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Engineered common environmental effects on multitransistor systems
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In this paper, we analyze the impact of physically large baths used in terminals of thermal multitransistor
systems formed using two-level systems (TLSs). In particular, we simulate the effects of a two-transistor system
introduced as a thermal Darlington pair (DP). The size and proximity of the baths can cause multiple interactions
with the transistor terminals represented by the TLS, not just the TLS directly connected to them. Such interac-
tions can ultimately suppress the heat flows or impair the transistor action. However, we demonstrate that the DP
model can achieve more than a 50% increase in heat flows. Using the engineered interactions leading to the cor-
related TLS-thermal bath interactions, we establish an incoherent (no quantum coherence in the density matrix at
the steady state) yet correlated (joint excitation of two TLSs due to bath interaction) heat transfer model to a two-
transistor arrangement in a substrate. This model helps us to interpret the environmental effects on the device by
treating the common environment as separate thermal baths and all the transitions in the system as independent.
We also show that this model can be mapped to contain dark-states. These dark-states can provide an external
channel for transistor switching. We use this knowledge to design thermal counterparts of electronic AND and
OR gates, and to study their switching time and operation, paving the way to realizing thermal logic gates.
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I. INTRODUCTION

Over the years, nanotechnology has allowed the minia-
turization and cost reduction of electronic components as a
consequence of technological improvements in areas such as
two-dimensional (2D) electronics based on graphene, organic
electronics, memristors, spintronics, etc. The ability to ma-
nipulate such quantum resources in the electronic industry
will be fruitful in building novel devices aimed at particular
applications. One such potential application is controlling the
thermal energy created inside nanoscale devices. Modern-day
electronics can achieve better energy routing in circuits as a
result of prospective quantum research. Joulain et al. [1] first
demonstrated that thermal energy (heat) can be regulated and
amplified, similar to electricity, via a thermal counterpart of
an electronic bipolar transistor. There is a possibility in future
to realize this kind of a model using quantum nanoparticles.
The development of such works, including the thermal coun-
terparts of a diode [2], a thermal gate similar to a field-effect
transistor (FET) [3], a thermal rectifier [4], various improved
models of thermal transistors [1,3,5–8], and a two-transistor
model [9], demonstrates a potential for developing much more
advanced energy management schemes in years to come.
They can be beneficial for future energy harvesting/energy
storage devices. The physical fabrication of these devices can
be achievable as a result of the ongoing research in nan-
otechnology that includes metamaterials [10], nanoparticles,
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nanostructures, superconducting circuits [11–21], and spasers
[22].

Quantum thermal devices are formulated based on models
and approximations in quantum mechanics and open quantum
dynamics. They are represented by systems that interact with
an environment comprising thermal reservoirs under weak
system-bath interactions. A quantum device that couples to
an environment undergoes two phenomena: dissipation, where
the irreversible loss of energy happens, and decoherence,
which is the loss of coherence [23]. The heat-transfer pro-
cess in the quantum system is interpreted based on these
two incidents. In quantum systems, features such as quan-
tum coherence are susceptible to noise. Quantum coherence
can be described as a property in objects whose wavelike
properties can be interfered with to form a single state with
the superposition of two states [24]. However, this can get
destroyed quickly via interactions with thermal baths. Coher-
ence can be lost over time if such systems are not perfectly
isolated.

The literature shows how manipulating quantum coherence
aids in enhancing the efficiency of thermal devices [25–32].
To minimize the effects of decoherence, it is possible to
use quantum reservoir engineering and control. Reservoir
engineering includes minimizing the parameters where de-
coherence occurs. This can be achieved by changing the
thermal baths’ spectral densities or using the existing dis-
sipative sources, such as thermal baths, to create entangled
states in the system. Manzano et al. [33] discovered that by
treating thermal baths as a common environment and carefully
manipulating the system-bath interactions, it is possible to
tune a quantum refrigerator to a dark-state. In their study, this
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ultimately preserved quantum coherence and improved the
device’s thermal efficiency. Furthermore, they developed an
incoherent yet correlated model for the quantum refrigerator
where common baths were treated as separate baths. Liu et al.
[34] studied such common environmental effects and tuned
their transistor model to a dark-state. The dark-state provided
an additional channel to the transistor, so a laser field was used
to change the magnitude of heat currents while maintaining
the transistor amplification rate constant. The literature also
discusses how the dark-states can be used to preserve quantum
coherence.

We aspire to study engineered common environmental ef-
fects and the possibility of realizing additional applications in
multitransistor arrangements. An analysis of this nature can
be helpful in understanding the possible changes to the tran-
sistor action and the device performance due to environmental
effects. Transistor models are connected to enormous baths
to maintain their terminals at regulated temperatures. These
terminals comprise two-level systems (TLSs) coupled to the
thermal baths. The use of such physically large baths will
not guarantee that the TLSs are separated enough to avoid
multiple interactions from baths that are not directly coupled.
Inspired by the current research in the literature on individual
quantum systems, we explore the changes that can happen in
a multitransistor model as it undergoes such multiple interac-
tions. We study how an engineered environmental interaction
affects the overall performance of a two-transistor model,
particularly a thermal Darlington pair (DP). For this anal-
ysis, we establish an incoherent yet correlated heat-transfer
model to the DP arrangement in a substrate. The incoherent-
correlated model implies that at a steady state the system is
not decoherence-free; however, the TLSs are correlated and
there is a possibility of creating additional channels for heat
transfer. An advantage of this model is that we can treat a
common environment as separate baths and treat all the tran-
sitions induced in the system independently. The model can
also be mapped to contain dark-states achieved via correlated
TLSs. We show that it is possible to enhance the heat flows in
the DP operating temperature range by appropriately configur-
ing the model parameters. We improve the DP introduced in
Wijesekara et al. [9] by incorporating multibath interactions
induced in the system. Later we provide different arrange-
ments where two transistors can be connected, we tune these
systems to contain dark-states, and we use them to identify the
thermal equivalent of AND and OR gates.

This paper is organized as follows. In Sec. II, we describe
a multitransistor model for a DP, and we show how it can be
realized using two separate transistors. Next, in Sec. III, we
provide an interpretation of possible engineered interactions
for a system coupled to thermal baths. In Sec. IV, we describe
the formalism that incorporates environmental effects to the
system. In Sec. V, we discuss the occurrence of quantum
entanglement and how it preserves quantum coherence via
dark-states. In Sec. VI, we discuss an incoherent yet correlated
model to the multitransistor system, and we show how it can
be combined to realize the DP. Then we use the multitransistor
system to tune to contain dark-states. In Sec. VII, we discuss
the possibility of realizing thermal logic gates. Finally, in
Sec. VIII, we present our conclusion, including the models’
limitations.

TLS

Baths

Transistor 1

Transistor 2

FIG. 1. Thermal Darlington pair arrangement with three TLSs
as terminals interacting with reservoirs: BL , BM , BI , and BR, each
with temperature TL , TM , TI , and TR. The substrate temperature
is given by Tc. The direct interactions are shown by solid lines,
and the indirect interactions (interactions from the same bath
to the adjacent pair of TLSs) described by coupling constants
λMR

1,L , λRL
1,M , λLM

1,R, λMR
2,L , λRL

2,M , λLM
2,R are shown by dashed lines.

II. MULTI-TRANSISTOR MODEL

We discuss how common environmental effects affect
multitransistor models. We visualize these effects via a sim-
ulation, particularly for a two-transistor model, with possible
extensions to the multitransistors. We represent the terminals
of the transistors as TLSs coupled to baths. We improve the
previous model of the DP by Wijesekara et al. [9] to incorpo-
rate engineered environmental effects. This system comprises
two transistors, each with three coupled TLSs, having one of
two quantum states, namely spin up |↑〉 or spin down |↓〉. We
provide a representation of the DP arrangement in Fig. 1. It
comprises six TLSs, three reservoirs with fixed temperatures
TL, TM , TR, and an intermediate bath whose temperature TI

depends on the system’s dynamics. The Hilbert space for each
transistor (s ∈ {1, 2}) is spanned by the tensor product space
of three individual TLSs, resulting in a composite system with
16 eigenstates. Each transistor comprises eight eigenstates
given by

|1〉s = |↑ ↑↑〉s, |5〉s = |↓ ↑↑〉s,

|2〉s = |↑ ↑↓〉s, |6〉s = |↓ ↑↓〉s,

|3〉s = |↑ ↓↑〉s, |7〉s = |↓ ↓↑〉s,

|4〉s = |↑ ↓↓〉s, |8〉s = |↓ ↓↓〉s. (1)

We assume that the reservoirs BL, BM , BI , and BR are a part
of a substrate, and they act as a common environment. The
baths interact with their coupled TLS directly, and the inter-
action with its adjacent pair is indirect via a coupling constant
λ

QR
s,P(P, Q, R ∈ {L, M, R}) (refer to Fig. 1). The direct system

bath interactions are weak, and the indirect interactions are far
weaker. To maintain consistency with the combined model of
DP, we take λLM

1,R = λRL
2,M . We establish an interaction Hamil-

tonian in Sec. III to include these λ
QR
s,P terms.
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FIG. 2. This provides a visualization of bath temperatures. The
bath temperature is given as T

′
P when there is no information on the

medium at which it is placed. When we have information on the
substrate temperature Tc, the bath temperature is assigned as TP.

