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Viscous dissipation in a gas of one-dimensional fermions with generic dispersion
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A well-known feature of the classical monoatomic gas is that its bulk viscosity is strongly suppressed because
the single-particle dispersion is quadratic. On the other hand, in condensed matter systems the effective single-
particle dispersion is altered by lattice effects and interactions. In this work, we study the bulk viscosity of
one-dimensional Fermi gases with generic energy-momentum dispersion relations. As an application, viscous
dissipation arising from lattice effects is analyzed for the tight-binding model. In addition, we investigate how
weak interactions affect the bulk viscosity. Finally, we discuss viscous dissipation in the regime in which the
Fermi gas is not fully equilibrated, as can occur when the system is driven at frequencies that exceed the rate of
fermion backscattering. In this case, the Fermi gas is described by three bulk viscosities, which we obtain for a
generic single-particle dispersion.
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I. INTRODUCTION

The behavior of fluids perturbed from mechanical and
thermal equilibrium is commonly described by classical
hydrodynamics. In this approach, dissipative effects are
accounted for by phenomenological parameters known as
transport coefficients [1]. These quantities, which include the
viscosity and thermal conductivity, characterize dissipation
that arises due to small perturbations. In particular, viscosity
quantifies the dissipation that arises from a nonuniform veloc-
ity of the fluid. Of late, there has been a surge of interest in the
application of hydrodynamics to low-dimensional gases and
liquids of fermions [2–8]. Viscosity plays a determinative role
in a variety of nonequilibrium behaviors displayed by such
systems, including transport properties of quantum wires [9]
as well as the relaxation of the collective modes in cold atomic
gases [10].

For three-dimensional systems, viscous effects are cap-
tured by two transport coefficients, the shear and bulk
viscosities. In one dimension shear is not defined, and thus
the relevant transport coefficient is the bulk viscosity. In
the present work, we study the bulk viscosity of a one-
dimensional (1D) Fermi gas with an arbitrary single-particle
dispersion. To appreciate the central role that the dispersion
plays in viscous effects, consider the classical monoatomic
gas. As is well known, its bulk viscosity is suppressed because
the single-particle dispersion is quadratic [11]. On the other
hand, in condensed matter systems the dispersion is altered
by lattice effects. These effects, even if small, are expected
to significantly enhance the bulk viscosity ζ . One of the key
results of the present work is an expression for ζ for a generic
dispersion.

Interactions play a crucial role in viscous dissipation, as
they cause the collisions responsible for the relaxation of a
system to equilibrium. Interactions also alter the form of the

dispersion. Typically, dispersion relations are discussed in the
context of single-particle dynamics. However, an effective
single-particle dispersion that accounts for interactions per-
turbatively can be defined. We derive this effective dispersion
and use it to obtain an expression for the bulk viscosity.
In an experiment, both interactions and lattice effects can
be weak. We thus consider the competition between these
effects. In particular, this physics is investigated in the case
of a dilute Fermi gas using a tight-binding dispersion as
an example.

The application of hydrodynamics requires that the system
be close to equilibrium. A unique feature of the relaxation
of 1D systems is that not all relaxation processes have rates
of the same order of magnitude. Typical thermal excitations
relax at a rate that scales as a power of temperature. In con-
trast, fermion backscattering occurs at a rate 1/τb, which is
exponentially suppressed at low temperatures [12–14]. When
a 1D system is driven at a frequency ω � 1/τb, backscattering
is frozen out, and thus the system cannot fully equilibrate. As
long as ω is less than all other relaxation rates, the behavior of
this system is described by two-fluid hydrodynamics [15–17],
analogous to the well-known theory of superfluid He-4 [1,18].
As in the superfluid, accounting for viscous dissipation in
the driven Fermi gas requires three bulk viscosities [16]. We
calculate these three transport coefficients for an arbitrary
dispersion.

The paper is organized as follows. Section II introduces
our approach for the calculation of the bulk viscosity for a
generic dispersion and applies it to the tight-binding disper-
sion. In Sec. III, we consider the viscous coefficients for a
gas in the two-fluid regime. We study the effect of weak
interactions on viscous dissipation in Sec. IV. In Sec. V, we
discuss the suppression of the bulk viscosity for specific dis-
persions. Finally, in Sec. VI, we highlight the implications of
our results.
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II. BULK VISCOSITY AND THE BOLTZMANN EQUATION

In this section, we derive the bulk viscosity for a general
dispersion εp (Sec. II A) and apply this result to the tight-
binding model (Sec. II B). Viscous dissipation arises when
the velocity of the gas is not uniform. In the usual case of
a Galilean invariant system, the velocity of an element of the
fluid is that of its center of mass. For a generic dispersion,
however, mass is not defined. We thus use an alternative
definition of velocity based on the equilibrium distribution
function. In a translationally invariant Fermi gas, not only
particle number and energy but also momentum is conserved,
and the equilibrium distribution function takes the form

n(0)
p = 1

e(εp−up−μ)/T + 1
. (1)

Here p is the momentum of the state, while T , u, and μ

control the average energy, momentum, and particle number.
The parameters T and μ are the temperature and chemical
potential of the gas, respectively. The parameter u has the
dimension of velocity. In the case a Galilean invariant system,
εp = p2/2m, it coincides with the center of mass velocity of
the gas. For generic εp, we take u appearing in Eq. (1) as
the definition of the velocity of the gas. In the following we
assume for simplicity that εp is even in p and monotonically
increasing for positive p. At T → 0 such a gas only has a
single pair of Fermi points.

