiltonian of BBG is [19]

H0 =
⎛
⎝ � − p2

−
2m

− p2
+

2m −�

⎞
⎠, (1)

which is written in terms of {A1, B2} orbitals, with A, B re-
ferring to graphene sublattice and subscripts 1,2 referring to
layers. Here p± = τ px ± ipy, p is the in-plane momentum,
τ = ±1 the valley quantum number, m the effective mass, and
� = �b/2, which is proportional to the bias electric field [16].

There are known corrections to this Hamiltonian [20],
which we gather as a perturbation,

δH =
⎛
⎝ p2

2M

(
1 − �

�0

) P0 p+
2m

P0 p−
2m

p2

2M

(
1 + �

�0

)
⎞
⎠. (2)

This captures three types of perturbations, P0 p±
2m , p2

2M , and
p2

2M
�
�0

; the first perturbation controls trigonal warping, the
second controls particle-hole asymmetry, and the third does
not break symmetries, but is nonetheless treated as a small
correction.

The single-particle band gap �b = 2� encodes the applied
displacement field, D. The conversion is observed to be ap-
proximately linear [16], with

eD/(2�) ≈ 10.4 nm−1 (3)

taken as a linear fit to experimental data [16] in the range
D ∈ (0, 1.9) V nm−1. Meanwhile, all other parameters of the
single-particle Hamiltonian can be related to the standard
Slonczewski-Weiss-McClure (SWM) parameters of BG [20]

m = 2γ1

3a2γ 2
0

≈ 0.032me,

M = m

2γ4/γ0 + �′/γ1
≈ m

0.146
≈ 0.22me,

�0 = γ1

2

m

M
≈ 28 meV,

P0 = 2γ1γ3√
3γ 2

0 a
≈ 0.068 nm−1. (4)

To obtain the numerical values, we have taken the SWM
parameters established by the experiment and analysis of
Ref. [21],

a = 2.46 Å, γ0 = 3.16 eV, γ1 = 0.381 eV,

γ3 = 0.38 eV, γ4 = 0.14 eV, �′ = 0.022 eV. (5)

Taken together, this uniquely fixes the single-particle Hamil-
tonian; we therefore have not introduced fitting parameters.

The Hamiltonian (1) [with/without the corrections (2)]
determines the dispersion of the valence, ε (−)

p , and conduction,
ε (+)

p , bands, as well as the corresponding wave functions ψ (±)
p,τ

(spin index is idle, and so is not included). We will perform
calculations for the Hamiltonian (1) with and without the
corrections (2); we will see that perturbations influence results
rather weakly for the parameter range of interest. Therefore,
for presentation we omit the correction (2) everywhere except
of the comparison with experiment (in Fig. 6). Excluding the
small corrections (2), it is convenient to perform the analysis
in rescaled units, whereby energy is measured in units of �

and momentum in units of p0 = √
2m�,

ε = ε/�,

p = p/p0 = p/
√

2m�. (6)

In these units the Hamiltonian (1) reads

H0 =
(

1 −p2
−

−p2
+ −1

)
, (7)

with eigenenergies ε (±)
q = ±

√
1 + p4.

B. Screened Coulomb interaction

The many-body RPA screening of Coulomb interaction
in BG is significant. We recall the essential details. The
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FIG. 1. Electron polarization operator.

polarization operator at an imaginary frequency ξ , as given
by the diagram in Fig. 1, reads (for generic RPA details see,
e.g., [22])

	(p, iξ ) = 2 × 2 ×
∫

Dq
2(ε (−)

q − ε
(+)
q+p)F+−

q,q+p

(ε (−)
q − ε

(+)
q+p)2 + ξ 2

. (8)

Throughout the paper we use the notation Dq = d2q/(2π )2.
The prefactor 2 × 2 in (8) comes from spin and valley
degeneracy; the vertex factor is the overlap of the conduc-
tion and valence single-particle wave functions, F+−

q,q+p =
|〈ψ (+)

q+p,τ |ψ (−)
q,τ 〉|2. We do not account for vertices that change

the valley; the resulting Coulomb interaction would be sig-
nificantly suppressed due to the momentum ratio q/K � 1,
where K is the valley momentum. The vertex factor is zero
at q = 0. The polarization operator has dimension of mass;
rewriting Eq. (8) in dimensionless units (6) gives