Even though the baths act as a common environment, we
should avoid them equilibrating to a common temperature.
We can use an external mechanism and maintain them at
their intended temperatures to cause the transistor action. At
the steady state, the TLSs reach the equilibrium temperature
with the directly coupled bath. We have three separate baths
at the terminals of each transistor, which can behave as a
common environment for the transistor. The temperature of
each bath can be represented as in Fig. 2. When the substrate
temperature and entropy are known as Tc and Sc, respectively,
we assign the temperatures for the four separate reservoirs TP

as in Eq. (2), inspired by Refs. [35,36],

1

TL
= 1

T ′
L

− ∂Sx

∂UL

∣∣∣∣∣
UM ,UR,UI ,Ux

,

1

TM
= 1

T ′
M

− ∂Sx

∂UM

∣∣∣∣∣
UL,UR,UI ,Ux

,

1

TR
= 1

T ′
R

− ∂Sx

∂UR

∣∣∣∣∣
UL,UM ,UI ,Ux

,

1

TI
= 1

T ′
I

− ∂Sx

∂UI

∣∣∣∣∣
UL,UM ,UR,Ux

. (2)

We represent the substrate entropy Sc using the entropies of
the separate baths and their correlated entropy Sx,

Sc = SL + SM + SR + SI − Sx. (3)

Taking the partial derivative of Eq. (3) with respect to the
internal energy of the substrate (Uc), we derive Eq. (2). Here,
UP, UQ, and Ux stand for the expected value of bath P states,
bath Q states, and bath P and Q state correlation (P, Q ∈
{L, M, R, I}) Hamiltonian, respectively. The terms in Eq. (2),
we represent

1

TP
= ∂Sc

∂UP

∣∣∣∣
UQ,Ux

, (4)

1

T ′
P

= ∂SP

∂UP

∣∣∣∣
UQ,Ux

. (5)

The correlated entropy as in Ref. [36] expresses

Sx = S(ρ̂c||ρ̂L ⊗ ρ̂M ⊗ ρ̂R ⊗ ρ̂I )

= Tr(ρ̂c(ln ρ̂c − ln(ρ̂L ⊗ ρ̂M ⊗ ρ̂R ⊗ ρ̂I )),

where

ρ̂c =
exp

(
− Hc

bath
kBTc

)
Tr
[
exp

(
− Hc

bath
kBTc

)] ,

ρ̂P =
exp

(
− HP

bath
kBT ′

P

)
Tr
[
exp

(
− HP

bath
kBT ′

P

)] .

We define HP
bath and Hc

bath according to Eq. (8).

A. System Hamiltonian

We utilize the system Hamiltonian Ĥ s
sys for each transistor

according to the previous model [9] as

Ĥ s
sys = h̄

2

(
ωs

Lσ̂ s,L
z + ωs

M σ̂ s,M
z + ωs

Rσ̂ s,R
z

+ ωs
LM σ̂ s,L

z σ̂ s,M
z + ωs

MRσ̂ s,M
z σ̂ s,R

z + ωs
RLσ̂ s,R

z σ̂ s,L
z

)
, (6)

where h̄ is the reduced Planck constant, h̄ωs
P is the energy

difference between the two eigenstates of the TLS P, h̄ωs
PQ

is the interaction energy between the TLS P and TLS Q
(P, Q ∈ {L, M, R}), and σ̂z is the 2×2 Pauli matrix. Here, σ̂ s,P

z
are appropriately expanded for each transistor as

σ̂ s,L
z = σ̂z ⊗ Î ⊗ Î,

σ̂ s,M
z = Î ⊗ σ̂z ⊗ Î,

σ̂ s,R
z = Î ⊗ Î ⊗ σ̂z. (7)

We use identical transistors for ease of analysis. The
Hamiltonian of the baths is characterized according to the
Caldeira-Leggett model [37], represented by a collection of
harmonic oscillators,

ĤP
bath =

∑
k

h̄ωP
k âP

k
†
âP

k . (8)

If we split up the DP, it comprises two individual transistors
each formed with three TLSs coupled to three baths at differ-
ent temperatures as in Fig. 3. The analysis in Secs. IV and V A
treats the combined model as two separate transistors. Then,
we explain the combined dynamics in Sec. VI C.

III. ENGINEERED INTERACTION HAMILTONIAN
TO CREATE QUANTUM CORRELATION

We start with the derivation of the system-bath interaction
Hamiltonian. To study possible indirect multiple TLS interac-
tions and direct TLS interactions, we identify a Hamiltonian
for a multiatom interaction along the x-direction. The choos-
ing of this direction is due to the possibility of generating a
set of desired additional jumps between the energy levels of
the system when annihilation and creation operators of the
baths acted on them. The possibility for decomposing σ̂xσ̂x

terms to σ̂−σ̂+/σ̂−σ̂− will help create energy changes similar
to a σ̂x acted on the baths in the composite system. We con-
sider an interaction of three neighboring atoms represented
by j ∈ {1, 2}. Here, we consider a multisystem introducing
s ∈ {1, 2, . . . , n} to identify a Hamiltonian as

Ĥ s
TLS-TLS = h̄ωs

j

(
V s, j, j+1σ s, j

x σ s, j+1
x

)
, (9)
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Transistor 1

Transistor 2

L

M
R

L

M

R

FIG. 3. This illustration provides a visualization of how two in-
dividual transistors make a Darlington pair arrangement. Each of the
two transistors consists of three TLSs and three baths L, M, and
R arranged in a ringlike geometry, thus a TLS is coupled to two
neighboring TLSs.

where V s, j, j+1 is a coupling constant between two atoms. We
approximate the adjacent pair of TLSs joint interaction to
the Hamiltonian in Eq. (9), and we define a new Hermitian
operator corresponding to the TLS correlations. We use this
operator to interpret the TLS joint absorption/emission when
it comes in contact with a bath. We represent this Hermitian
operator as

Ŝs, j, j+1
x = V s, j, j+1σ̂ s, j

x σ̂ s, j+1
x , (10)

where Ŝs, j, j+1
x = (Ŝs, j, j+1

x )†. We then link the energy of two
TLSs joint absorption/emission proportionate to ωs

j to the
position of the harmonic oscillators of the bath. This is in-
spired by Refs. [33] and [39]. Accordingly, when two separate
atoms interact with a single-mode resonator, a single photon is
directly and jointly absorbed by two atoms. The signal directly
emitted from a TLS is proportional to the TLS excitation
number, 〈Ĉ−Ĉ+〉. Here, Ĉ− and Ĉ+ are TLS positive and
negative frequency operators defined as

Ĉ+ =
∑

j,k(k> j)

Cjk| j〉〈k|,

Cjk = 〈 j|σ̂− + σ̂+|k〉,
Ĉ− = (Ĉ+)†.

When the mean excitation number for TLS 1 is 〈Ĉ−
1 Ĉ+

1 〉 and
TLS 2 is 〈Ĉ−

2 Ĉ+
2 〉, the two-TLS correlation stands for

Gq = 〈Ĉ−
1 Ĉ−

2 Ĉ+
1 Ĉ+

2 〉.
According to Ref. [39], the single TLS excitation 〈Ĉ−

i Ĉ+
i 〉,

where i ∈ 1, 2, and Gq almost coincide at any time, and this
two-TLS correlation is an indicator of a joint excitation.
Hence, we use this concept to design our interaction
Hamiltonian and assume that if one TLS gets excited,
the probability that its correlated TLS gets excited is 1.

Transistor 1

Transistor 2

FIG. 4. The diagram shows the spatial distance ξP, which is the
distance between the system components and individual bath BP.
The distance between an adjacent pair of a directly coupled TLS is
|rP′ − rP′′ |. If ξP 	 |rP′ − rP′′ |, the pair feels the same environmental
action, where P, P′, P′′ ∈ {L, M, I, R}. Thus, all three TLSs have
couplings to a common environment. Here BM can be considered a
common environment to the transistor 1. Similarly, the separate bath
BR can be a common environment to the transistor 2, and BL and BI

can be a common environment to both transistors.

Thus, for a bath mode with ωs
j , it will excite both the TLSs

simultaneously.
Next, let us introduce a spatial scale ξP that describes the

distance between the system components and the bath BP.
This scale depends on system frequency and environment
dispersion. Except for the TLS that directly connects to BP,
if the distance between its adjacent pair is |rP′ − rP′′ |, and this
distance satisfies the condition ξP 	 |rP′ − rP′′ | (P, P′, P′′ ∈
{L, M, I, R}), both the TLSs in the pair will feel the same
environmental action [40]. The spatial distance to a pair of
TLSs adjacent to the TLS directly coupled to BM is shown
in Fig. 4. If this distance satisfies the condition described,
BM is considered a common environment to the transistor 1.
Similarly, the separate bath BR is a common environment to
the transistor 2, and BL and BI are a common environment
to both transistors. If we consider bath BP (P ∈ {L, M, I, R})
as a common bath, TLSs surrounding it are at different dis-
tances. Hence, the direct TLS will feel a different coupling
strength than the indirectly interacted TLSs. We assume that
the TLS, which is directly coupled to a bath l , has a weak
coupling constant gs,l

k while its adjacent pair has a coupling
constant

f s,l
k = flg

s,l
k . (11)

Here, fl is a constant, and k represents the modes of the
oscillators that comprise the bath. Thus, we assume that the
bath interacts with the system operator σ̂

s, j
x with a weak

coupling constant gs,l
k , and Ŝs, j

x with a weaker but different
coupling constant f s,l

k . We address these direct/indirect inter-
actions simultaneously in Sec. V, and separately in Sec. VI.
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We define the interaction Hamiltonian with k modes for a bath l as

Ĥ s
sys-bath = h̄

3∑
j

σ̂ s, j
x

∑
k

gs,l
k

(
âs,l

k + âs,l+
k

)+ h̄
3∑

j=2

Ŝs, j, j+1
x

∑
k

f s,l
k

(
âs,l

k + âs,l+
k

)

= h̄

⎛
⎝ 3∑

j

σ̂ s, j
x + flV

s, j, j+1
2∑

j=1

σ̂ s, j
x σ̂ s, j+1

x

⎞
⎠∑

k

gs,l
k

(
âs,l

k + âs,l+
k

)

= h̄

⎛
⎝ 3∑

j

σ̂ s, j
x +

2∑
j=1

flV
s, j, j+1σ̂ s, j

x σ̂ s, j+1
x

⎞
⎠∑

k

gs,l
k

(
âs,l

k + âs,l+
k

)
. (12)

