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We study general features of the excitation spectrum of a system of one-dimensional chiral spinless fermions
with short-range interactions. We show that the nature of the elementary excitations of such a system depends
strongly on the nonlinearity of the underlying dispersion of the fermions. In the case of quadratic nonlinearity, the
low-momentum excitations are essentially fermionic quasiparticles and quasiholes, whereas the high-momentum
ones are classical harmonic waves and solitons. In the case of cubic nonlinearity, the nature of the elementary
excitations does not depend on momentum and is determined by the strength of the interactions. At a certain
critical value of the interaction strength, the excitation spectrum changes qualitatively, pointing to a dynamic

phase transition in the system.
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I. INTRODUCTION

The effect of interactions on the low-energy properties of
systems of fermions is strongly enhanced in one dimension.
Indeed, in three dimensions, such a system can be described
by the Fermi liquid theory [1], in which the elementary ex-
citations are similar to those of the Fermi gas. On the other
hand, the low-energy properties of systems of interacting
one-dimensional fermions are commonly described in the
framework of the Luttinger liquid theory [2,3], in which ex-
citations have bosonic statistics. The best known signature of
the Luttinger liquid behavior is the power-law renormalization
of the tunneling density of states [4,5].

The issue of the nature of the elementary excitations of
the Luttinger liquid is rather subtle. At low energies, many
properties of the system, including the tunneling density of
states, are described by the Luttinger model, in which the dis-
persion of the fermions is approximated by two linear chiral
branches [6]. In the absence of interactions, the many-body
spectrum of this model is highly degenerate. The Hamiltonian
of the system can be presented as that of the system of the
original fermions or as that of noninteracting bosons. Impor-
tantly, the degeneracy is lifted when nontrivial interactions
of the fermions are included in the Luttinger model. Typical
interactions destroy the picture of free fermionic quasiparti-
cles, whereas the bosons remain noninteracting, albeit with
a nonlinear dispersion. Alternatively, the degeneracy of the
spectrum can be lifted by including nonlinear corrections to
the dispersion of the fermions. This perturbation preserves the
picture of free fermionic quasiparticles but generates interac-
tions of bosonic excitations.

In a typical physical realization of one-dimensional
fermions, the dispersion is nonlinear, and interactions are
not negligible. The nonlinearity is usually quadratic, 56,(,f ) =
p*/2m, where m is the effective mass of the particles at the
Fermi level. On the other hand, for the short-range inter-
actions, the nonlinearity of the bosonic spectrum is cubic,
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(Se[(,b) = ¢p’. At low energies, corresponding to p < p* ~
(m¢)~', the nonlinearity of the fermion dispersion is the dom-
inant perturbation to the Luttinger model at low energies, and
the elementary excitations are fermions [7].

The elementary excitations of a system of one-dimensional
fermions can be studied in detail [8,9] in the case of strong
repulsive interactions, where the crossover momentum p*
is small compared with the Fermi momentum pg. At low
energies, the Hamiltonian of the system splits into two chi-
ral Hamiltonians, which can be reduced [9] to the quantum
Korteweg—de Vries (KdV) model [10,11]. At p < p*, the
system has two branches of elementary excitations near each
Fermi point, with dispersions showing quadratic nonlinear-
ities, 8¢, = £p*/2m*. They correspond to the fermionic
quasiparticle and quasihole expected from Ref. [7]. The dis-
persion undergoes a crossover at p ~ p*. At p>> p*, the
quantum KdV Hamiltonian approaches the classical limit. In
this regime, one of the excitation branches becomes a boson
and has a nonlinear dispersion with dg, p’, as expected
from the Luttinger model with short-range interactions. The
second branch corresponds to the classical KdV soliton; the
nonlinearity of its dispersion is 8¢, o p°/3.