	(p, iξ ) = 2m	(p, iξ ), (9)

where 	 is given by the same Eq. (8), but all the variables
replaced by those with bars. At q 
 1 the polarization op-
erator is 	 = ln 4

π
≈ 0.441, which reduces to the � = 0 case

considered in Ref. [23]. In the general case of arbitrary �,
the operator is straightforwardly computed numerically. Plots
of −	 versus p for different values of ξ are presented in
Fig. 2(a). The polarization operator is zero at p = 0 and it
is approaching (ln 4)/π at large p. The frequency depen-
dence of the polarization operator becomes significant when
the frequency is comparable and larger than the band gap,
ξ � �b = 2�. In the Appendix we discuss the validity of the
polarization operator (8) at large frequencies.

There are two points to note on the behavior of the po-
larization operator: (i) The polarization screening becomes
significant at p > 1. The scale p ∼ 1 will determine the size
of the exciton, 1/r ∼ p0 = √

2m�; and (ii) the (imaginary)
frequency monotonically reduces screening, i.e., 	(p, iξ ) <

	(p, 0) for all ξ > 0. We would like to stress that this is true
only for imaginary frequency; for real frequencies the screen-

(a) (b)

FIG. 2. Polarization operator −	 (a) and the Coulomb interac-
tion screening factor χscr (b) versus p for different values of ξ . The
screening factor is presented for � = 15 meV and εr = 1.

ing properties are complicated and obscured. It is convenient
to work with imaginary frequency.

Using notation e2 = e2
0/εr , where e0 is the bare charge and

εr is the dielectric constant, the screened Coulomb interaction
is

Vp(ξ ) = − 2πe2

p − 2πe2	(p, iξ )
= 1

2m
V p(ξ ),

V p(ξ ) = − 4π

sp − 4π	(p, iξ )
, (10)

s =
√

ε2
r �

me4
0/2

.

In these dimensionless units the interaction depends only on
the ratio of � over “Rydberg,” Ry = me4

2 . At εr = 1 the Ry
value is Ry ≈ 435 meV. Hence, for � = 15 meV the param-
eter s is s = 0.186. In Fig. 2(b) we plot the screening factor of
the bare Coulomb interaction,

χscr = −V p

(4π/sp)
= sp

sp − 4π	(p, iξ )
, (11)

for these parameters. Figure 2(b) further emphasizes the be-
havior seen in Fig. 2(a), i.e., that (i) screening is the most
significant at p ∼ 1; and (ii) screening is significantly reduced
at high imaginary frequency ξ 
 1.

III. LIPPMANN-SCHWINGER EQUATION

We define quasimomentum, p, with respect to the valley
minimum (K point) and only consider bound states with zero
total quasimomentum, i.e., electron in valley τ , with mo-
mentum p + τK pairing with a hole in valley τ ′, with total
momentum −p − τ ′K. This means that the total momentum,
i.e., as defined with respect to the � point, is zero if the elec-
tron and hole pair in the same valley (intravalley exciton) and
it is equal to ±2K if they pair in different valleys (intervalley
exciton). Optically, only the intravalley exciton can be excited.

LSE is a result of summation of ladder diagrams for an
instantaneous interaction between the particles. To apply the
LSE, we consider the interaction (10), and set ξ = 0. For the
purposes of presentation, we do not include the small correc-

tions (2), and therefore ε (+)
p = −ε

(−)
−p ≡ εp =

√
�2 + p4

4m2 . For
some of our numerics, we account for the corrections (2). The
bound state equation reads

(E0 − 2εp)p =
∫

Vp−k(0)Zp,kkDk,

E0 = 2� − ε
(0)
b . (12)

Here p is the exciton wave function, and ε
(0)
b is the ex-

citon binding energy (the subscript/superscript “0” is used
to distinguish from the case with account of retardation, to
be discussed in Sec. IV). The vertex form factors are given
by Zτ ′,τ

p,k = 〈ψ (−)
p,τ ′ |ψ (−)

k,τ ′ 〉〈ψ (+)
k,τ

|ψ (+)
p,τ 〉. The form factors do not

distinguish spin, yet they weakly distinguish between intra-
and intervalley excitons. Note that τ corresponds to the valley
where the electron is located and τ ′ corresponds to the valley
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d

d

BLG

Gate

Gate

FIG. 3. Bilayer graphene with two metallic gates, placed at a
distance d above and below.