We further expand Eq. (12) considering the TLSs are placed in a ringlike nature as in Fig. 3. Then, we take l as the baths L, M,
and R, and j as TLS L, TLS M, and TLS R. Also, Bs,l = ∑

l gs,l
k

∑
k (as,l

k + a†s,l
k ). This expansion leads us to define

Ĥ s
sys-bath = h̄

(
σ̂ s,L

x Bs,L + σ̂ s,M
x Bs,M + σ̂ s,R

x Bs,R + fRV s,L,M σ̂ s,L
x σ̂ s,M

x Bs,R + fLV s,M,Rσ̂ s,M
x σ̂ s,R

x Bs,L + fMV s,R,Lσ̂ s,R
x σ̂ s,L

x Bs,M
)
, (13)

where σ̂ s,L
x = σ̂x ⊗ I ⊗ I , σ̂ s,M

x = I ⊗ σ̂x ⊗ I , and σ̂ s,R
x = I ⊗ I ⊗ σ̂x. Here, V s,m,n; m, n ∈ {L, M, R} represents the dimensionless

coupling constant between two correlated TLSs. We define a new term, λmn
s,l = flV s,m,n, which represents a degree of coupling of

bath l to the rest of the system represented by correlated TLSs: m and n. We normalize λmn
s,l such that 0 � λmn

s,l � 1, and we say
that when λmn

s,l = 1, the bath coupling to the rest of the system is complete, and we interpret the pervasive environmental impact.
When λmn

s,l = 0, we say that there is no bath coupling to the rest of the system, and we analyze the system without common
environmental effects. Hence, we rewrite Eq. (13) for our model as

Ĥ s
sys-bath = h̄

(
σ̂ s,L

x Bs,L︸ ︷︷ ︸
TLS-bath

+ σ̂ s,M
x Bs,M︸ ︷︷ ︸
TLS-bath

+ σ̂ s,R
x Bs,R︸ ︷︷ ︸

TLS-bath

+ λLM
s,R σ̂ s,L

x σ̂ s,M
x︸ ︷︷ ︸

TLS-TLS

Bs,R

︸ ︷︷ ︸
correlated TLS-bath

+ λMR
s,L σ̂ s,M

x σ̂ s,R
x︸ ︷︷ ︸

TLS-TLS

Bs,L

︸ ︷︷ ︸
correlated TLS-bath

+ λRL
s,M σ̂ s,R

x σ̂ s,L
x︸ ︷︷ ︸

TLS-TLS

Bs,M

︸ ︷︷ ︸
correlated TLS-bath

)
,

which further simplifies as the interaction Hamiltonian of bath P to rest of the system

Ĥ s,P
sys-bath = h̄

(
σ̂ s,P

x + λ
QR
s,Pσ̂ s,Q

x σ̂ s,R
x

)∑
k

gs,P
k

(
âs,P

k + âs,P
k

†)
, (14)

where P, Q, R ∈ {L, M, R}. In addition, k defines the thermal bath modes, âP
k and â†P

k represent the annihilation and creation
operators on the bath mode with frequency ωP

k , and gP
k represents the coupling strength between the kth bath mode and the

appropriate TLS. These thermal interactions change the quantum states of the directly coupled TLS as well as its adjacent pair,
represented by Q and R with a probability λ

QR
s,P. Here, λ

QR
s,P is the degree of coupling of the reservoir P to the rest of the system

[33]. Note that we can represent σ̂x = σ̂+ + σ̂−. Hence, we further expand Eq. (14) as

Ĥ s
sys-bath = h̄

(
σ̂ s,L

− + λMR
s,L σ̂ s,M

+ σ̂ s,R
− + λMR

s,L σ̂ s,M
− σ̂ s,R

−
)
Bs,L + h̄

(
σ̂ s,M

− + λRL
s,M σ̂ s,R

+ σ̂ s,L
− + λRL

s,M σ̂ s,R
− σ̂ s,L

−
)
Bs,M

+ h̄
(
σ̂ s,R

− + λLM
s,R σ̂ s,L

+ σ̂ s,M
− + λLM

s,R σ̂ s,L
− σ̂ s,M

−
)
Bs,R + H.c., (15)

where H.c. is the Hermitian conjugate. For our design, we assume that we can use reservoir engineering to restrict some of
the interactions, and we create additional channels of dissipation that were not present in the original design in Ref. [9]. A
close analysis of this interaction Hamiltonian shows that a reservoir can flip a single-spin as well as a double-spin flip in the
system as in Fig. 5. A single-spin transition corresponds to a state change where there is only one spin change, whereas a
double-spin transition corresponds to two possible spin changes. The simultaneous transition of these single- and double-spin
flips due to a single excitation in the environment can happen in our model when angular frequencies of the TLSs satisfy
ωs

L = ωs
M = ωs

R = ωs
RL = 0, and ωs

MR > ωs
LM > 0. When the angular frequencies satisfy ωs

L = ωs
M − ωs

R, the transitions between
the energy levels happen according to Fig. 6. We restrict most of these interactions and select only the double-spin flip transitions
happening in the same energy as the single-spin flip transitions. Hence, we select only the necessary terms from Eq. (15), and
we express our interaction Hamiltonian as

Ĥ s
sys-bath = h̄

[(
σ̂ s,L

− + λMR
s,L σ̂ s,M

+ σ̂ s,R
−
)
Bs,L + (

σ̂ s,M
− + λRL

s,M σ̂ s,R
− σ̂ s,L

−
)
Bs,M + (

σ̂ s,R
− + λLM

s,R σ̂ s,L
− σ̂ s,M

+
)
Bs,R

]
. (16)

For example, carefully analyzing Eq. (16), we can see that a
boson in the bath with energy EL = h̄ωL can induce a single-
spin flip through operators â+s,L

k σ̂ s,L
− as well as a double-

spin flip through â+s,L
k σ̂ s,M

+ σ̂ s,R
− with a probability λMR

s,L . The

correlated TLS terms and the reservoir engineering in the
TLS-bath interactions create quantum entanglement. Quan-
tum entanglement captures the quantum correlation between
two quantum systems. We deduce the system jump operators

075440-5



EKANAYAKE, GUNAPALA, AND PREMARATNE PHYSICAL REVIEW B 107, 075440 (2023)

FIG. 5. Single-spin flip transitions (transitions from one state to the other where the differences in the two states are by a single-spin
change, and spins are represented by arrows ↑,↓) caused by direct interactions with baths BL , BM , and BR in the system are shown by solid
lines. The double-spin flip transitions (transitions from one state to the other where the differences in the two states are by two spin changes)
are induced due to indirect interactions with baths BL , BM , and BR and are shown by dashed lines. This follows the interaction Hamiltonian
in Eq. (16). The thermal flow through the device happens via these transitions. Transitions induced by BL (including the dashed lines) drive a
portion of ground states |3〉 and |6〉 populations to |2〉 and |7〉. The populations established in |4〉 and |5〉 are sent back to ground states |3〉 and
|6〉 (even by dashed lines) by BR. The extra energy required to make the jump from |2〉 to |4〉 and |7〉 to |5〉 is provided by thermal bath BM .
This type of energy level diagram describes a composite system with not-in resonant two-level systems. We use this diagram to represent our
incoherent-correlated model.

from Eq. (16) as

Âs
L = σ̂ s−

L + λMR
s,L σ̂ s+

M σ̂ s−
R ,

Âs
M = σ̂ s−

M + λRL
s,M σ̂ s−

R σ̂ s−
L ,

Âs
R = σ̂ s−

R + λLM
s,R σ̂ s−

L σ̂ s+
M . (17)

Then, we perform spectral decomposition on the jump oper-
ators. In the eigendecomposition of the system Hamiltonian
Ĥ s

sys = ∑
i εi|εi〉〈εi|, the spectral decomposition of the jump

operators in Eq. (17) leads to

Âs
L(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣Âs
L

∣∣ε′〉〈ε′|,

Âs
M (ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣Âs
M

∣∣ε′〉〈ε′|,

Âs
R(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣Âs
R

∣∣ε′〉〈ε′|, (18)

where ε′ > ε, and the operators satisfy∑
ω

Âs
P(ω) =

∑
ω

Â†s
P (ω) = Âs

P,

[
Ĥsys, Âs

P(ω)
] = ωÂs

P(ω),[
Ĥsys, Âs

P(−ω)
] = −ωÂs

P(ω).

In the incoherent-correlated model, we assume that the single-
spin flip and double-spin flip transitions happen independently
and not simultaneously corresponding to the different fre-
quencies of the bath modes. Figures 5 and 6 show the energy
diagram with the possible relaxations for a transistor in the
DP. While solid arrows show the transitions that were in
the previous model [9], the dashed arrows indicate the ad-
ditional channels achieved via reservoir engineering. For our
incoherent-correlated model, we represent the decomposed
jump operators as

Âs
L1(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣σ̂ s−
L

∣∣ε′〉〈ε′|,

Âs
L2(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣λMR
L σ̂ s+

M σ̂ s−
R

∣∣ε′〉〈ε′|,

Âs
M1(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣σ̂ s−
M

∣∣ε′〉〈ε′|,

Âs
M2(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣λRL
M σ̂ s−

R σ̂ s−
L

∣∣ε′〉〈ε′|,

Âs
R1(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣σ̂ s−
R

∣∣ε′〉〈ε′|,

Âs
R2(ω) =

∑
ε′−ε=h̄ω

|ε〉〈ε∣∣λLM
R σ̂ s−

L σ̂ s+
M

∣∣ε′〉〈ε′|. (19)
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FIG. 6. Single-spin flip transitions (transitions from one state to the other where the differences in the two states are by a single-spin
change, and spins are represented by arrows ↑, ↓), and double-spin flip transitions (transitions from one state to the other where the differences
in the two states are by two spin changes) are caused by engineered interactions with baths BL , BM , and BR when the two ground states |3〉
and |6〉 are degenerate. This is represented by solid lines and dashed lines, respectively. Due to the degeneracy, we can configure angular
frequencies to make the single-spin flip and double-spin flip transitions: |3〉, |6〉 → |2〉, |7〉 induced by BL; |3〉, |6〉 → |1〉, |8〉 induced by BM ;
|5〉, |4〉 → |3〉, |6〉 induced by BR; to have the same energy. This type of energy level diagram describes a composite system with resonant
two-level systems where their energies satisfy h̄ωs

M − h̄ωs
L = h̄ωs

R. We use this diagram to represent our incoherent-correlated model tuned to
contain a dark-state.

In an individual transistor system, there are 28 different pos-
sible jumps from |ε′〉 to |ε〉, however only 18 of them are
nonzero.