A gas with a spatially varying velocity u(x) is not in
equilibrium. For infinitesimal ∂xu, the distribution function is
given by

np = n(0)
p + δnp, (2)

where δnp is the infinitesimal dissipative part of np. While
the perturbation ∂xu �= 0 drives the system out of equilibrium,
collisions between particles caused by weak interactions tend
to restore it, resulting in a nonzero rate of change of the distri-
bution function, which we denote by ṅp. The power dissipated
per unit length is given by

w = −νT
∫ ∞

−∞

d p

h

ṅp δnp

n(0)
p

(
1 − n(0)

p
) , (3)

where h is Planck’s constant and ν is the degeneracy associ-
ated with spin, with ν = 2S + 1 for a gas of spin-S fermions.
The expression for w was derived [19,20] by evaluating T ṡ,
where the entropy density s was expressed in terms of the
Fermi occupation numbers. Both δnp and ṅp vanish for a
system in equilibrium and therefore must be proportional to
∂xu. Thus, the power dissipated per unit length (3) has the
form

w = ζ (∂xu)2. (4)

The proportionality constant ζ is the bulk viscosity. This
definition is directly analogous to the definition of ζ for a
Galilean-invariant fluid [1]. In the absence of Galilean invari-
ance, ζ is a function of u. From now on, we limit ourselves to
the study of the bulk viscosity at u = 0.

A. Boltzmann equation approach

We now calculate ζ using Eqs. (3) and (4). This requires us
to obtain ṅp and δnp. In the Boltzmann equation formalism,

ṅp can be expressed in two ways:

ṅp = ∂t np + (∂pεp)∂xnp − (∂xεp)∂pnp, (5)

ṅp = I[np], (6)

where I[np] is the collision integral describing the relaxation
to equilibrium. The standard Boltzmann equation [11] is ob-
tained by equating these two expressions for ṅp. Interactions
are responsible for the collisions between the particles. They
also alter the effective dispersion εp appearing in Eq. (5), an
effect that will be considered in Sec. IV. In this section, the
third term on the right-hand side of Eq. (5) vanishes because
∂xεp = 0. This term will play a role later in the paper.

A system with a velocity gradient is either expanding or
contracting. As a result, the temperature T and chemical po-
tential μ depend on time. This is in contrast to the calculation
of thermal conductivity, which can be obtained from a steady-
state solution of the Boltzmann equation [21]. Substituting
the expression (1) for n(0)

p into Eq. (5) and allowing for the
dependences u(x), T (t ), and μ(t ), we find

ṅp = 1

T
n(0)

p

(
1 − n(0)

p

)[εp − μ

T
∂t T + ∂tμ + p∂pεp∂xu

]
. (7)

This expression can be written more compactly as

ṅp = 1

T
n(0)

p

(
1 − n(0)

p

)
ϒ(ξ ), (8)

where ξ = εp − μ and

ϒ(ξ ) = ∂tμ + ∂t T

T
ξ + ∂xu

p(μ + ξ )

p′(μ + ξ )
. (9)

The function p(ε) is the inverse of εp for positive p, and p′(ε)
is its derivative.

Next, we use conservation laws to express ∂tμ and ∂t T in
terms of ∂xu. The conservation of particle number, momen-
tum, and energy can be expressed as∫ ∞

−∞

d p

h
ṅpXp = 0 (10)

for Xp = 1, p, and εp, respectively. While conservation of
momentum is trivially satisfied given that the right-hand side
of Eq. (7) is even in p, the conservation of particle number and
energy gives two linear relations involving the infinitesimal
quantities ∂t T , ∂tμ, and ∂xu, thus allowing us to express ṅp in
terms of ∂xu alone. Working to leading order in T with ξ ∼ T ,
we obtain

ṅp = gp

2T
ϒ ′′(0)φp, (11)

where

φp = gp

(
ξ 2 − π2T 2

3

)
, (12)

and

gp =
√

n(0)
p

(
1 − n(0)

p
) = 1

2 cosh ξ

2T

. (13)

The result for ṅp given by Eqs. (11) and (12) holds for any
ϒ(ξ ) in Eq. (8), as long as the second derivative ϒ ′′(0) is well
defined. For ϒ(ξ ) given by Eq. (9), we have

ϒ ′′(0) = −χ0 ∂xu, (14)
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where

χ0 = −
(

p(ε)

p′(ε)

)′′∣∣∣∣
ε=μ

= − 1

ε′
p

(
p ε′′

p

ε′
p

)′∣∣∣∣∣
p=pF

. (15)

Here the Fermi momentum pF is defined by εpF = μ. Of the
two equivalent forms for χ0 given in Eq. (15), the second
is more convenient for a given dispersion. The sign in the
definition (15) of χ0 is chosen so that χ0 is positive for the
tight-binding model (Sec. II B).