where the hole is located. Explicitly, the expression is

Zτ ′,τ
p,k = (1 + εpεke2iτ ′θ )

1 + ε2
p

(1 + εpεke2iτθ )

1 + ε2
k

. (13)

Here θ = θk − θp and εp = 2m(εp − �)/p2. Hence, for the
intervalley exciton, τ ′ = −τ , the Z factor is real,

Z−τ,τ
p,k = 1 + ε2

pε
2
k + 2εpεk cos(2θ )(

1 + ε2
p

)(
1 + ε2

k

) . (14)

At the same time for the intravalley exciton, τ ′ = τ , the Z
factor is complex,

Zτ,τ
p,k = 1 + ε2

pε
2
k e4iτθ + 2εpεke2iτθ(

1 + ε2
p

)(
1 + ε2

k

) . (15)

In dimensionless units (6), Eq. (12) reads

(E0 − 2ε p)p =
∫

V p−k(0)Zp,kkDk. (16)

The interaction V is defined in (10). For brevity, we suppress
valley indices on the Z factors. As already pointed out, the
solution of (16) depends only on the dimensionless parameter
s, defined in (10). The interaction in (10) has not accounted
for an important effect—screening due to the metallic gates.
We consider a setup shown in Fig. 3, whereby the top and
bottom gates are a distance d from the BG plane. Accounting
for gate screening, via the method of images, the interaction
in Eq. (10) is replaced by

V p(ξ ) = − 4π

sp/ϒp̄ − 4π	(p, iξ )
,

ϒp̄ = tanh(pd ) = tanh(p0 pd ). (17)

Without account of the small trigonal warping ∝P0 in (2),
we may classify excitonic states p via 2D angular harmonics
ei�θp , using

p =
∑

�

1√
p

ψ�
p ei�θp, (18)

where ψ�
p depends only on the absolute value of momentum.

In a channel with a given orbital momentum l Eq. (16) is
reduced to

(E0 − 2ε p)ψ�
p =

∫ ∞

0
V �

p,k
ψ�

k
dk,

V �

p,k
=

√
pk

(2π )2

∫ 2π

0
e−i�θp V p−k(0) Zp,k ei�θk dθk . (19)

Note, V �

p,k
is independent of θp, since the integrand in the

second line of (19) is a function of θk − θp.
Brute force numerical solution of (19) is straightforward.

We consider three cases: (i) suspended BG with the dielectric
constant εr = 1; (ii) single-sided hBN substrate with effective
εr = (3.9 + 1)/2 = 2.45; and (iii) double-sided hBN sub-
strate with effective εr = 3.9. The binding energy of the
s-wave (� = 0) ground state of intervalley exciton versus
� is plotted in Fig. 4(a)(i). There are nine lines corre-
sponding to the three values of the dielectric constant and
to the three values of the distance to metallic gates, d =
20, 100, 1000 nm. As expected, there is a significant de-
pendence of the binding energy on the dielectric constant
εr . However, given that the characteristic exciton radius is
r ∼ 10 nm, the strong dependence on the gate distance d >

20 nm is somewhat unexpected. Ultimately, this is because the
Coulomb interaction, at zero momentum, is Vp→0 = 2πe2d .
Another surprising observation is practical independence of
the wave function on the binding energy. The wave functions
corresponding to very different binding energies are plotted
in Fig. 4(a)(ii); we see that, in dimensionless momenta, the
wave fuctions are insensitive to the system parameters. In the
original units they are of course different: p = 1 corresponds
to p = 0.130 nm−1 for � = 20 meV and to p = 0.206 nm−1

for � = 50 meV. We attribute this universal behavior to the
shape of the polarization operator, which is small ∝p2 up to a
scale p = 1.