The thermal flows through the device happen due to the
transitions induced by the thermal baths. At the steady state,
the ground states are more populated than the highest energy
states. Hence, we neglect some of the transitions between
higher energy levels (e.g., from |1〉 and |8〉) and transitions
with high energy gaps (e.g., |3〉 − |8〉, |6〉 − |1〉). Transitions
induced by BL (including the double dot transition lines) drive
a portion of ground states |3〉 and |6〉 populations to |2〉 and
|7〉. The populations established in |4〉 and |5〉 are sent back to
the ground states |3〉 and |6〉 (even by dashed lines) induced
from BR. The extra energy required to make the jump from
|2〉 to |4〉 and |7〉 to |5〉 is provided by the thermal bath BM .
If TM is too low, BM cannot provide the necessary energy for
this jump. Hence, there will not be a thermal flow from BL to
BR. Our analysis shows that double-spin flip transitions can be
engineered to help drive the transitions from the ground states
to higher states.

If we do not make restrictions to other indirect bath inter-
actions, there will be additional relaxations as in Fig. 7. Here,
one of the key relaxations of BM is between |5〉 to |2〉 and |7〉
to |4〉. If one of these happens, it can disturb the maintenance
of populations for the system at the desired ratio when driving
populations from |2〉 to |4〉 and |7〉 to |5〉. This disrupts the
stability of the system. Hence, we restrict such interactions
intentionally by selecting the interaction Hamiltonian as in
Eq. (16).

IV. FORMALISM

The total Hamiltonian Ĥ s of the transistor and its environ-
ment now reads

Ĥ s =Ĥ s
sys +

∑
P∈{L,M,R}

(
ĤP

bath + ĤP
sys-bath

)
. (20)

We switch to the interaction picture and solve our model
defined by the total Hamiltonian Ĥ s. We use a local approach
and neglect the weak inter-TLS interaction Hamiltonian when
deriving the master equation as in Refs. [38,41,42]. Our
Hamiltonian is already diagonalized in the bare states, and the
populations depend on the dissipative dynamics only. At the
steady state, all coherence terms in the density matrix reach
zero (see Appendix A for the derivation of the quantum master
equation [33,43–45]). We represent our master equation for
the composite system under the weak coupling regime for n
number of individual transistors as

d ρ̂(t )

dt
=

∑
s∈{1,2,...,n}

∑
P∈{L,M,R}

Ls
P[ρ̂s(t )] (21)

in the interaction picture. In our formalism, we treat the
multitransistor model as a collection of individual systems
represented by s. Hence, the master equation for an individual
system is given by

d ρ̂s(t )

dt
=

∑
P∈{L,M,R}

Ls
P[ρ̂s(t )]. (22)
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FIG. 7. Without any restrictions, single-spin flip transitions
(transitions from one state to the other where the differences in the
two states are by a single-spin change, and spins are represented
by arrows ↑, ↓) and double-spin flip transitions (transitions from
one state to the other where the differences in the two states are
by two spin changes) are caused by the interactions with bath BL ,
BM , and BR. These transitions are marked as solid lines and dashed
lines, respectively. The additional transitions are also included using
solid lines. One of the key relaxations from BM between |5〉–|2〉 and
|7〉–|4〉 must be avoided to maintain the stability of the transistor.
This energy level diagram provides us with all the possible transitions
of an incoherent model without engineered reservoir interactions.

We assume that even under the common environment inter-
actions, the system bath couplings remain weak so that we
can safely apply rotating wave approximations (RWAs). We
obtain the Lindblad terms as in Eq. (23),

Ls
P[ρ̂s] =

∑
ω>0

[
J s

P (ω)[1 + ns
P(ω)]

(
Âs

P(ω)ρ̂sÂs†
P (ω)

− 1

2

{
Âs†

P (ω)Âs
P(ω), ρ̂s

})+ J s
P (ω)ns

P(ω)

×
(

Âs†
P (ω)ρ̂sÂs

P(ω) − 1

2

{
Âs

P(ω)Âs†
P (ω), ρ̂s

})]
,

(23)

where P ∈ {L, M, R}. In Eq. (23), ω runs through all allowed
28 positive energy transitions of each of the individual eight-
level quantum system. However, the Lindblad terms are only
nonzero for the energies where there is a transition from one
state to the other. The individual thermal bath temperature
for each transistor T s

P influences the dynamics of the whole
system through

ns
P(ω) = 1

exp
(

h̄ω
kBT s

P

)− 1
, (24)

where kB is the Boltzmann constant. Assuming the baths to
be Ohmic, we describe the spectral density function J s

P (ω).
Here, ωLD stands for the Lorentz-Drude cutoff frequency,

J s
P (ω) = κs

Pω
ω2

LD

ω2
LD + ω2

. (25)

Assuming the frequencies of the individual transistors are
much smaller than ωLD, we define the spectral density func-
tion as

J s
P (ω) = κs

Pω, (26)

where κs
P describes the modulation of the thermal bath’s direct

influence on the dynamics of the quantum transistor s.
Note that, for a given temperature TP and frequency be-

tween two energy levels ω j,k , the populations in the density
matrix satisfy the ratio at which the thermal baths balance
their state populations given by

ρ j j

ρkk
= nP(ω jk )

1 + nP(ω jk )
. (27)

V. QUANTUM CORRELATION AND EMERGENCE
OF QUANTUM ENTANGLEMENT

Quantum entanglement can happen as a consequence of
quantum correlation when multiple components of the system
interact with the environment simultaneously [24]. Allowing
simultaneous single-spin flip and double-spin flip transitions,
it is possible to preserve quantum coherence. In the literature,
this is achieved through a dark-state. We provide an analysis
on how the system dynamics change and how this affects the
heat flows when we allow such simultaneous transitions. We
show that it is possible to tune our system to contain a dark-
state that is the entanglement of the two ground states of our
system.

A. Formation of dark-states

In general, a dark-state is a superposition of two lowest
states without dipole transitions between them [26]. The pres-
ence of a dark-state can be regarded as a method of preserving
quantum coherence [32]. In specific configurations, system
environment couplings can be used to engineer a dark-state
via quantum entanglement [46].

Liu et al. [34] showed that heat currents through a thermal
transistor at a steady state depend on the initial state of a
dark-state given appropriate parameters. Further, they demon-
strated that in the case of completely correlated transitions, the
transistor can be provided with an external channel to control
the heat currents, but this does not affect the amplification rate.
Inspired by this work, we show the possibility of tuning our
DP model to two dark-states and the likelihood of creating
additional applications with the use of other multitransistor
configurations.

B. Tuning the two-transistor model to contain dark-states

This section analyzes how to tune a two-transistor model
to contain dark-states. We select the jump operators as in
Eq. (17). Then we set λ

QR
s,P = 1 and choose the angular fre-

quency parameters such that the two sets of three TLSs are

075440-8



ENGINEERED COMMON ENVIRONMENTAL EFFECTS ON … PHYSICAL REVIEW B 107, 075440 (2023)

in resonance. Hence, the three TLSs on each transistor sat-
isfy ωs

M − ωs
L = ωs

R. This constraint creates two degenerate
ground states |3〉s and |6〉s (s ∈ {1, 2}) for each transistor as
in Fig. 6. If ωs

M = ωs
L = ωs

R = 0 and ωs
MR > ωs

LM > 0, all the
relaxations between the ground states and the excited states
become equal in energy. This condition helps tune the tran-
sistor to a dark-state. By appropriate reservoir interactions, it
is possible to create a dark-state |−〉s and a bright-state |+〉s,
respectively, of the form

|−〉s = sin θ |3〉s − cos θ |6〉s,

|+〉s = sin θ |3〉s + cos θ |6〉s,

using quantum entanglement [32]. Here, θ is the angle be-
tween the two degenerate states. We ultimately find θ by
solving the transistor dynamics using the Lindblad terms in
Eq. (28). Here, we assume that all the transitions induced by
the Pth bath happen with the same energy and same transition
rate. Bath P will couple to the single TLS P as well as to the
other transitions with energy Es

P = h̄ωs
P. Thus, we take the an-

gular frequencies of the TLSs as ωs
M = ωs

L = ωs
R = ωRL = 0

and ωs
MR > ωs

LM > 0. Therefore, Eq. (28) is Eq. (23) with only
one energy change per bath given by

Ls
P[ρ̂s] = J s

P (ωP )
[
1 + ns

P(ωP )
](

Âs
P(ωP )ρ̂sÂs†

P (ωP )

− 1

2

{
Âs†

P (ωP )Âs
P(ωP ), ρ̂s

})+ J s
P (ωP )ns

P(ωP )

×
(

Âs†
P (ωP )ρ̂sÂs

P(ωp) − 1

2

{
Âs

P(ωP )Âs†
P (ωP ), ρ̂s

})
.

(28)

When we solve each of the Lindblad terms, we see the forma-
tion of a new state under |3〉s and |6〉s having equal probability
of populations. At a steady state, the new state and its conju-
gate can be described as

ρs
++ = 1

2

(
ρs

33 + ρs
66 + ρs

36 + ρs
63

)
,

ρs
−− = 1

2

(
ρs

33 + ρs
66 − ρs

36 − ρs
63

)
. (29)

Let us call these the bright-state and the dark-state popula-
tions, respectively. These state populations comprise popu-
lations of ground states (probability of occurrence of each
energy level in a particular state) and their coherence between
row-state and column-state, represented by ρs

33, ρs
66, ρs

36, and
ρs

63. This result is guaranteed by degenerate |3〉s and |6〉s and
the same transition rates to the excited states. Further, it is
possible to represent the bright-state and the dark-state for
each transistor as

|+〉s = 1√
2

(|3〉s + |6〉s),

|−〉s = 1√
2

(|3〉s − |6〉s). (30)

We derive the dynamics of the system density matrix popula-
tions as

ρ̇s
11 = �s,L

51 + 2�s,M
+1 + �s,R

21 ,

ρ̇s
22 = �s,M

42 − �s,R
21 + 2�s,L

+2 ,

ρ̇s
++ = 2

(
�s,L

7+ − �s,M
+1 + �s,R

4+ − �s,L
+2 + �s,M

8+ − �s,R
+5

)
,

ρ̇s
44 = �s,L

84 − �s,M
42 − 2�s,R

4+ ,

ρ̇s
55 = −�s,L

51 + �s,M
75 − 2�s,R

5+ ,

ρ̇s
−− = 0,

ρ̇s
77 = −2�s,L

7+ − �s,M
75 + �s,R

87 ,

ρ̇s
88 = −�s,L

84 − �s,R
87 − 2�s,M

8+ , (31)

where

�s,P
jk = J s

P (ωP )
(
[1 + nP(ωP )]ρS

j j − nP(ωP )ρs
kk

)
.