The final ingredient necessary to calculate ζ using Eqs. (3)
and (4) is δnp. As we now demonstrate, δnp may be obtained
from Eq. (6) by linearizing the collision integral and invert-
ing it. To do so, it is convenient to symmetrize the collision
integral by introducing the function xp defined by δnp = gpxp

[22]. For infinitesimal xp, its rate of change is

ẋp = −�̂xp, (16)

where the linear operator �̂ is given by

�̂xp = − 1

gp

d

ds
I
[
n(0)

p + sgpxp
]∣∣∣∣

s=0

. (17)

(The parameter s has been used to linearize I in xp.) The
operator �̂ is symmetric and thus its eigenvalues are real.
Furthermore, the eigenvalues must be nonnegative in order for
n(0)

p to represent a stable equilibrium.
We now formally express xp by inverting the linear opera-

tor �̂ appearing in Eq. (16). This gives

xp = χ0

2T
(∂xu)�̂−1φp, (18)

where we have used Eqs. (11) and (14).1 Then, Eq. (3) may
be written in the compact form

w = χ2
0

4T
〈φ|�̂−1|φ〉(∂xu)2, (19)

where the inner product is defined by

〈a|b〉 = ν

∫ ∞

−∞

d p

h
apbp, (20)

for generic functions ap and bp. In particular, substitution of
φp given by Eq. (12) for both ap and bp yields

〈φ|φ〉 = 16π3νT 5

45h̄vF
(21)

at T 
 EF . (Here the Fermi energy EF = εpF − ε0.) Using
Eqs. (4), (19), and (21), we obtain for the bulk viscosity

ζ = 4π3νχ2
0 T 4τ

45h̄vF
, (22)

1The operator �̂−1 appearing in Eq. (18) is well defined as long as
it acts on the subspace of eigenvectors with strictly nonzero eigen-
values. Indeed, φp belongs to this subspace because our procedure
of using the conservation laws to express ṅp in terms of ∂xu alone
ensures that φp is orthogonal to the zero modes of �̂. Thus, the
operator �̂−1 in Eq. (18) is well defined.

where the effective relaxation time τ is defined by

τ = 〈φ|�̂−1|φ〉
〈φ|φ〉 . (23)

This expression for τ is the average of the inverse decay rates
of the eigenmodes of the collision integral (17) weighted by
their overlap with φp.

The spectra of decay rates for 1D systems have been
studied in a number of different cases [14,21,23,24]. At low
temperatures, the relaxation spectrum of a 1D Fermi gas ex-
hibits two disparate rates. Fermionic backscattering occurs at
a rate 1/τb, which is exponentially small at low temperatures
[12–14,21,25]. All other relevant processes are comparatively
fast, with rates that scale as a power of T . Importantly,
backscattering is associated with a perturbation xp that is odd
in p, while φp that appears in the definition (23) is even.
Therefore, only the fast modes contribute to Eq. (23), and the
relaxation time τ scales as a power of temperature.2

For the quadratic dispersion εp = p2/2m, Eq. (15) yields
χ0 = 0, and we recover the well-known result that the bulk
viscosity is suppressed in this case [11]. We stop short of
asserting that ζ given by Eq. (22) vanishes since interactions
can alter εp, as will be discussed in Secs. IV and VI.

In addition to the case of the quadratic dispersion, χ0
also vanishes for the ultrarelativistic dispersion, εp = c|p|, cf.
Ref. [11]. We are thus led to ask what is the most general form
of εp for which χ0 vanishes for any density. To answer this
question, we set the second form of χ0 given in Eq. (15) equal
to zero for all pF . The solution to the resultant third-order
differential equation gives a general dispersion of the form3

εp = A|p|B + C. (24)

This expression has as special cases the quadratic (B = 2)
and ultrarelativistic (B = 1) dispersions. The physics of the
vanishing of χ0 is discussed in Sec. V.

B. Tight-binding dispersion

The bulk viscosity is sensitive to lattice effects through
its dependence on χ0 , which in turn depends on εp. Here,
we evaluate χ0 for the tight-binding model in which the
single-particle dispersion relation is obtained by assuming
that particles hop between neighboring sites. This model has
been applied to a number of relevant systems, such as 1D
fermions in optical lattices in the deep lattice regime [26]. In
Sec. IV, we will apply the tight-binding dispersion to study the
relative importance of viscous dissipation arising from lattice
effects and interactions.

2In contrast, the thermal conductivity is the response to a nonzero
gradient of temperature which, unlike ∂xu, is odd with respect to
inversion. As a result, it is controlled by the exponentially long
backscattering time τb [23].