Due to the difference of the Z factors, Eqs. (14) and
(15), binding energies of intervalley and intravally excitons
are slightly different. The intervalley exciton has a stronger
binding. The difference of binding energies,

�εs
b = ε

(0)
b (inter) − ε

(0)
b (intra), (20)

is plotted versus � in Fig. 4(a)(iii) for εr = 1 and d =
1000 nm. The difference in binding energies is less than 1%.
It is even smaller for higher εr and lower d .

For the p-wave exciton we again start from the intervalley
case. In this case the energies of l = ±1 states are degenerate.
The binding energy of the lowest p-wave state of the inter-
valley exciton is plotted in Fig. 4(b)(i) versus � for the same
values of εr and d as that for the s wave in Fig. 4(a)(i). The
wave functions corresponding to different binding energies
are plotted in Fig. 4(b)(ii).

We already pointed out that the inervalley p-wave exciton
states with l = ±1 are degenerate. At the same time the in-
travalley p-wave states with l = ±1 are nondegenerate, and
the following relation is valid,

ε
(0)
b (intra) = ε

(0)
b (inter) + τ l�ε

p
b , (21)

where τ indicates the valley. The splitting �ε
p
b is plotted

in Fig. 4(b)(iii) versus � for εr = 1 and d = 1000 nm. The
splitting is again less than 1%. It is even smaller for higher εr

and lower d .

IV. RETARDATION AND BETHE-SALPETER EQUATION

Now we proceed to the central message of this work.
In the analysis of the previous section, an important ef-
fect was neglected—retardation of the screened Coulomb
interaction. According to Fig. 2, screening of the Coulomb
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FIG. 4. (a) Exciton s-wave (� = 0) ground state, and (b) exciton p-wave (� = 1) ground state. (a) and (b) (i) Binding energies of intervalley
exciton in the LSE approximation versus �. The plots are presented for three values of the dielectric constant εr = {1, 2.45, 3.9} and three
values of the distance to gates d = {20, 100, 1000} nm. (a) and (b) (ii) Wave functions versus dimensionless momentum p for different sets
of parameters. The blue line corresponds to � = 20 meV, εr = 1, d = 1000 nm; the orange line corresponds to � = 50 meV, εr = 1, d =
1000 nm; the green line corresponds to � = 20 meV, εr = 3.9, d = 20 nm; the red line corresponds to � = 50 meV, εr = 3.9, d = 20 nm.
(a) and (b) (iii) The energy splitting, Eq. (20), between the intervalley and intravalley excitons versus � for εr = 1 and d = 1000 nm.

attraction is monotonically reduced with frequency. We al-
ready pointed out, and we would like to stress again, that
this is true only for imaginary frequency. Analytic contin-
uation to real frequency obscures this simple behavior. It
is therefore convenient and physically transparent to work
with imaginary frequency. Reduced screening enhances the
binding energy. Heuristically, the typical frequency is set by
the binding energy, and therefore when the binding energy
is much smaller than the band gap, εb � 2�, the effect of
screening reduction is small. However, at strong binding, εb ∼
2�, the effect of frequency dependence (retardation) becomes
significant.

With account of retardation, the electron and hole interact
at different times and the bound state cannot be described by a
wave function. Instead of the wave function, the correct object
is the amputated two-particle Green’s function χξ,p—written
here in terms of the relative momentum p and the relative fre-
quency ξ . In our analysis, the total momentum of the electron
and hole is encoded in the valley indices, and is either zero
(intravalley pairing) or 2K (intervalley pairing). The imagi-
nary frequency ξ is Fourier conjugated to the retardation time
(plus a Wick rotation). BSE for χξ,p reads [14]

χξ,p = − 1

(E/2 − εp)2 + ξ 2

∫
Vp,k(ξ − λ)χλ,kZp,kDλDk,

Dλ = dλ

2π
, Dk = d2k

(2π )2
. (22)

Here E = 2� − εb, and ξ, λ are imaginary frequencies. If
the interaction is independent of frequency, Vp,k(ξ − λ) →
Vp,k(0), BSE (22) is equivalent to LSE (12), and χ is related

to the usual wave function p as

χ
(0)
ξ,p = 2ap

a2
p + ξ 2

p,

ap = −E0/2 + εp. (23)

The superscript/subscript “0” indicates that this is the solution
without retardation. Note that ap is always positive.