In this model, we see that ρ̇s
−− = 0. This implies that there

will not be any relaxations to other excited states from |−〉s

and will remain with the same probability as in the initial state.
Solving these differential equations, we see that the dark-state
populations are given by ρs

−− = ρs
−−(0). We also arrive at a

proportionality where the transistor steady states are spanned
by the initial populations of the dark-state,

ρs
pp ∝ [1 − ρs

−−(0)]; p ∈ {1, 2,+, 4, 5, 7, 8}. (32)

As ρs
−−(t ) does not evolve with time, its population remains

in the initial state and obeys the probability law

ρs
11 + ρs

22 + ρs
++ + ρs

44 + ρs
55 + ρs

77 + ρs
88 = 1 − ρs

−−(0)

(33)

at the steady state. This initial state dependency is similar to
that in Refs. [32,34], and it allows us to use an external control
like a laser field to control the transistor. For a dark-state to
exist, |3〉s and |6〉s have to be degenerate and should be the
lowest energy levels that allow single-spin/double-spin tran-
sitions to the excited states. Furthermore, the system should
satisfy the resonance conditions ωs

M − ωs
L = ωs

R. The simul-
taneous transitions of single-spin flip and double-spin flips
create quantum coherence ρs

36 and ρs
63 at the steady state.

A careful mapping through derivations shows that a similar
condition to switch transistors using a dark-state is possible
for an incoherent model even when ρs

36 = ρs
63 = 0.

C. Energy flow rates at a coherent correlated dissipation

We can find the energy flow rates to and from the reservoirs
to the quantum system by employing the energy conservation
principle. Considering the transistors 1 and 2 to be separate,
we derive thermal flow rates using

∑
P∈{L,M,R}

Js
P(t ) = ∂

〈
Ĥ s

sys

〉
∂t

= Tr

{
Ĥ s

sys
dρ̂s(t )

dt

}
, (34)

where Js
P denotes the net energy inflows into the system from

the Pth thermal bath. In the coherent correlated model, the
energy flow rates appear to show quantum coherence. Using
Eq. (34) and the Lindblad terms in Eq. (23), we obtain the
separate energy flow rates for the transistor 1 and transistor 2
as in Eq. (35),

Js
L = −(εs

51�
s,L
51 + 2εs

7+�s,L
7+ + εs

84�
s,L
84 + 2εs

+2�
s,L
+2

)
,

Js
M = −(2εs

+1�
s,M
+1 + εs

42�
s,M
42 + εs

75�
s,M
75 + +2εs

8+�s,L
8+

+ 2εs
+1�

s,L
+1

)
,

Js
R = −(εs

21�
s,R
21 + 2εs

4+�s,R
4+ + εs

87�
s,R
87 + εs

5+�s,L
5+
)
, (35)
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where the energy level difference between the eigenstates
represents

ε+l = ε3+ε6
2 − εl ,

εl+ = εl − ε3+ε6
2 .

Here, l corresponds to a state other than the bright-state and
the dark-state (l ∈ 1, 2, 4, 5, 7, 8). For a description of the
states, refer to Fig. 5. Then, the combined energy flows for
the DP model can be obtained using Eq. (42).

VI. INCOHERENT CORRELATED DISSIPATION

The main aim of this paper is to produce a generalized
model that can interpret the common environmental effects
on the system by treating the common baths as separate baths.
This model must also treat the single-spin flip and double-
spin flip transitions independently. Therefore, we introduce an
incoherent-correlated model named in Ref. [33] for a quantum
thermal refrigerator to our multitransistor model. The incoher-
ent term implies that at the steady state there are no coherences
in the density matrix. Correlation means that the thermal baths
in the environment interact with multiple components in the
system and not just the TLS that is directly coupled to them.
We explained the formation of quantum correlation through
engineered reservoir interactions in Sec. III. Once we assume
that the single-spin flip transitions happen independently from
the ones achieving paired spin transitions, the transitions can
happen either as in Fig. 5 or as in Fig. 6. The difference in
Fig. 6 is that the two ground states are degenerate. This occurs
under the assumption of resonance conditions. We derive the
Lindblad terms using Eq. (23) for the jump operators given
in Eq. (19). Thus, we obtain the transistor dynamics for the
incoherent-correlated model as

ρ̇s
11 = + �s,L

51 + �s,M
31 + �s,R

21 + (
λRL

s,M

)2
�s,M

61 ,

ρ̇s
22 = + �s,L

62 + �s,M
42 − �s,R

21 + (
λMR

s,L

)2
�s,L

32 ,

ρ̇s
33 = + �s,L

73 − �s,M
31 + �s,R

43 − (
λMR

s,L

)2
�s,L

32

+ (
λRL

s,M

)2
�s,M

83 + (
λLM

s,R

)2
�s,R

53 ,

ρ̇s
44 = + �s,L

84 − �s,M
42 − �s,R

43 + (
λLM

s,R

)2
�s,R

64 ,

ρ̇s
55 = − �s,L

51 + �s,M
75 + �s,R

65 − (
λLM

s,R

)2
�s,R

53 ,

ρ̇s
66 = − �s,L

62 + �s,M
86 − �s,R

65 + (
λMR

s,L

)2
�s,L

67

− (
λRL

s,M

)2
�s,M

61 − (
λLM

s,R

)2
�s,R

64 ,

ρ̇s
77 = − �s,L

73 − �s,M
75 + �s,R

87 − (
λMR

s,L

)2
�s,L

67 ,

ρ̇s
88 = − �s,L

84 − �s,M
86 − �s,R

87 − (
λRL

s,M

)2
�s,M

83 , (36)

where

�s,P
jk = J s

P

(
ωs

jk

)(
[1 + nP

(
ωs

jk

)
]ρS

j j − nP
(
ωs

jk

)
ρs

kk

)
,

which represents the transition rate from state | j〉s to state
|k〉s induced by the system-bath thermal interactions. Com-
pared with the previous multitransistor model in Ref. [9],
the transistor dynamics now show additional dissipative terms
proportionate to (λQR

s,P )2.

A. Energy flow rates at incoherent correlation dissipation

Using Eq. (34), we find the individual heat flows for tran-
sistors 1 and 2 in the incoherent-correlated model. Then, we
establish the equivalent energy flow rates for the DP using
Eq. (42). In Eq. (37), we represent the individual heat outflow
from each bath as

Js
L = −(εs

51�
s,L
51 + εs

62�
s,L
62 + εs

73�
s,L
73 + εs

84�
s,L
84

)
− λMR

s,L

(
εs

32�
s,L
32 + εs

76�
s,L
76

)
,

Js
M = −(εs

31�
s,M
31 + εs

42�
s,M
42 + εs

75�
s,M
75 + εs

86�
s,M
86

)
− λRL

s,M

(
εs

83�
s,L
83 + εs

61�
s,L
61

)
,

Js
R = − (

εs
21�

s,R
21 + εs

43�
s,R
43 + εs

65�
s,R
65 + εs

87�
s,R
87

)
− λLM

s,R

(
εs

64�
s,L
64 + εs

53�
s,L
53

)
. (37)

where εs
i j = h̄ωs

i j expresses the energy level difference be-
tween the eigenstates |i〉s and | j〉s.

B. Incoherent-correlated model mapping
to the dark-state model

In this section, we discuss how the established incoherent-
correlated model can be mapped to study dark-state formation.
We assume that the system relaxations happen as in Fig. 6 un-
der the conditions of resonance, ωs

M − ωs
L = ωs

R, (s ∈ {1, 2}).
This creates two degenerate ground levels |3〉s and |6〉s, and
double-spin flip transitions happen with the same energy as
single-spin flip transitions. We then find the transistor steady-
state dynamics and energy flow rates. For transistor dark-state
tuning, we let λ

QR
s,P = 1. We tune our system to a dark-state

influenced by the work in Ref. [32]. Those authors elaborate
on the ability to create different dark-states by changing the
eigenvalues of the spectral density matrix γ s

kl . Accordingly,
the spectral density function can be written as a function of
system-bath coupling constant gs,l

k ,

γ s
kl = 2πgs,l

k

(
gs,l

k

)∗
.

The matrix γ s
kl is Hermitian. If gs,l

k is real, then γ s
kl = γ s

lk . This
makes |γkl | = 0, implying that there is at least one eigenvalue
that is zero. We do a mapping from the correlated model to this
under the approximations that the steady-state populations
satisfy ρs

33 + ρs
66 = 1. With this assumption, other population

densities become zero at the steady state. This condition al-
lows us to tune the system to contain either |6〉s or |3〉s as
dark-states by letting either γ s

66 = 0 or γ s
33 = 0. In a practical

situation, this kind of relaxation will be influenced by the
system-bath interactions explained in the beginning. They can
be achieved via a resonator or a filter between the bath and
the system. How to achieve such transitions is beyond the
scope of the current paper and will be done in future work. To
tune our incoherent system to contain |6〉s as the dark-state, we
take γ s

33 = 2γ (ω) and γ s
66 = 0. This implies the restriction of

relaxations from |6〉s and allowing twice the rate of relaxations
as before from |3〉s. Once we tune the transistor to contain
this state, we observe that it is possible to switch on/off the
transistor by changing the initial population density of |6〉s to
0/1, respectively.
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We can change the bright-state and the dark-state by ap-
propriately changing the restrictions and relaxations, and by
allowing the transistors to be switched via the other lowest
state, |3〉s. Therefore, we can create both transistors to be
controlled independently via either |6〉s or |3〉s. We represent
the transistor dynamics for our new model in Eq. (38) as