3The condition that εp is even necessitates the use of the absolute
value in Eqs. (24) and (41). Additionally, the condition that εp is
monotonically increasing for positive p requires that AB > 0.
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For a 1D lattice with spacing a, the tight-binding dispersion
is

εp = D

2

[
1 − cos

(
pa

h̄

)]
, (25)

where D is the full bandwidth. This dispersion is characterized
by the Fermi velocity

vF = ε′
pF

= Da

2h̄
sin

(
pF a

h̄

)
. (26)

The effects of the dispersion enter the bulk viscosity (22)
through vF and χ0 . Substituting the tight-binding dispersion
(25) into Eq. (15), we obtain

χ0 = 1

D

2pF a/h̄ − sin(2pF a/h̄)

sin3(pF a/h̄)
. (27)

At pF → 0, we have χ0 → 4/3D.
It is instructive to consider the behavior of χ0 in the con-

tinuum limit. For a given particle density n = νpF /π h̄, the
latter is achieved by requiring a → 0 and D → ∞, while a2D
is held fixed. In this limit, the dispersion (25) approaches the
form

εp = p2

2m∗ , m∗ = 2h̄2

Da2
. (28)

Since the dispersion (28) is quadratic, one expects χ0 to van-
ish. Indeed, because χ0 → 4/3D ∝ a2 at a → 0, we find that
χ0 does in fact vanish in the continuum limit.

III. VISCOUS RESPONSE AT FINITE FREQUENCIES

In our discussion of the relaxation time τ , we noted that
the bulk viscosity is not affected by backscattering. This con-
clusion, though derived for a time-independent perturbation
∂xu �= 0, holds for the time-dependent case as long as the as-
sociated frequency obeys ω 
 1/τb. For such frequencies, the
system still comes to the equilibrium state (1), cf. Ref. [15].
Since backscattering is the slowest relaxation process at low
temperatures, there is a broad range of frequencies 1/τb 

ω 
 1/τ , for which backscattering is essentially frozen out,
and the numbers of right and left movers are separately con-
served [13]. Because ω 
 1/τ , at T 
 EF fast processes
bring the system to partial equilibrium [13], as described by
the distribution function

n(0)
p = 1

e(εp−up−μ−sgn(p)δμ/2)/T + 1
. (29)

The form of the partially equilibrated distribution function
(29) is dictated by the fact that, at these frequencies, the
left and right movers cannot come to diffusive equilibrium
and thus are described by the distinct chemical potentials
μ − δμ/2 and μ + δμ/2, respectively.

We now consider the viscous effects that arise from gra-
dients of u and δμ. It is necessary to establish the form of
the dissipated power w that generalizes Eq. (4). First, we
observe that for δμ independent of position, w must reduce
to the form (4) since the processes that underlie ζ are still
operative for ω 
 1/τ . From the argument that led to Eq. (4),
it follows that for ∂xδμ �= 0 and ∂xu = 0, both ṅp and δnp

are proportional to ∂xδμ. Hence, from Eq. (3) we have that

w ∝ (∂xδμ)2. From Eq. (29), it is clear that both ∂xu and ∂xδμ

generate perturbations to the distribution function that are odd
in momentum, thus allowing for the presence of the cross term
(∂xu)(∂xδμ). Thus, the dissipated power must have the form

w = ζ (∂xu)2 + γ (∂xδμ)2 + 2λ(∂xu)(∂xδμ), (30)

where we have introduced two additional transport coeffi-
cients, γ and λ. In order for w to be nonnegative, these
coefficients must satisfy ζ , γ > 0 and λ2 � ζγ .

The appearance of additional transport coefficients γ and λ

at finite frequencies is a result of the breakdown of the single
fluid description of the 1D Fermi gas. Indeed, it was shown
recently [15,16,16,17] that at low temperatures 1D Fermi sys-
tems are described by two-fluid hydrodynamics analogous to
that of superfluid He-4 [1,18]. Given this correspondence, it
is instructive to introduce parallel notation. For the case of
superfluid He-4, the viscous coefficients are defined via the
mass current [18]. For a generic dispersion, however, mass
current is not a meaningful quantity. Instead, we can express
the dissipated power in terms of the particle number current
jn, which is defined by

jn = ν

h

∫ ∞

−∞
vpnp d p, (31)

where vp = ∂εp/∂ p. For T 
 EF and u 
 vF , we have

jn = nu + ν

h
δμ, (32)

where n is the particle density. This expression is obtained by
substituting the distribution function (29) into the definition
(31). Using Eq. (32), we express δμ in terms of jn and u, thus
bringing Eq. (30) to the form

w = ζ2(∂xu)2 + ζ3[∂x( jn − nu)]2 + 2ζ1[∂x( jn − nu)](∂xu),

(33)

where

ζ1 = h

ν
λ, ζ2 = ζ , ζ3 =

(
h

ν

)2

γ . (34)

Equation (33) is the one-dimensional analog of the well-
known expression for the dissipation rate in superfluid He-4
[18].

We now calculate the viscosities γ and λ by following the
procedure described in the previous section. In particular, we
consider a point in the gas at which both u and δμ vanish
but the gradients of these quantities are nonzero. We begin by
substituting the distribution function (29) into Eq. (5). This
gives

ṅp = g2
p

T

[
εp − μ

T
∂t T + ∂tμ + p∂pεp∂xu

+ 1

2
sgn(p)∂pεp∂xδμ

]
. (35)

The expression for ṅp may be cast in the form of Eq. (8),
where now

ϒ(ξ ) = ∂tμ + ∂t T

T
ξ + p(μ + ξ )

p′(μ + ξ )
∂xu + 1

2p′(μ + ξ )
∂xδμ.