A. Perturbation theory for the retardation effect

Equation (22) is not a linear eigenvalue problem, and a
direct numerical solution of Eq. (22) is an involved calculation
which we detail in Sec. IV B. In this subsection we develop
a perturbative method, and explicitly consider the first-order
term in perturbation series. This technique is numerically
efficient to implement and will be seen to be sufficient to
quantitatively describe the regimes of weak and intermedi-
ate binding, while providing qualitative information on the
strong-binding regime. Let us first replace the interaction in
(22) by a frequency-independent interaction, Vp,k(ξ ) → V (0)

p,k .

It can be the interaction at zero frequency, V (0)
p,k = Vp,k(ξ =

0), or interaction at some typical frequency V (0)
p,k = Vp,k(ξ =

ξtypical ), or something else. Here we exclusively consider
V (0)

p,k = Vp,k(ξ = 0). BSE with V (0)
p,k is reduced to LSE which

is a linear eigenvalue problem and can be solved numerically
with ease. The solution is given by Eq. (23) where p and E0

is the eigenfunction and the eigenenergy of LSE. Next, let us
consider

δVp,k(ξ ) = Vp,k(ξ ) − V (0)
p,k (24)
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as a perturbation. We obtain the following expression for the
first-order retardation correction to the binding energy,

δE =
∫ (

χ
(0)
ξ,p

)∗
δVp,k(ξ − λ)χ (0)

λ,kZp,kDξ DpDλDk. (25)

To derive (25) let us represent the Green’s function as
χξ,p = χ

(0)
ξ,p + δχξ,p. Hence, BSE (22) can be rewritten as

χ
(0)
ξ,p + δχξ,p

= − 1

(E/2 − εp)2 + ξ 2

∫ [
V (0)

p,k + δVp,k(ξ − λ)
]

× [
χ

(0)
λ,k + δχλ,k

]
Zp,kDλDk

≈ − 1

(E/2 − εp)2 + ξ 2

∫ [
V (0)

p,k χ
(0)
λ,k + δVp,k(ξ − λ)χ (0)

λ,k

+ V (0)
p,k δχλ,k

]
Zp,kDλDk. (26)

The second-order term δV δχ has been neglected in the last
line. Let us denote

δp =
∫

δχξ,pDξ . (27)

Integrating (26) over ξ we get

p + δp = + 1

E − 2εp

∫
V (0)

p,k Zp,kkDk

−
∫

Dξ

(E/2 − εp)2 + ξ 2
δVp,k

× (ξ − λ)χ (0)
λ,kZp,kDλDk

+ 1

E − 2εp

∫
V (0)

p,k Zp,kδkDk,

which is equivalent to

(E − 2εp)(p + δp) =
∫

V (0)
p,k Zp,kkDk

+
∫

2(−E/2 + εp)

(E/2 − εp)2 + ξ 2
δVp,k

× (ξ − λ)χ (0)
λ,kZp,kDξ DλDk

+
∫

V (0)
p,k Zp,kδkDk.

Representing E = E0 + δE and neglecting all the second-
order terms, i.e., O(δ × δ), this is transformed to

δEp + (E0 − 2εp)δp =
∫

2(−E0/2 + εp)

(E0/2 − εp)2 + ξ 2
δVp,k

× (ξ − λ)χ (0)
λ,kZp,kDξ DλDk

+
∫

V (0)
p,k Zp,kδkDk.

Finally, multiplying this equation by ∗
p and integrating by p

we arrive at Eq. (25). Using (23), one frequency integration in

(25) can be performed analytically and the retardation correc-
tion to the energy reduces to

δE =
∫

∗
p

4(ap + ak)δVp,k(ν)

(ap + ak)2 + ν2
kZp,kDνDpDk. (28)

Here the ν integration goes from 0 to ∞. Since δV is nega-
tive the retardation correction to the total energy is negative,
δE < 0, and thereby increases the binding energy. If δV is
independent of frequency, δVp,k(ν) → δVp,k, the ν integra-
tion in (28) is trivial and the energy correction is reduced
to the familiar expression from quantum mechanics, δE =∫

∗
pδVp,kkZp,kDpDk.