ρ̇s
11 = + �s,L

51 + 2�s,M
31 + �s,R

21 ,

ρ̇s
22 = + �s,M

42 − �s,R
21 + 2�s,L

32 ,

ρ̇s
33 = + 2

(
�s,L

73 − �s,M
31 + �s,R

43 − �s,L
32 + �s,M

83 + �s,R
53

)
,

ρ̇s
44 = + �s,L

84 − �s,M
42 − 2�s,R

43 ,

ρ̇s
55 = − �s,L

51 + �s,M
75 − 2�s,R

53 ,

ρ̇s
66 = 0,

ρ̇s
77 = − 2�s,L

73 − �s,M
75 + �s,R

87 ,

ρ̇s
88 = − �s,L

84 − �s,R
87 − 2�s,M

83 . (38)

We solve these equations of dynamics using MATHEMATICA

V12 and confirm that at a steady state, the population of states
has a proportionality to the initial condition of the dark-state.
Since the equations are too complex to present here, we en-
courage the reader to refer to the supplemental material [47]
and notice this dependence. When we tune a transistor to con-
tain a dark-state |6〉s, the steady-state populations represent

ρs
11 ∝ [

1 − ρs
66(0)

]
,

ρs
22 ∝ [

1 − ρs
66(0)

]
,

ρs
33 ∝ [

1 − ρs
66(0)

]
,

ρs
44 ∝ [

1 − ρs
66(0)

]
,

ρs
55 ∝ [

1 − ρs
66(0)

]
,

ρs
66 = ρs

66(0),

ρs
77 ∝ [

1 − ρs
66(0)

]
,

ρs
88 ∝ [

1 − ρs
66(0)

]
. (39)

We also obtain the heat flow rates for this as

Js
L = − (

εs
51�

s,L
51 + +2εs

73�
s,L
73 + εs

84�
s,L
84 + 2εs

32�
s,L
32

)
,

Js
M = − (

2εs
31�

s,M
31 + εs

42�
s,M
42 + εs

75�
s,M
75 + 2εs

83�
s,L
83

)
,

Js
R = − (

εs
21�

s,R
21 + 2εs

43�
s,R
43 + εs

87�
s,R
87 + 2εs

53�
s,L
53

)
. (40)

C. Energy flow rates in the combined system

For the combined system, we apply the intermediate bath
formalism introduced in Ref. [3]. Accordingly, at the inter-
mediate bath junction, the rate of change of the intermediate
bath’s (BI ) average internal energy is equal to the sum of in-
coming and outgoing thermal flows and results in the equation

dEI
int

dt
= J1

R (t ) − J2
M (t ). (41)

Here J1
R is the energy flow rate from transistor 1 to BI , and

J2
M is the energy flow rate from BI to transistor 2, as shown

in Fig. 1. The exchange of the system with the surrounding
baths is sustained over time, and it results in a nonequilibrium
steady state. At this steady state, we get the heat flows for the
combined model of the DP as

JLeq(t ) = J1
L (t ) + J2

L (t ),

JMeq(t ) = J1
M (t ),

JReq(t ) = J2
R (t ). (42)

The individual heat flow rates for each of the transistors are
generalized, so we can combine as needed to realize different
types of multitransistor models.

D. Nonequilibrium steady state and definition of temperature

The coupling strengths among the three TLSs can affect the
physical picture that describes the quantum thermalization of
the composite quantum system. When the coupling strengths
among these subsystems are stronger than the system-bath
couplings, the composite quantum system can be regarded as
a single system. The dynamic evolution process of such a sys-
tem approaching its steady state of thermal equilibrium can be
understood as a nonequilibrium quantum thermalization [40].

The temperature for such a TLS composite system is de-
fined based on any mixture of states ρ, formed with ground
states ρg and excited states ρe (say, ρ = ρg|g〉〈g| + ρe|e〉〈e|),
treated as a Gibbs state [40]. This is called an effective temper-
ature, and it is defined using the ground state and the excited
state as

ρg

ρe
= exp

(
h̄ω

kBT

)
. (43)

In our system, each of the transitions inside the system feels
like a different temperature due to being coupled to baths with
different temperatures. Thus, the system as a whole fails to
come to a single temperature at equilibrium. As time passes,
the system enters a nonequilibrium steady state. The system is
irreversible at the nonequilibrium steady state and the entropy
production is nonzero. We define an effective temperature
according to Eq. (43) for a transition from | j〉 to |k〉 as

Tjk = h̄ω jk

kB ln
( ρ j j

ρkk

) . (44)

We can represent the ratio ( ρ j j

ρkk
) as in Eq. (27). This shows that

each TLS is in thermal equilibrium with its directly coupled
reservoir.

E. Device performance as an incoherent-correlated model

We use MATHEMATICA V12 to simulate the environmental
effects on the multitransistor model. In all the simulations,
we work in SI units. We take the reduced Planck constant
as h̄ = 1.055×10−34 J s, the Boltzmann constant as kB =
1.381×10−23 J/K, and the scaling factor for the frequencies
as � = 1.3×1011 Hz.
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FIG. 8. This shows the combined energy flows in the DP. The
solid lines show the equivalent heat flows JLeq, JMeq, and JReq when
we do not consider common environmental effects. The dashed lines
show the equivalent heat flows JLeqCE, JMeqCE, JReqCE when we con-
sider common environmental effects (i.e., when λ

QR
s,P = 1).

For the incoherent-correlated DP model, we visualize the
following five scenarios:

Scenario 1: A fully common environmental case
(i.e., all λ

QR
s,P = 1).

Scenario 2: No common environmental case
(i.e., all λ

QR
s,P = 0).

Scenario 3: Hot, control baths and intermediate baths be-
having as a common environment

(i.e., λMR
s,L = 1, λLM

1,R = λRL
2,M = 1).

Scenario 4: Controlling bath and intermediate bath acting
as a common environment

(i.e., λRL
1,M = 1, λLM

1,R = λRL
2,M = 1).

Scenario 5: Middle and cold bath acting as a common
environment

(i.e., λLM
1,R = λMR

2,M = 1, λLM
2,R).

Figure 8 is a visualization of heat flows for scenario 1 and
scenario 2 for a DP. In accord with the findings of Wijesekara
et al. [9], the DP operates in the active region between the
control temperatures 0.2TL < TM < 0.4TL. Our modeling also
satisfies this range and is more suitable for working in the
range 0.2TL < TM < 0.3TL with an enhanced heat flow and
thermal efficiency. Figure 9 gives the heat flow rate increase
when the two transistors have slightly different characteristics
with their angular frequencies such that ω1

L = 0.2�, ω2
L =

0.3�ωs
M = 0, ω1

R = 0.2�, ω2
R = 0.3�ωs

LM = 0.9�, ωs
MR =

1.1�, ωs
RL = 0, TL = 100 mK, and TR = 30 mK. Initially,

we set the intermediate bath temperature as TI (0) = 30 mK,
and we vary TM/TL to observe the changes in heat flows.
For the incoherent-correlated DP model, we tune the angular
frequency parameters and observe JLeq and JReq, which act
analogous to collector and emitter current on an electronic
DP. In the DP operating region, we observe that it is possible
to acquire more than a 50% increase in the heat flows at
low temperatures, when λ

QR
s,P = 1. We also observe that at

higher temperatures, this increase is only around 30–40 %.
Let us discuss the performance of the modeled device using
the overall thermal efficiency (TE) β for the heat flow into BR.
The equation for TE is given by

β = JLeq

JMeq
. (45)

FIG. 9. We visualize the increase of JLeq and JReq, which act
analogous to collector and emitter current on an electronic DP when
there are environmental effects given by λ

QR
s,P = 1. The increase in the

heat flows for the DP in the active operating region between 0.25TL <

TM < 0.3TL is more than 50%. We chose the two transistors with
slightly different settings whose angular frequencies are selected at
ω1

L = 0.2�, ω2
L = 0.3�, ωs

M=0, ω1
R=0.2�, ω2

R=0.2�, ωs
LM = 0.9�,

ωs
MR = 1.1�, ωs

RL = 0.

Figure 10 shows how TE changes for the DP with regard to
the five scenarios. We also observe that the DP is ideal for
operating in the lower control temperature TM range to achieve
a higher gain. We select the operating temperatures of the DP
between TM = [0.2TL, 0.3TL]. With the environmental effects,
the gain increases drastically within this region. Thus, with an
engineered environment, achieving a higher β value at a lower
temperature is more possible than in the previous model. And
for different scenarios, the rate at which the gain increases
for changing temperature is different. We visualize how the
thermal efficiency varies within the control temperature range
TM = [0.22TL, 0.28TL] for various scenarios. Figure 11 shows
that scenario 3 gives a very high thermal efficiency for the
selected control temperature range. This implies that all the
separate baths do not need to act as a common environment to
achieve this enhancement.

To understand the influence of environmental coupling
strengths, we visualize the change in the thermal efficiency

FIG. 10. The solid lines give the thermal efficiency of the
DP operating in the control operating temperature range TM =
[0.2TL, 0.3TL] for scenario 1 (Full CE) and 2 (No CE). The dashed
lines show the efficiency increase as a percentage with respect to
scenario 1 and scenario 2. The efficiency increase is exponential in
this range indicating that higher efficiency can be achieved at a lower
temperature by introducing common environmental effects.
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FIG. 11. Thermal efficiency values for different common en-
vironmental scenarios for the control temperature range TM =
[0.22TL, 0.28TL] within the DP operating region. This shows how
efficiency enhancement can be achieved in a far lower control tem-
perature range than when there are no common environmental effects
(no CE). Scenario 3 (H&M CE) gives a better performance for DP
efficiency, implying that all baths do not need to act as a common
environment to achieve this enhancement.

by adjusting λ
QR
s,P between 0 and 1. As in Fig. 12, we achieve

a higher efficiency when the coupling strength is maximum at
λ

QR
s,P = 1. This analysis shows that we can engineer reservoir

interactions so they enhance the device performance, which
otherwise gets lost due to decoherence.