The goal of this paper is to study the spectrum of the ele-
mentary excitations of a system of interacting chiral spinless
fermions, such as those at the edge of the integer quantum Hall
system [12] with occupation fraction v = 1. We will limit our-
selves to the case of short-range interaction and assume that
the dispersion of the fermions has either quadratic or cubic
nonlinearity. The case of quadratic nonlinearity is relatively
straightforward because upon bosonization [2], the Hamilto-
nian of the system again reduces to that of the quantum KdV
model [10,11]. The case of cubic nonlinearity of the fermion
dispersion, 86,(,f ) = y P, is qualitatively different. Most im-
portantly, because the dispersion of the bosonic excitations
of the Luttinger liquid also has cubic nonlinearity, 8¢ =

¢ p’, the relative significance of the dispersion curvature and

©2023 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.075438&domain=pdf&date_stamp=2023-02-27
https://doi.org/10.1103/PhysRevB.107.075438

K. A. MATVEEV

PHYSICAL REVIEW B 107, 075438 (2023)

interactions does not depend on momentum. The crossover
between the regimes of fermionic and bosonic excitations is
controlled by the effective interaction strength ¢/y. Upon
bosonization, the Hamiltonian of the system reduces to that
of the quantum modified KdV (mKdV) model [11]. Although
the latter is known to be integrable [10], no exact results
for the dispersion of the elementary excitations are available.
We study the excitation spectrum of this model numerically
and identify the limits where the elementary excitations are
either fermionic quasiparticles and quasiholes or semiclassical
phonons and solitons.

The paper is organized as follows. In Sec. II, we study the
case of chiral fermions with quadratic dispersion. In partic-
ular, we demonstrate that the boundaries of the many-body
spectrum coincide with the two branches of the elementary
excitations of the system. In Sec. III, we study the case of
cubic dispersion. We compute the boundaries of its many-
body spectrum numerically and identify the regions where
they correspond to the elementary excitations of the system.
We summarize and discuss our results in Sec. IV.

II. CHIRAL FERMIONS WITH QUADRATIC DISPERSION

We consider systems of spinless chiral one-dimensional
fermions with two-body interactions. In general, the Hamil-
tonian of such a system has the form:

N ceoeo 1
A=) eise,i+ 7 D V@eglnChlpy (D
’ %

Here, the operator ¢, annihilates a fermion in a state with
momentum p and energy €,, and L is the system size. We
assume periodic boundary conditions, and thus, p and g are in-
teger multiples of 27 7i/L. The notation : . .. } indicates normal
ordering of the fermion operators with respect to the ground
state |0), in which all the fermionic states with p < 0 are
filled, and those with p > 0 are empty.

We are interested in the case of short-range interactions for
which the Fourier transform of the interaction potential V (gq)
is well defined at g = 0 along with its second derivative [13].
At sufficiently small ¢, we then approximate

V(g) = V(0) — ng*, 2)

where n = —V"(0)/2. For typical repulsive interactions, V (0)
and n are positive.

A single-channel system of chiral fermions has only one
Fermi point pr. As discussed above, even in the vicinity of
the Fermi level, it is important to account for the nonlinearity
of the dispersion ¢,. In this section, we consider the generic
case in which the nonlinearity of the dispersion near prg is
quadratic:

(p—pr)

2m
Here, vy and m are the Fermi velocity and the effective mass.
To simplify the treatment of the finite-size effects, we define
pr = wh/L, which is equidistant from the highest occupied
single-particle state p = 0 and the lowest unoccupied state
p = 27w h/L in the many-body ground state |0).

€p=vr(p—pr)+ (€)

To make further progress, we bosonize the Hamiltonian
given by Egs. (1)-(3) using the standard expression [2] for
the fermion annihilation operator at point x,

Y(x) = %U;eiﬂx):. )

The field ¢(x) is expressed in terms of the bosonic annihila-
tion operators b; as

¢(x) = 271N% — Z \L/Z[exp (l 72 x)b,

=1

— exp <—@>b;] (@)

Here, N is the operator of the number of particles measured
from that in the ground state |0); the operator U lowers the
number of particles by 1, i.e., [U, N] = U. The colons in
Eq. (4) denote the normal ordering of the bosonic operators
b, and b].