(36)
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Applying conservation of energy and particle number (10),
we obtain two linear relations involving ∂t T , ∂tμ, ∂xu, and
∂xδμ. The quantities ∂t T and ∂tμ may thus be eliminated from
Eq. (8) in favor of ∂xu and ∂xδμ. To leading order in T/EF , this
procedure yields ṅp of the form (11) where φp is still given by
Eq. (12) but the expression (14) is replaced by

ϒ ′′(0) = −χ0 ∂xu − η0∂xδμ. (37)

Here the quantity χ0 is again given by Eq. (15) and

η0 = −
(

1

2p′(ε)

)′′∣∣∣∣
ε=μ

= − 1

2ε′
p

(
ε′′

p

ε′
p

)′∣∣∣∣∣
p=pF

. (38)

We now apply Eqs. (3), (11), and (37) to obtain

w = 1

4T
(χ0 ∂xu + η0∂xδμ)2〈φ|�̂−1|φ〉. (39)

The inner product appearing in this formula can be expressed
in terms of τ using its definition (23). Matching the two forms
of w given by Eqs. (30) and (39), we recover Eq. (22) for ζ

and obtain

γ =
(

η0

χ0

)2

ζ , λ = η0

χ0

ζ . (40)

We observe that these values of γ and λ saturate the inequality
λ2 � ζγ , which is a feature of working to only leading order
in T/EF .

Equation (24) gives the general form of the dispersion
for which χ0 vanishes at any density. We now derive the
analog for η0. Setting the right-hand side of Eq. (38) to zero
and solving the resultant differential equation, we obtain (see
Footnote 3)

εp = A exp(B|p|) + C. (41)

It is worth mentioning that for B = c/A and C = −A in the
limit that A tends to infinity, Eq. (41) reduces to the ultrarel-
ativistic dispersion εp = c|p|. That η0 vanishes in this case is
apparent from Eq. (38) given the presence of ε′′

p in the second

expression for η0. The physics underlying the vanishing of η0
is discussed in Sec. V.

IV. WEAK INTERACTIONS

So far, our consideration of interactions has focused ex-
clusively on their role in restoring the gas to equilibrium.
These effects enter the expression for the bulk viscosity (22)
through the relaxation time τ defined by Eq. (23). However,
interactions also alter the effective dispersion εp appearing in
Eq. (5), cf. Ref. [20]. While the resultant correction is small
for weak interactions, this becomes a crucial consideration
if lattice effects are also weak. In Sec. IV A, we calculate
the bulk viscosity ζ of a weakly interacting gas. Then, in
Sec. IV B, we study the competition between lattice effects
and interactions in the context of the tight-binding model.

A. Effect of interactions on the bulk viscosity

We consider a weak two-particle interaction described by
the Hamiltonian

V̂ = 1

2L

∑
p,p′,q
σ,σ ′

V (q)a†
p+q,σ a†

p′−q,σ ′ap′,σ ′ap,σ . (42)

Here, V (q) is the Fourier transform of the interaction poten-
tial, and ap,σ annihilates a fermion of momentum p and z
component of spin σ . To first order, the energy of the state
with occupation numbers npσ is

E =
∑
p,σ

εpnpσ + 1

2L

∑
p,p′
σ,σ ′

[V (0) − V (p − p′)δσ,σ ′]npσ np′σ ′ .

(43)

For spinless systems, this expression is applicable as long as
V (0)/h̄vF 
 1. For systems with spin, spin-charge separation
[27,28] would seem to preclude the application of perturbation
theory. Fortunately, however, such effects are negligible for
pFV (0)/h̄ 
 T [23,29]. Given that E in Eq. (43) has the
form of the Fermi liquid expression for interactions between
quasiparticles [30], we may apply the well-established pro-
cedure of calculating transport coefficients in Fermi liquid
theory [11,31,32] as long as we only work to first order in
interactions.

In Fermi liquid theory, the quasiparticle energies are
given by Epσ = δE/δnpσ [30]. Evaluating this quantity using
Eq. (43) gives an effective dispersion

Ep = εp + δεp, (44)

where

δεp =
∫

d p′

h
[νV (0) − V (p − p′)]n(0)

p′ , (45)

and the equilibrium distribution function now takes the form
[31,32]

n(0)
p = 1

e(Ep−up−μ)/T + 1
. (46)

In deriving Eq. (45), we have assumed spin degeneracy and
summed over spins.

We repeat our calculation of the viscosity given in Sec. II,
taking into account the correction to the dispersion arising
from interactions. We work to first order in the interaction
strength. In proceeding, care must be taken because Ep given
by Eqs. (44) and (45) depends on u(x), T (t ), and μ(t ) via n(0)

p .
We find4

ṅp = n(0)
p

(
1 − n(0)

p

) 1

T

[(
1 − ∂Ep

∂μ

)
∂tμ

+
(Ep − μ

T
− ∂Ep

∂T

)
∂t T + p

∂Ep

∂ p
∂xu

]
. (47)

4Because Ep is defined through n(0)
p , it is also a function of u(x).