Momenta integrations in (28) are well convergent. On the
other hand, the perturbation δV (ν) increases with frequency,
and we find that at intermediate-to-large ν the integrand in
(28) decays as 1/ν leading to a logarithmic divergence of the
integral. However, ultimately the δV (ν → ∞) → constant;
the integrand is therefore ∝ν−2 and hence the integral over
ν converges. (By direct numerical evaluation, we find that the
integral converges at ν � 3 eV.) The validity of the screened
Coulomb interaction at large frequencies is discussed in the
Appendix.

B. Exact BSE

To complement the perturbative treatment of the retarda-
tion effect, we appeal now to the numerically exact solution
of the BSE. Starting from the BSE (22), let us perform the
following replacement of variables,

Xξ,p =
√

a2
p + ξ 2χξ,p,

Vp,k(ξ − λ) = Vp,k(ξ − λ)Zp,k√(
a2

p + ξ 2
)(

a2
k + λ2

) , (29)

with ap = −E/2 + εp. In these variables BSE reads

Xξ,p = −
∫

Vp,k(ξ − λ)Xλ,kDλDk. (30)

To efficiently solve Eq. (30), we fix the energy E , e.g., guided
by the LSE solution, and introduce a new variable R, such that

RXξ,p = −
∫

Vp,k(ξ − λ)Xλ,kDλDk, (31)

which is a standard eigenvalue problem for R and can
be solved numerically. We need only the maximal eigen-
value Rmax. The energy E that satisfies Rmax(E ) = 1 gives
the solution of the original BSE (22). We will denote the
corresponding binding energy ε

(∞)
b = 2� − E , since in the

language of perturbation theory, this corresponds to the in-
finite summation of corrections in all orders.

C. Comparison of techniques

The intravalley s-wave exciton binding energies vs � are
plotted in Fig. 5, with the various results reflecting the solution
using the LSE ε

(0)
b , the perturbative correction ε

(1)
b = ε

(0)
b −

δE , and the numerically exact BSE ε
(∞)
b . Moreover, results for

various combinations of gate distance d and dielectric εr are
shown. To discuss the key findings, we distinguish the three
regimes:
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FIG. 5. Binding energies (divided by �) vs �. The LSE, perturbative BSE, and exact BSE are denoted ε
(0)
b , ε

(1)
b , and ε

(∞)
b . Screening

parameters: (a) d = 20 nm, εr = 3.9; (b) d = 100 nm, εr = 3.9; (c) d = 100 nm, εr = 1; (d) d = 1000 nm, εr = 1.

(1) Weak binding εb � 2�, e.g., for the case of εr =
3.9 and d = 20 nm [Fig. 5(a)]. We find ε

(0)
b ≈ ε

(1)
b ≈ ε

(∞)
b ,

demonstrating that retardation corrections are negligible.
(2) Intermediate binding εb ∼ �, e.g., for the case of εr =

3.9, d = 100 nm [Fig. 5(b)] and for � � 15 meV. We find
ε

(0)
b < ε

(1)
b ≈ ε

(∞)
b , demonstrating that retardation corrections

are non-negligible and that the first-order perturbation theory
quantitatively captures the influence of the retardation.

(3) Strong binding εb ∼ 2�, e.g., for the cases of εr = 1,
d = 100 and 1000 nm [Figs. 5(c) and 5(d)]. We see that the
LSE is completely insufficient and that the first-order pertur-
bation theory captures approximately 50%, or more, of the
retardation correction.

We conclude that the perturbative approach accounts for
the majority of the retardation correction, except for deep in
the strong-binding regime, εb → 2�.

D. Comparison with existing data

Assuming hBN encapsulation, giving dielectric enhance-
ment ε̄ = 3.9, and taking the metallic gates to be at a distance
d = 20 nm, we can directly compare with the experimental
measurements of Ref. [9]. We compare the exciton energies,
E = 2� − εb vs displacement field (D) obtained using LSE
and BSE, to those measured experimentally. We use the linear
conversion between parameter � and field D, provided in
Eq. (3). The experiment measures both s- and p-wave in-
travalley excitons, so it is necessary to use form factor (15).
The comparison is provided in Fig. 6, from which we see that
both LSE and BSE techniques provide quantitative agreement,

(a) (b)

FIG. 6. Exciton energies vs displacement field D for (a) s- and
(b) p-wave states. Experiment [9] for s and p wave are shown by
black circles, while the LSE, perturbative BSE, and exact BSE are
shown as the E (0), E (1), and E (∞) curves. In (a) the E (1) and E (∞)

curves are essentially indistinguishable, while in (b) just E (0) and
E (1) are shown.

without fitting parameters. We reiterate that this is the case
of weak binding; i.e., retardation corrections are small, and
therefore the LSE and BSE eigenenergies show very little
difference.