Expressing the fermion operators c,, in the Hamiltonian (1)
in terms of the bosonic field ¢ (x) with the help of Eq. (4) and
substituting Eqs. (2) and (3), we obtain

TR*N
6mL?

Here, v = vp + V(0)/27h, and P is the operator of the total
momentum of the system:

H =v(P — prN) — + Hyay- (6)

. h L/2 )
P=ppN+—/ 1(0,0) :dx
4 —L/2

_TAN(N +1) | o 27hl
- L +Z L

bib,, (7
I=1

measured from that of the ground state |0). The last term in

Eq. (6) is given by

72 L/2 )
/ (@) —a*(3f¢) ]:dx, ()

12rm —L/2

Hyav =

where a* = 3mn/2x. Equations (6)—(8) fully account for the
effects of changing the particle number in the system. In the
following, we limit ourselves to the sector of the Hilbert space
corresponding to a fixed number of particles. In this case,
without loss of generality, one can set N = 0, resulting in

ﬁ = vf’ + HKdV- (9)

Since the Hamiltonian (1) conserves momentum, we conclude
that H and Hggv have common eigenstates and that the corre-
sponding energies of any state with momentum p are related
by

e(p) = vp + egav(p), (10)

where ¢ and egqy are the eigenvalues of the Hamiltonians A
and Hggy, respectively.
In combination with the commutation relation

[p(x), yp(y)] = —2mid(x — y), Y

which follows from Eq. (5), the Hamiltonian (8) defines the
quantum KdV problem [10]. It can also be obtained [9] by
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FIG. 1. Dispersions of the two branches of the elementary exci-
tations of the system of interacting chiral fermions with quadratic
dispersion. The two solid lines are obtained by combining Eqgs. (10)
and (12), with the (arbitrarily chosen) velocity value v = 10p*/m.
The dotted line shows the linear part of the dispersion relation e(p) =
vp. All the eigenstates of the system are confined to the shaded region
between the solid lines.

applying a certain limiting procedure to the bosonized Hamil-
tonian of either the Lieb-Liniger model [14] or the hyperbolic
Calogero-Sutherland model [15,16]. The latter two models
have Bethe ansatz solutions, and their elementary excitations
are well understood. Using those results, the exact dispersions
of the elementary excitations of the quantum KdV model at
L — oo have been obtained in Ref. [9]:

%2
exav(p) = ”—q(%) (12)
2m P
Here, p* = 3/i/2a*, which in our notations takes the form:
. Th
p=—. (13)
mn

The dimensionless functions e (s) and e_(s) correspond to
the two branches of the elementary excitations. Their exact
analytic expressions (in quadratures) can be found in Ref. [9];
here, we quote their limiting behaviors at large and small s.
For the upper branch, we have

52, s < 1,
er(s) = (14)
JE)PSOP, s>,
whereas for the lower one,
-2, s« 1,
e-(8) = -3, s> 1 )

The dispersions of the elementary excitations are illustrated in
Fig. 1.

The above asymptotic expressions for the energies of the
elementary excitations allow for simple physical interpreta-
tions. The scaling dimensions of the first and second terms in
the Hamiltonian density in Eq. (8) are 3 and 4, respectively.
Thus, at small momentum, the second term, which accounts
for the interactions of fermions, can be neglected. The re-
maining term accounts for the quadratic nonlinearity of the
dispersion of the fermions. Indeed, at p < p*, Eqgs. (12), (14),

and (15) yield quasiparticle dispersions exqy = +p?/2m,
which correspond to the fermionic quasiparticle and quasihole
excitations.