VII. THERMAL GATES FOR LOGIC OUTPUTS

Switching the transistors using temperatures is not feasible.
The analysis in Ref. [9] demonstrated that it is possible to
use an external optical field to control a transistor without
changing its base terminal temperature. However, a complete
switching off of the transistor using this method is impossible
even if we remove the optical field completely for logic gate
transistor arrangements. This is because the transitions that
enable the transistor action can still be present via thermal
bath interactions. We identify that with the tuned dark-state, a
robust external channel opens up for transistor switching. The
transistors can be switched on/off by changing the initial states

FIG. 12. Thermal efficiency for different common environmental
couplings in the operating range TM = [0.2TL, 0.3TL]. The efficiency
increases as the magnitude of the coupling strength λ

QR
s,P increases and

a higher efficiency can be achieved in scenario 1 (Full CE). When
λ

QR
s,P = 0, implying no CE is when the efficiency is lowest within this

temperature range.

Transistor 1

Transistor 2

FIG. 13. OR gate multitransistor system. It comprises two simi-
lar transistors, having bath BL with temperature TL , two similar baths
BM1 and BM2, with the same temperature TM and BR with temperature
TR. A dark-state is formed due to direct interactions (solid lines)
and indirect interactions (dashed lines) when λMR

1,L = λRL
1,M = λLM

1,R =
λMR

2,L = λRL
2,M = λLM

2,R = 1.

of the dark-state populations’ probability to 0/1. This concept
shows potential in realizing the thermal analogous logic gates.
This paper identifies the formation of gates using multitransis-
tor arrangements and their outputs. We demonstrate a thermal
counterpart for an electronic OR gate and an AND gate via
dark-state switching.

The change of the initial population of the dark-state can
be achieved using a laser field [34], which determines the
transistor “ON” state and “OFF” state. For that, a laser field
must drive the transitions between dark-state |6〉 (for the other
transistor |3〉) to other excited states and change the popu-
lations accordingly. Since a dark-state is not influenced by
thermal baths, it is possible to achieve this population change
between the probabilities 0 and 1 using an external field. We
approximate the time required for this state change to the Rabi
frequency �. When the laser field frequency and the energy
difference between the driving states are in resonance, we
approximate the probability of state |6〉 (or |3〉 for the other
transistor) achieving probabilities 0 and 1 as

P01(t ) = sin2

(
�t

2

)
.

Hence, the time until ρ66 (or ρ33) reaches 1 or 0 will depend
on td given as

td ≈ π

�
,

where � = E0·d
h̄ , with electric field |E0| and dipole moment d

constant. When the time required for the system to reach the
steady state (relaxation time) is τR, the switching time �t of
the transistors depends on

�t = max(td , τR). (46)
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(a) (b)

(c) (d)

FIG. 14. OR truth for (a) both transistors “OFF” and the combined gate is also “OFF,” (b) and (c) only one transistor is “ON” and the
combined becomes “ON,” and (d) both transistors are “ON” and the combined becomes “ON.”

A. OR gate

We take all λ
QR
s,P = 1, and we tune transistor 1 to |6〉,

and transistor 2 to |3〉 as their dark-states. This provides an
independent state change for the two transistors. Since we
do not expect any control from TM , we keep it at a fixed
temperature such that TL > TM > TR to enable the transistor
action. We change the initial states of the dark-states manually
in the program, and we observe that the switching time is
approximately 8 ns. In the program, this depends only on the
system relaxation time.

Figure 13 shows the arrangement of the two transistors
similar to an electronic OR gate. We observe the combined
model heat flows in the following four events.

Event 1: Both transistors “OFF.”
Event 2: First transistor “OFF,” second transistor “ON.”
Event 3: First transistor “ON,” second transistor “OFF.”
Event 4: All transistors “ON.”
At the steady state, Eq. (47) represents heat flows for the

combined model to realize an OR gate as

JLeq(t ) = J1
L (t ) + J2

L (t ),

JMeq(t ) = J1
M (t ),

JReq(t ) = J1
R + J2

R (t ). (47)

The output results (see Table I and Fig. 14) give similar
outputs to that of an electronic OR gate. Note that when the
initial dark-state population probability is 0, the transistor is
“ON,” and when the initial dark-state population probability is
1, the transistor is “OFF.” To resolve any confusion, we create

our logic convention similar to electronics, and we present the
results in truth tables for “ON” as logic “1” and “OFF” as
logic “0.”

B. AND gate

Figure 15 shows the arrangement analogous to an elec-
tronic AND gate. We simulate the heat flow from the
combined arrangement into the bath BR corresponding to the
previous four events. If there is a heat flow into BR, we desig-
nate that to logic “1.” We designate logic “0” if there is no heat
flow into BR. At the steady state, we consider the heat flows
for the combined model for the AND gate as

JLeq(t ) = J1
L (t ),

JReq(t ) = J2
R (t ). (48)

Figure 16 and Table II provide output results similar to the
electronic AND gate. We observe that the switching time is
around 8 ns.

TABLE I. OR truth table.

Transistor 1 Transistor 2 Combined gate

0 0 0
0 1 1
1 0 1
1 1 1
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Transistor 1

Transistor 2

FIG. 15. AND gate arrangement. It comprises two similar tran-
sistors, having bath BL with temperature TL , two similar baths BM1

and BM2 with temperature TM , BR with temperatures TR, and an
intermediate bath BI that links the two transistors. The intermediate
bath temperature TI depends on the internal transistor dynamics. A
dark-state is formed due to direct interactions (solid lines) and in-
direct interactions (dashed lines) when λMR

1,L = λRL
1,M = λLM

1,R = λMR
2,L =

λRL
2,M = λLM

2,R = 1.

VIII. CONCLUSIONS

In our previous work, where we analyzed a thermal tran-
sistor equivalent of an electronic Darlington pair (DP) [9], we
needed enormous baths at the terminals to keep the tempera-
tures regulated at preset temperatures and help the transistor
action. The impact of such physically large baths coupled
to two-level systems (TLSs) which act as the transistor ter-
minals will not guarantee that the terminals are separated
enough to avoid multiple interactions with the surrounding
baths. When fabricating the device on a substrate, the mul-
titransistor arrangements can have multiple interactions with
the surrounding baths. These multiple interactions can sup-
press the heat flows or even completely obstruct the transistor
action. Hence, mitigating or carefully engineering such in-
teractions will be beneficial to keeping the transistor active
and enhancing its performance. Throughout this analysis, we

TABLE II. AND truth table.

Transistor 1 Transistor 2 Heat flow into BR

0 0 0
0 1 0
1 0 0
1 1 1

applied various environmental effect descriptions in the lit-
erature. We introduced an incoherent yet correlated model
to a multitransistor system. This model is more generalized
and can interpret the common environmental effects on the
system by treating the common bath as separate baths. It
also treat the single-spin flip and double-spin flip transitions
induced by the baths independently. Then, we discussed the
possibility of enhancing the thermal flow rates and producing
a higher thermal efficiency, particularly for the DP model in
its operating temperature range.

Finally, we discussed how an engineered environment is
used to create new applications such as designing combina-
tional logic. By introducing constraints, the incoherent model
was tuned to contain dark-states. These dark-states are ad-
vantageous in providing external and independent switching
to a multitransistor system. Unlike using an optical field in
resonance to control a particular transition on the system,
this provides a robust way to switch the transistor on/off, if
required, periodically. Thus, we identified the possibility of
realizing the functionality expected by an electronic AND
gate and an OR gate. This work is also beneficial for realizing
thermal equivalents of adder circuits, converters, and even
sequential logic.

A. Limitations

The main limitation of our assumption is that the substrate
behaves in a way that it can cause correlated system-
bath interactions. For that, we need to consider a carefully
engineered thermal bath as the substrate. And also, the
system-environment couplings have to be very strong to see
a more significant influence on the system by the common
environmental effects. However, we used the Born-Markov
and RWAs, assuming weaker couplings between the system
and the reservoirs.
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APPENDIX A: DERIVING THE QUANTUM
MASTER EQUATION

Let us consider our system-bath interaction Hamiltonian
HI (t ) in the interaction picture given by

ĤI(t ) = U +(t, t0)ĤIU (t, t0). (A1)

The Von-Neumann equation for the total density matrix ρT (t )
can be written as

d ρ̂T (t )

dt
= − i

h
[ĤI(t ), ρ̂T (t )], (A2)
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(a) (b)

(c) (d)

FIG. 16. AND truth for (a) both transistors “OFF” and there is no heat flow into BR, (b) and (c) where only one transistor is “ON,” and
there is also no heat flow into BR, and (d) is when both transistors are at “ON,” ultimately showing heat flow into BR.

which has the formal solution

ρ̂T (t ) = ρ̂T (0) − i

h

∫ t

0
[ĤI(s), ρ̂T (s)] dt . (A3)

Substituting the formal solution to the Von-Neumann equa-
tion again, we get

d ρ̂(t )

dt
= − i

h
[ĤI(t ), ρ̂T (0)] − 1

h2

∫ t

0
[ĤI(t ), [ĤI(t ), ρ̂T (s)]] ds.

(A4)

For the reduced density matrix, ρ̂(t ) = TrB[ρ̂T (t )]. The Von-
Neumann equation reduces to

d ρ̂(t )

dt
= − i

h
TrB[ĤI(t ), ρ̂T (0)]

− 1

h2

∫ t

0
TrB[ĤI(t ), [ĤI(s), ρ̂T (s)]] ds. (A5)

For the two-transistor model, we assume that the two sets
of three baths interact with two sets of the three TLSs,
hence we define our system-bath interaction Hamiltonian
as

∑
P Ĥs

sys-bath(t ), where P ∈ {L, M, R}, and s ∈ {1, 2}. We
further solve the Von-Neumann equation for two systems rep-
resented by “s” as

d ρ̂T (t )s

dt
= − i

h

[∑
P

ĤP,s
sys-bath(t ), ρ̂s

T (0)

]

− 1

h2

∫ t

0

[∑
P

ĤP,s
sys-bath(t ),

[
ĤP,s

sys-bath(t ), ρ̂s
T (τ )

]]
dτ,

(A6)

where

ρ̂s
T = ρ̂s ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R,

ρ̂s = TrP
[
ρ̂s

T

]
.

Without loss of generality, TrP[
∑

P Ĥs
sys-bath(t ), ρ̂s

T (0)] = 0.
Taking the partial trace over the reservoirs and performing
Markovian approximations,

d ρ̂s(t )

dt
= − 1

h2
TrP

∫ ∞

0

[∑
P

ĤP,s
sys-bath(t ),

[∑
Q

ĤQ,s
sys-bath(t − τ ),

× ρ̂s(t ) ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R

]]
dτ.