V. DISCUSSION

In this work we considered the influence of dynamical
screening (retardation) on exciton binding—i.e., the binding
energy εb. We considered the particular example of biased bi-
layer graphene, whereby the bias field induces single-particle
band gap �b. However, the techniques developed are applica-
ble to many other 2D materials.

We found that for εb � �b, retardation effects can be
safely neglected, and the properties of the exciton bound
states are very well captured by the Lippmann-Schwinger
equation (a two-body Hamiltonian approach). However, in
the strong-binding regime εb ∼ �b retardation is significant
and therefore a Hamiltonian approach is insufficient. Instead
the correct formalism is the Bethe-Salpeter equation (BSE).
The BSE is costly to numerically implement and thereby
presents a bottleneck. To handle this situation, we develop a
simple perturbative expansion of the BSE, which allows us
to systematically compute corrections to the binding energy
relative to the static case. The perturbative approach provides
a numerically simple means to compute and assess the impor-
tance of retardation. By comparison with the exact solution,
we found that for strong binding the first-order perturbative
approach captured approximately 50% of the retardation cor-
rection; for intermediate binding the first-order perturbative
approach captured most of the effect; and for weak binding
the retardation is negligible. The first-order correction there-
fore provides an efficient means to understand the role of
retardation. The quantitative accuracy of our methods are
checked via directly fitting to available experimental data
in this regime [9]; crucially, we take parameters estab-
lished elsewhere, and as such do not use any fitting
parameters.

Screening significantly influences the excitonic binding
energy. We argue that to probe the critical regime of εb ∼
�b, one must reduce screening from the environment, both
dielectric and gate. We propose suspended bilayer graphene
(i.e., dielectric εr = 1) with placement of metallic gates
d > 20 nm above the plane. Counterintuitively, even though
the characteristic radius of excitons considered here is r �
10 nm, the difference in binding energies for metallic gates
at d = 20 and 100 nm is significant, Fig. 4. We exam-
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ine exciton condensation, i.e. εb � �b, in a companion
work [24].

A closely related system, rhombohedral (ABC-stacked)
trilayer graphene, also hosts an electric field tunable single
particle band gap [25]. A recent theoretical study [26] sug-
gests that excitons in this system can reach strong binding;
that work does not include dynamical screening. We speculate
that the retardation correction to binding energy, detailed in
the present work, will be significant in biased ABC trilayer
graphene.
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APPENDIX

In this Appendix we compute the exact polarization opera-
tor, i.e., using the Hamiltonian valid to energy scales ∼10 eV
and for all momenta, and compare with the polarization oper-
ator computed in the main text, which relied on the quadratic
band Hamiltonian (1).

The four-orbital single-particle Hamiltonian for bilayer
graphene reads [20]

H =

⎛
⎜⎜⎜⎝

−� −γ0 fp γ4 fp −γ3 f ∗
p

−γ0 f ∗
p −� + �′ γ1 γ4 fp

γ4 f ∗
p γ1 � + �′ −γ0 fp

−γ3 fp γ4 f ∗
p −γ0 f ∗

p �

⎞
⎟⎟⎟⎠, (A1)

where fp = eipya/
√

3 + e−ipya/(2
√

3) cos(pxa/2). Values of the
parameters a, γ0, γ1, γ3, γ4,�

′, are presented in Eq. (5) of the
main text. The four branches of the dispersion near the K point
are shown in Fig. 7. By black lines we also show the disper-
sion in quadratic approximation considered in the main text.
The quadratic approximation fails at energy higher than 200–
300 meV, which corresponds to a(p − K ) ≈ 0.15. The size
of the bound state in the momentum space is about ∼p0/2,
where p0 = √

2m�; see Figs. 4(a)(ii) and 4(b)(ii) of the main
text. This is a very small momentum; e.g., at � = 15 meV
the characteristic momentum is just ap0 = 0.028. Hence, the

FIG. 7. Left: Brillouin zone. Right: Four branches of the disper-
sion near the K point, K = 4π

3a , at zero band gap � = 0. Black lines
show the dispersion in quadratic approximation of Eq. (1).