At large momentum p 3> p*, the system is in the interac-
tion dominated regime. Substituting Eq. (5) into the second
term in Eq. (8), we bring the interaction Hamiltonian to the
form:

2 h

Tl. (16)

o0
o __n 3% _
Hmt__Znﬁ[ZI:plblbl’ pr =

Thus, at large momentum p >> p*, the nonlinear correction to
the energy of the bosonic excitations in the Luttinger liquid
approximation scales as —p°, in agreement with the second
line of Eq. (15). To obtain the physical interpretation of the
other mode, one should restore the small first term in Eq. (8)
and derive the equation of motion for the particle density oper-
ator 0,¢/2m. At p > p* and L — o0, it becomes the classical
KdV equation [9]. The latter has two types of solutions. First,
there are solutions representing harmonic waves of infinites-
imal amplitude, which have cubic dependence of frequency
on the wave vector. They are equivalent to the bosonic exci-
tations in Eq. (16). Second, there are soliton solutions of the
KdV equation, for which the energy scales as p>/® [9]. They
correspond to the second line of Eq. (14).

Let us now discuss the full many-body energy spectrum
of the Hamiltonian (8). In the absence of interactions, n = 0,
each of the two simplest many-body states with momentum
p contains only a single elementary excitation, a quasiparti-
cle or quasihole, and the corresponding energies are p?/2m
and —p?/2m, respectively. Since any state of the system can
be viewed as a combination of particles and holes, and all
excitations of a chiral system have positive momenta, the
quasiparticle energies +p®/2m are the highest and lowest
energies possible at the total momentum p. Because the Bethe
ansatz eigenstates at  # 0 can also be classified by occupa-
tion numbers of quasiparticles and quasiholes, it is natural to
expect [8] that the two branches of elementary excitations in
Eq. (12) represent exact boundaries of the many-body spec-
trum at any interaction strength. This argument applies to
many-body states with only a few quasiparticles and quasi-
holes because their interactions vanish in the limit of infinite
system size. A generic state, however, has a finite density of
quasiparticles and quasiholes, and the above simple argument
does not apply. Nevertheless, we conjecture that Eq. (12)
yields the exact boundaries of the excitation spectrum at any
n. For the system of interacting chiral fermions defined by
Egs. (1)—(3), this means that the full energy spectrum is con-
fined to the shaded region in Fig. 1.

We now verify the above conjecture by numerical diago-
nalization of the quantum KdV Hamiltonian (8). In Fig. 2,
we plot the upper and lower boundaries of the spectrum
normalized by p?/2m. The conjectured values of the bound-
aries are given by Eq. (12), which upon normalization yields
e+(s)/s*, where s = p/p*. We used the analytic expressions
for e (s) obtained in Ref. [9] and plotted e (s)/s* as solid
lines in Fig. 2. The horizontal axis represents s = p/p* =
pmn/mh, see Eq. (13). In the numerical calculation, we fix
the total momentum p and find the highest and lowest eigen-
values of the Hamiltonian (8) for different values of the
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FIG. 2. Comparison of the quasiparticle energies (12) with the
boundaries of the spectrum of the Hamiltonian (8). The horizontal
axis s is the momentum in units of p* given by Eq. (13). The solid
lines are the energies (12) divided by p?/2m. The dots represent
the numerically computed boundaries of the energy spectrum of the
Hamiltonian (8) extrapolated to infinite system size.

interaction strength n. The eigenvalues are then divided by
p?/2m, and the results are extrapolated numerically to the
limit of infinite system size [17]. The resulting boundaries of
the spectrum are shown by dots in Fig. 2. They are in excellent
agreement with the conjectured values.

To summarize the results of this section, we have studied
the elementary excitations of the system of interacting chiral
spinless fermions described by Egs. (1)—(3). Upon bosoniza-
tion, the Hamiltonian reduces to that of the quantum KdV
model, see Eq. (8). At low momentum, the excitations are the
fermionic quasiparticle and quasihole. At high momentum,
they become the KdV soliton and the harmonic wave. The
energies are given by Egs. (10) and (12), where the exact
expressions for the functions e (s) can be found in Ref. [9].
The two quasiparticle branches are shown in Fig. 1. They
represent the exact boundaries of the many-body spectrum of
the system.