This introduces two additional contributions to ṅp (not shown in the
text) that cancel each other. These terms arise from the second and
third terms on the right-hand side of Eq. (5).
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Introducing ξ = Ep − μ and eliminating p in favor of ξ , we
can cast the quantity ṅp in form of Eq. (8) where

ϒ(ξ ) =
(

1 − ∂δεp(μ+ξ )

∂μ

)
∂tμ +

[
ξ

T
− ∂δεp(μ+ξ )

∂T

]
∂t T

+ p(μ + ξ )

p′(μ + ξ )
∂xu. (48)

Here p(E ) is the inverse function of Ep. The terms
∂δεp(μ+ξ )/∂μ and ∂δεp(μ+ξ )/∂T vanish in the noninteracting
limit. In evaluating these terms, the corrections that arise
from the dependence of p(μ + ξ ) on interactions enter the

calculation at second order in interaction strength and thus
can be neglected. In contrast, the dependence of p(μ + ξ ) on
interactions must be included in the final term of Eq. (48).

We now repeat the steps leading to the expression (22)
for the bulk viscosity. Conservation of momentum and energy
gives two relations involving the infinitesimal quantities ∂t T ,
∂tμ, and ∂xu. Eliminating ∂t T and ∂tμ and working to leading
order in T ∼ ξ 
 EF , we obtain Eq. (11) with

ϒ ′′(0) = −(χ0 + χ1)∂xu, (49)

where χ0 is given by Eq. (15) and

χ1 = − 1

2π h̄(ε′(pF ))4
{[3pF (ε′′(pF ))2 − 2ε′(pF )ε′′(pF ) − 2pF ε′(pF )ε′′′(pF )](V (0) − V (2pF ))

+ [3pF ε′(pF )ε′′(pF ) − (ε′(pF ))2]V ′(2pF ) − 2pF (ε′(pF ))2V ′′(2pF )}. (50)

While the quantity χ1 receives a contribution from
∂δεp(μ+ξ )/∂μ, the term ∂δεp(μ+ξ )/∂T generates terms that are
higher order in temperature. Applying Eqs. (3), (11), and (49),
we find

ζ = 4π3ν(χ0 + χ1)2T 4τ

45h̄vF
. (51)

In the limit of weak interactions, χ1 → 0, we recover the
result (22).

In Sec. II A, it was found that the parameter χ0 vanishes
for a dispersion of the form (24) for any positive exponent
B. For such dispersions, the parameter χ1 will also vanish for
potentials of the form V (p) ∝ |p|B−1. We defer a discussion of
this to Sec. V. It is worth pointing out that χ1 also vanishes for
a potential V (p) that is independent of p, which in real space
corresponds to a delta function interaction potential. For such
a potential, the correction δεp given by Eq. (45) is a constant
and thus represents a trivial shift of the energy Ep.

Our expression (51) for the bulk viscosity is consistent with
other results that appear in the literature. In Ref. [20], the
bulk viscosity of a gas of spin-1/2 fermions with quadratic
dispersion was derived. Our expression (51) reproduces the
bulk viscosity given in Ref. [20] for εp = p2/2m and ν = 2.
The viscosity of a liquid of spinless fermions was studied for
arbitrary interaction strength in Ref. [19]. We find that to first
order in the interaction strength, the results of that work are
consistent with those presented here.

B. Competition between interactions and lattice effects

In the regime of weak interactions, it is natural to expect
that χ1 
 χ0, i.e., that lattice effects dominate. However, in
certain cases of experimental relevance, the dispersion can be
nearly quadratic. As discussed in Sec. II B, in such cases χ0

tends to zero, and χ1 may be expected to become the dominant
contribution to the bulk viscosity (51).

We thus explore the competition between interactions and
lattice effects. As an example, we consider the tight-binding
model at low fermion density, na 
 1, so that the dispersion

approaches the quadratic form (28). We further assume that
the fermions are spinless (ν = 1) and discuss separately the
cases of short- and long-range potentials. For a short-range
potential, we have5

V (q) = V (0) + 1
2V ′′(0)q2, (52)

where we have assumed that V (x) decays faster than 1/|x|3.
In this case, the dimensionless interaction strength is

V (0) − V (2pF )

π h̄vF
= −2m∗nV ′′(0), (53)

where the effective mass m∗ is defined by Eq. (28) and the
particle density n = pF /π h̄ for ν = 1. The applicability of the
weak interaction approximation of Sec. IV A requires that the
parameter (53) be much less than unity. To leading order in
na 
 1, the ratio of χ1 [Eq. (15)] to χ0 [Eq. (50)] is given by

χ1

χ0
= 5

2
m∗nV ′′(0). (54)

We find that the ratio χ1/χ0 is of the same order of magni-
tude as the small parameter (53). Thus, for weak short-range
interactions, χ1 is a small correction to χ0.