(A7)

Let us consider the decomposition of the interaction Hamilto-
nian ĤP,s

sys-bath(t ),

ĤP,s
sys-bath(t ) =

∑
ω,P

e−iωt Âs
P(ω) ⊗ BP(t )

=
∑
ω,α

eiωt Â†s
P (ω) ⊗ BP(t ), (A8)

such that the operators must satisfy[
Ĥ s

sys, As
P(ω)

] = ωAs
P(ω),[

Hs
sys, As

P(−ω)
] = −ωAs

P(−ω). (A9)
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Let us solve Eq. (A7). This comprises the trace terms

TrP

⎡
⎣∑

P

ĤP,s
sys-bath(t ),

⎡
⎣∑

Q

ĤQ,s
sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂L ⊗ ρ̂M ⊗ ρ̂R

⎤
⎦
⎤
⎦

= TrB

⎡
⎣ĤP,s

sys-bath(t ),

⎡
⎣∑

Q

ĤQ,s
sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂B

⎤
⎦
⎤
⎦+ TrB

[
ĤP,s

sys-bath(t ),
[
ĤP,s

sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂B
]]

, (A10)

but

TrP,Q
[
ĤP,s

sys-bath(t ),
[
ĤQ,s

sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂P ⊗ ρ̂Q
]]

= [
A†s

P (ω)As
Q(ω)ρ̂s(t ) − As

Q(ω)ρ̂s(t )A†s
P (ω)

]
TrP[BP(t )ρ̂P]TrQ

[
BQ(t − τ )ρ̂Q

]
. (A11)

However,

TrP
[
ĤP,s

sys-bath(t ), ρ̂P
] = 0,

TrP[BP(t )ρ̂P] = 0. (A12)

Therefore,

TrP,Q
[
ĤP,s

sys-bath(t ),
[
ĤQ,s

sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂P ⊗ ρ̂Q
]] = 0. (A13)

Consider the expansion of TrB[ĤP
sys-bath(t )s, [ĤP

sys-bath(t − τ )s, ρ̂s(t ) ⊗ ρ̂B]], which is the commutation relation to the same bath,

TrB
[
ĤP,s

sys-bath(t ),
[
ĤP,s

sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂B
]] = TrB

[(
ĤP,s

sys-bath(t )ĤP,s
sys-bath(t − τ )ρ̂s(t )ρ̂B − ĤP,s

sys-bath(t − τ )ρ̂s(t )ρ̂BĤP,s
sys-bath(t )

)
− (

ĤP,s
sys-bath(t )ρ̂s(t )ρ̂BĤP,s

sys-bath(t − τ ) − ρ̂s(t )ρ̂BĤP,s
sys-bath(t − τ )ĤP,s

sys-bath(t )
)]

.

(A14)

Since our system comprises two similar transistors, the same set of equations repeats. Hence, we consider only one system
ignoring s. Next, we consider the k mode expansion of Eq. (A15) by substituting decomposition terms, and this leads to the
equation

TrB
[
ĤP,s

sys-bath(t ),
[
ĤP,s

sys-bath(t − τ ), ρ̂s(t ) ⊗ ρ̂B
]]

=
∑
k,l

∑
ω,ω∗

ei(ω∗−ω)t (Al (ω)ρ̂(t )A†
k (ω∗) − A†

k (ω∗)Al (ω)ρ̂(t ))
∫ ∞

0
ei(ωτ )TrB[B†

k (t )Bl (t − τ )ρ̂B] dτ

+
∑
ω,ω∗

e−i(ω∗−ω)t (ρ̂(t )Al (ω)A†
k (ω∗) − A†

k (ω∗)ρ̂Al (ω))
∫ ∞

0
e−i(ωτ )TrB[B†

k (t )Bl (t − τ )ρ̂B] dτ

=
∑
k,l

∑
ω,ω∗

e−iω∗t e−iωt (Al (ω)ρ̂(t )A†
k (ω∗) − A†

k (ω∗)Al (ω)ρ̂(t ))
∫ ∞

0
ei(ωτ )TrB[B†

k (t )Bl (t − τ )ρ̂B] dτ + H.c., (A15)

where H.c. is the Hermitian conjugate. Define τs as the intrinsic evolution of the system given by

τs = 1

|ω∗ − ω| ,

with the relaxation time of the system given by τR. Here we applied Ak (ω) terms for Ĥsys-bath(t − τ ) and A†
k (ω∗) for Ĥsys-bath(t ).

k and l represent the multiple components that interact with the Pth reservoir. When the coupling is weak, we need to consider
only the resonant terms, following from the rotating wave approximation, ω∗ = ω. Define Bp(t ) = ∑

k gk (e−iωkt aP
k + eiωkt a†P

k ),
which can be expanded further to

[B†
k (t )Bl (t − τ )ρ̂B] = g∗

kgl
[
ei[ωkt−ωl (t−τ )]

(
a†P

k aP
l

)+ ei[ωkt+ωl (t−τ )]
(
a†P

k a†P
l

)+ e−i[ωkt+ωl (t−τ )]
(
aP

k aP
l

)+ e−i[ωkt−ωl (t−τ )]
(
aP

k a†P
l

)
ρ̂B
]
.

(A16)

Taking the trace over the bath with only resonant terms,

TrB[B†
k (t )Bl (t − τ )ρ̂B] = g∗

kgle
−i[ωkt−ωl (t−τ )]〈0|aP

k a†P
k |0〉

= |gk|2e−iωkτ �= 0,
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and considering the integration, which is the Fourier transform,

�kl (ω) =
∫ ∞

0
eiωτ TrB[B†

k (t )Bl (t − τ )ρ̂B] dτ. (A17)

To divide the dynamics into Hermitian and non-Hermitian, �kl is decomposed into

�kl (ω) = 1
2γkl (ω) + iSkl (ω), (A18)

where the Hermitian part is

γkl (ω) = �kl (ω) + �kl (ω)∗ =
∫ ∞

−∞
ei(ωτ )TrB

[
B+

k (t )Bl (t − τ )ρB
]

dτ. (A19)

Considering only this dissipator term, we define the Lindblad term Lkl
P (ρ̂(t )) as

Lkl
P (ρ̂(t )) =

∑
k, l

∑
ω

[(Al (ω)ρ̂(t )A†
k (ω) − A†

k (ω)Al (ω)ρ̂(t ))γkl (ω)/2 − (ρ̂(t )A†
k (ω)Al (ω) − Al (ω)ρ̂A†

k (ω))γkl (ω)/2]

=
∑

k, l
∑

ω

[2Al (ω)ρ̂(t )A†
k (ω) − (A†

k (ω)Al (ω)ρ̂(t ) + ρ̂(t )A†
k (ω)Al (ω))]γkl (ω)/2

=
∑

k, l
∑

ω

γkl (ω)

(
Al (ω)ρ̂(t )A†

k (ω) − 1

2
{A†

k (ω)Al (ω), ρ(t )}
)

. (A20)

The matrix formed by the coefficients γkl is the Fourier trans-
form of a positive function TrB[B+

k (t )Bl (t − s)ρB]. If this can
be diagonalized with a unitary operator, �kl can be represented
as

�kl (ω) = δkl
[

1
2γ (ω) + iS (ω)

]
, (A21)

where

S (ω) = −2P
∫ ∞

0

J (ω)

ω
dω. (A22)

In addition, P is the Cauchy principal part, and

J (ω) =
∑

k

2π |gk|2δ(ω − ωk ). (A23)

The dissipator part γ (ω) can be defined as

γω = 2π |gk|2
(
1 + np(ωk )

) ∫ ∞

−∞
ei(ω−ωk )τ dτ

+ 2π |gk|2np(ωk )
∫ ∞

−∞
ei(ω+ωk )τ dτ (A24)

for ω < 0,

γω = J (−ω)np(−ω)

for ω > 0,

γω = J (ω)(1 + np(ω)),

where nP(ω) is the Planck distribution given by

nP(ω) = 1

exp
(

h̄ω
kBTP

)− 1
. (A25)

We simplify Lindblad terms to include only the direct cou-
pling terms when k = l = P, where P ∈ {L, M, R, I} for our
model:

LP[ρ̂(t )] =
∑
ω>0

J (ω)[1 + nP(ω)]

(
AP(ω)ρ̂(t )A†

P(ω) − 1

2
{A†

P(ω)AP(ω), ρ̂(t )}
)

+
∑
ω<0

J (−ω)nP(−ω)

(
AP(ω)ρ̂(t )A†

P(ω) − 1

2
{A†

P(ω)AP(ω), ρ̂(t )}
)

=
∑
ω>0

J (ω)[1 + nP(ω)]

(
AP(ω)ρ̂(t )A†

P(ω) − 1

2
{A†

P(ω)AP(ω), ρ̂(t )}
)

+
∑
ω>0

J (ω)nP(ω)

(
AP(ω)ρ̂(t )A†

P(ω) − 1

2
{A†

P(ω)AP(ω), ρ̂(t )}
)

. (A26)

When we consider baths as separate, it is similar to analyz-
ing the common environment in an independent bath regime.
Thus, we get an incoherent correlated dissipation. For each

of the transistors, there are six independent dissipative chan-
nels. Substituting everything back at Eq. (A7) and considering
a multiquantum system (introducing “s”), we arrive at the
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interaction picture master equation neglecting cross dissipa-
tion terms as

∂ρ̂s(t )

∂t
= − i

h

[
Ĥ s

LS, ρ̂
s(t )

]+
∑

P∈{L,M,R}
Ls

P[ρ̂s(t )], (A27)

where Ĥ s
LS is the non-Hermitian part and is called the Lamb

shift, given by

Ĥ s
LS =

∑
ω

Ss(ω)As
P(ω)A†s

P (ω). (A28)

However, we neglect the Lamb shift assuming our system-
system interactions to be negligible. This removes coherent
evolution, and we can represent only the dissipative dynamics
of the system using the master equation in the interaction
picture as

∂ρ̂s(t )

∂t
=

∑
P∈{L,M,R}

Ls
P[ρ̂s(t )]. (A29)
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