FIG. 8. The polarization operator versus dimensionless momen-
tum for band gap 2� = 30 meV and frequency (a) ξ = 0, (b) ξ =
150 meV, and (c) ξ = 1000 meV. The black line shows the exact
value (A2), the blue line corresponds to the quadratic approximation
given by Eq. (8) in the main text, and the orange line corresponds to
two decoupled graphene planes given by Eq. (A3). The left panels,
(i), correspond to a broader momentum range and the right panels,
(ii), are a zoom-in of the momentum range relevant to the exciton
problem.

quadratic approximation in BSE is justified. However, the
energy integration related to the retardation in BSE, i.e.,
Eq. (25), goes up to 2–3 eV, and we therefore need to know
the polarization operator 	(q, iξ ) in the range 0 < q < 5p0,
0 < ξ < 3 eV. It seems that the quadratic approximation at
such high energy should not be valid. We therefore calculate,
in this Appendix, the polarization operator directly from the
four-band Hamiltonian (A1).

The polarization operator reads

	(p, iξ ) = 2
∑
i=1,2
j=3,4

∫
q∈BZ

Dq
2
(
ε (i)

q − ε
( j)
q+p

)
F i j

q,q+p(
ε

(i)
q − ε

( j)
q+p

)2 + ξ 2
, (A2)

where the band indices i, j are as defined in Fig. 7; ε (i)
q ,

ψ (i)
q are the eigenenergies and eigenfunctions of Eq. (A1);

F i j
q,q+p = |〈ψ ( j)

q+p|ψ (i)
q 〉|2 is the vertex factor accounting for the
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FIG. 9. The polarisation operator versus dimensionless momen-
tum for bandgap 2� = 100 meV and frequency: (a) ξ = 0; (b)
ξ = 150 meV; and (c) ξ = 1000 meV. The black line shows the exact
value (A2), the blue line corresponds to the quadratic approximation
given by Eq. (8) in the main text, the orange line corresponds to two
decoupled graphene planes given by Eq. (A3). The left panels, (i),
corresponds to a broader momentum range and the right panels, (ii),
is zoom in of the momentum range relevant to the exciton problem.

overlap of the conduction and valence single-particle wave
functions; and the prefactor 2 in (A2) comes from spin degen-
eracy. Similarly to the main text we define the dimensionless
polarization operator as 	 = 	/(2m).

Figures 8 and 9 compares the 	̄(q̄, ξ ) at � = 15
and 50 meV respectively using the quadratic approxima-
tion [Eq. (8)]; the exact esxpression [Eq. (A2)]; and the
polarization operator of two decoupled graphene planes,
given by

	D(p, iξ ) = − p2

4m
√

v2
F p2 + ξ 2

,

vF =
√

3aγ0

2h̄
. (A3)

Considering the polarization operator at ξ = 0 [Figs. 8(a) and
9(a)]: As one should expect at small p̄ the exact calculation
is consistent with that of the quadratic approximation,
while at large p̄ it is inconsistent with the quadratic
approximation but instead becomes consistent with
two decoupled graphene planes. Considering now the
polarization operator at large frequencies, ξ = 150 meV and
ξ = 1000 meV [Figs. 8 and 9 panels b and c]: Again, at large
p̄ the exact calculation is consistent with two decoupled
graphene planes; this is expected. Quite surprisingly,
at small p̄ the exact calculation is consistent with the
parabolic approximation up to ξ ≈ 3 eV. Less surprising
is consistency with the two decoupled graphene planes at
small p̄.

The message of this Appendix is the following: For the
exciton problem with the band gap less that 100 meV (� <

50 meV) one needs the polarization operator in the range
0 < q < 5

√
2m�, 0 < ξ < 3 eV. Within this range the ex-

act calculation of the polarization operator and a similar
calculation within the quadratic approximation give good
agreement.
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