We now consider long-range interactions. As an example,
we take

V (x) = e2

|x| − e2

√
x2 + 4d2

. (55)

This is the Coulomb interaction screened at large distances
by a gate modeled as a metal plane at a distance d from the
system. At nd � 1, the small parameter of the perturbation
theory is given by

V (0) − V (2pF )

π h̄vF
= 2

π2naB
log(2πnd ), (56)

5Here, a potential is considered short range if the small q expansion
(52) applies.
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where aB = h̄2/m∗e2 is the Bohr radius. Neglecting the loga-
rithmic factor, we conclude that perturbation theory holds as
long as naB � 1. From Eqs. (15) and (50), we have

χ1

χ0
= − 3

2π4n3aBa2
log (2πnd ). (57)

Neglecting the logarithm, we find the condition that this ra-
tio greatly exceeds unity can be written as n3aBa2 
 1. In
summary, the condition |χ1/χ0| � 1 holds in the perturbative
regime provided that

1

aB

 n 
 1

a1/3
B a2/3

. (58)

For sufficiently weak interactions we have aB � a, which
guarantees the existence of the range (58).

We conclude that for weak interactions, there are scenarios
in which either lattice effects or interactions may dominate
the viscous behavior of a Fermi gas. As we have seen, this
behavior is closely linked to whether the interactions are short
or long range.

V. SUPPRESSION OF VISCOSITY

For dispersions of the form (24), the parameter χ0 vanishes,
signaling the suppression of ζ . For the special case of a
quadratic dispersion (B = 2), this is the analog of the well-
known result that the bulk viscosity of a three-dimensional
classical gas is suppressed [11] due to the scale invariance
of the fermion dispersion [19,20]. In this section, we show
that the same argument explains the vanishing of χ0 for the
power-law dispersion (24) with any exponent B. Similarly,
the parameter η0, which appears in the expressions for the
viscosities γ and λ given by Eq. (40), vanishes for dispersions
of the form (41). We will show that this behavior can be
explained with similar arguments.

We begin by considering the case of the bulk viscosity ζ in
the case of the power-law dispersion (24), where without loss
of generality we can set C = 0. As in Sec. II, we consider a
gas, initially in thermal equilibrium, subject to an infinitesimal
velocity gradient ∂xu. We will show that for dispersions of the
form (24), this perturbation will not drive the system out of
equilibrium. From the continuity equation, the infinitesimal
gradient of the velocity u is equivalent to a time-dependent
particle density, ∂t n = −n∂xu. We consider the scenario in
which the particle number N is fixed but the length of the
system L is time dependent. Finite size quantization requires
that the momentum of any state p be quantized in units of
π h̄/L. For a power-law dispersion of the form (24), εp there-
fore scales as 1/LB. To wit, as the system size changes from
L(0) = L0 to L(t ) = L, the energy of a state of momentum p
evolves from ε(0)

p to

εp(t ) = ε(0)
p

(
L0

L

)B

. (59)

Let us assume that at t = 0 the system is in equilibrium, and
the occupation numbers of the fermion states are given by the
Fermi-Dirac distribution

np = 1

e(εp−μ)/T + 1
(60)

with εp = ε(0)
p . A generic change to εp would violate the rela-

tion (60) and thus would drive the system out of equilibrium.
However, in the case of the power-law dispersion, εp changes
by a factor that does not depend on p. As a result, by choosing
new values of the temperature and chemical potential accord-
ing to

T = T0

(
L0

L

)B

(61)

and

μ = μ0

(
L0

L

)B

, (62)

we find that the distribution function np retains its Fermi-Dirac
form (60). Thus, the system remains in equilibrium, and the
rate ṅp must vanish.

The above argument applies only in the limit of weak inter-
actions. We now show that for certain types of interactions, the
bulk viscosity vanishes regardless of the interaction strength.
Consider a Hamiltonian with kinetic energy described by εp ∝
|p|B and interactions given by Eq. (42) with V (q) ∝ |q|B−1.
A system in thermal equilibrium is described by the Gibbs
distribution

wn = 1

Z
e−En/T , (63)

where wn is the probability of finding the system in a state
with energy En, and Z is the partition function [33]. As above,
we take the system to have a time-dependent length L(t ) and
consider the scaling of the energy En. The Hamiltonian is
composed of an operator describing kinetic energy, which
scales as 1/LB in accordance with Eq. (59), and an operator
describing interactions. Noting the factor of 1/L in Eq. (42),
the interaction Hamiltonian also scales as 1/LB provided that
V (q) ∝ |q|B−1. As a result, the total Hamiltonian scales as
1/LB and thus its eigenvalues En must also scale as 1/LB.
If the system starts in equilibrium, then it will remain in
equilibrium with a distribution described by Eq. (63) and the
time-dependent temperature given by Eq. (61). As we saw in
Sec. IV, the linear in interactions contribution to χ , given by
χ1, does indeed vanish in this case. The above argument is
more general and shows that the viscosity must vanish in all
orders in the interaction strength.

We now consider a system with a dispersion of the form
(41) and demonstrate that an infinitesimal gradient of δμ does
not drive the system out of equilibrium. We recall that a
system with a spatially uniform δμ has an equilibrium dis-
tribution (29), in which we set u = 0. This distribution can be
formally interpreted as the standard Fermi-Dirac distribution
(60) for particles with energies εp → εp + U (p), where U (p)
is the momentum-dependent potential

U (p) = − 1
2 sgn(p)δμ. (64)

We now take δμ to have an infinitesimal gradient. This gives
rise to a momentum-dependent force

−∂U

∂x
= sgn(p)

∂x(δμ)

2
(65)
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acting on a particle with momentum p. As a result, the mo-
mentum of each particle evolves in time according to

p(t ) = p + sgn(p)
∂x(δμ)

2
t . (66)

For the dispersion given by Eq. (41), the energy of a particular
state is given by

εp(t ) = ε(0)
p eB(∂xδμ)t/2. (67)

[We have set C in Eq. (41) equal to zero.] Generically, a
change in εp drives the system out of equilibrium. But as
was the case in Eq. (59), the energies εp(t ) change by a p-
independent factor. As long as the temperature and chemical
potential have the same time dependences, namely

T = T0eB(∂xδμ)t/2, μ = μ0eB(∂xδμ)t/2, (68)

the system is described by the equilibrium distribution (60).
We conclude that an infinitesimal ∂xδμ does not drive a
system described by the dispersion (41) out of equilibrium,
consistent with the fact that η0 = 0.

VI. DISCUSSION AND RESULTS

We have presented a systematic study of the bulk viscosity
for one-dimensional Fermi gases with arbitrary dispersions,
and thus the theory can account for lattice effects. The expres-
sion for the bulk viscosity, given by Eq. (51), has the general
form

ζ ∝ χ2τ, (69)

i.e., the bulk viscosity is controlled by two quantities: the
relaxation time τ and the parameter χ . The latter is a measure
of the sensitivity of the gas to the velocity gradient ∂xu and
quantifies the extent to which this perturbation displaces the
gas from equilibrium. For instance, we found that a gas of
free fermions with a dispersion given by Eq. (24) is insensitive
to gradients of u, resulting in χ0 = 0. (In the absence of
interactions, χ = χ0.)

To appreciate the central role played by χ , we consider
a gas of fermions with a dispersion given by Eq. (24),
for which χ vanishes in the limit of weak interactions due
to scale invariance. Given the expression (69), we expect
that ζ vanishes in this limit. However, this conclusion is
premature since interactions also control the relaxation prop-
erties of the system. In the limit that interactions vanish, τ

diverges, and thus the expression (69) for the bulk viscos-
ity is indeterminate. To determine the fate of ζ , we must
therefore consider the regime of weak but nonvanishing in-
teractions [19]. While χ0 vanishes, χ1, given by Eq. (50),
is proportional to the interaction strength V , and thus χ ∝
V . On the other hand, the relaxation in one dimension is
dominated by three-particle processes, for which τ ∝ 1/V 4

[12,34]. Thus, in the limit of weak interactions, the bulk vis-
cosity (69) is still large ζ ∝ 1/V 2, but is suppressed compared
with that of Fermi gases with generic dispersions, for which
ζ ∝ 1/V 4.

The conclusion that interactions in a Fermi gas with power-
law dispersion (24) result in a nonvanishing viscosity assumes
that the interaction will spoil the scale invariance of the sys-
tem. However, for an interaction that satisfies V (q) ∝ |q|B−1

where B is the exponent in Eq. (24), the exact many-body
energy levels scale as a power of the system size. As a result,
the bulk viscosity vanishes regardless of the strength of the
interactions. This argument is not limited to 1D systems. An
example of a three-dimensional system with zero bulk viscos-
ity is the Fermi gas in the unitary limit [35].

A peculiarity of one-dimensional quantum systems is that
for particular interactions they can possess an infinite num-
ber of conserved quantities. Such systems are described by
integrable models. These systems do not relax, i.e., the relax-
ation time τ is formally infinite, and thus the bulk viscosity
(69) is infinite for integrable models. An exception is the
Calogero-Sutherland model [36], which describes particles
with dispersion εp ∝ |p|B and interactions V (q) ∝ |q|B−1 with
B = 2. As discussed in the previous paragraph, this model is
insensitive to the velocity gradient, so χ = 0. On the other
hand, by virtue of integrability, the relaxation time τ in
Eq. (69) is infinite. The bulk viscosity (69) is thus indeter-
minate.

We also considered the case of Fermi gases driven at finite
frequencies. For a broad range of frequencies, these systems
fail to come to full equilibrium and are instead described by
the distribution (29) in which the parameter δμ is the differ-
ence between the chemical potentials of right and left movers.
Position dependence of this parameter, ∂xδμ �= 0, leads to
viscous dissipation, which is described by the quadratic form
(30). This expression defines two additional bulk viscosities,
γ and λ. As discussed above, systems of particles with disper-
sion (24) are insensitive to the perturbation ∂xu in that it does
not drive the system out of equilibrium. Similarly, a gas of
fermions with dispersion (41) is insensitive to the perturbation
∂xδμ. It is worth noting that gases of fermions obeying the
ultrarelativistic dispersion εp = c|p|, which is a special case
of both Eqs. (24) and (41), are insensitive to both gradients of
u and δμ.

Finally, given the importance of interactions to viscous
properties, it is natural to ask whether the results of this
work can be extended beyond the weakly interacting limit.
In fact, viscous dissipation of a spinless Luttinger liquid
was considered in Ref. [19], where the interaction strength
was not assumed to be weak. Though the focus of that
work was on Galilean invariant systems, much of the discus-
sion applies to arbitrary dispersions. Unfortunately, making
a similar generalization to spinful systems is not straight-
forward given that their relaxation properties are not well
understood.
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