III. CHIRAL FERMIONS WITH CUBIC DISPERSION
A. Hamiltonian

We now turn to the special regime of the interacting system
of spinless chiral fermions, in which the Fermi momentum
pr coincides with an inflection point of the dispersion €. In
this case, the effective mass m is infinite, and €, has a cubic
nonlinearity near the Fermi point:

€p=vr(p—pr)+v(p—pr). (17)

In the following, we assume y > 0. The results for negative y
can be obtained by trivial symmetry transformations.

Next, we apply the bosonization transformation (4) to bring
the Hamiltonian given by Eqgs. (1), (2), and (17) to the form:

N 72hH? R N
H = (v— L2y>(P_PFN)+HmKdV~ (18)

Here again, v = vg 4+ V(0)/2nh, the operator of the total
momentum is defined by Eq. (7), and we again chose the

Fermi momentum pr = mh/L. The last term is given by

Wy (L2
Hykav = —— /
8 J 1)

where x = n/2mhy. In combination with the commutation
relation (11), the Hamiltonian (19) defines the quantum
mKdV problem [10]. In the limit of infinite system size, the
relation between the quantum mKdV Hamiltonian and that of
chiral fermions was discussed in Ref. [11].

Unlike the case of quadratic nonlinearity (3), the Hamilto-
nian given by Eqgs. (1), (2), and (17) possesses particle-hole
symmetry, i.e., it retains its form under the transformation

[0.:8)* + (1 —25)(329)°]:dx, (19)

) 27X
Copiq — c;,__,q, Wx) — Uix) exp <T> (20)

In the bosonized form, this property is expressed as
U—U', ¢(x)— —¢(x), b > —b;, N —- —N, (21)

see Egs. (4) and (5).

Since the Hamiltonian H conserves the total momentum
P, it follows from Eq. (18) that it has the same eigenstates at
Hikav. In the sector of the Hilbert space with the number of
particles equal to that in the ground state |0), one should set
N = 0. In this case, the eigenvalues of the two Hamiltonians
are related by

e(p) = vp + enxav(P); (22)

where we omitted the finite-size correction to the velocity v in
Eq. (18).

B. Boundaries of the energy spectrum

Our next goal is to study the boundaries of the energy
spectrum of the quantum mKdV Hamiltonian (19) in the limit
of infinite system size, L — o0o. We start with the case of free
fermions, corresponding to x = 0. In this case, the system
supports two types of elementary excitations: quasiparticles
and quasiholes. The particle-hole symmetry of the Hamilto-
nian (19) ensures that the quasiparticles and quasiholes with
momentum p have the same energy yp’. The latter is the
highest energy of any eigenstate of the Hamiltonian (19) with
momentum p at x = 0. The lowest possible energy at L — oo
is 0. To obtain an eigenstate with energy near this lower
boundary, the total momentum p should be divided among
many particle-hole pairs, each carrying a very small fraction
of the total momentum.

In addition to the case of vanishing interactions, x = 0,
the Hamiltonian (19) can be easily treated analytically in the
limits of strong repulsive or attractive interactions, y — =£o0.
In this case, the second term in Eq. (19) dominates. Using
Eq. (5), the latter can be written in terms of the bosonic
operators b;:

1 o 3¢ 27h
Hucov >y (5 =) Y_pibjb, pr=="1  (23)
=1

cf. Eq. (16). A system described by the Hamiltonian (23)
has bosonic elementary excitations with energies y(% — )P
This expression also yields the lower (upper) boundary of the
full energy spectrum at positive (negative) x — % The other
boundary of the spectrum at L — oo is at zero energy. It
corresponds to the state in which the total momentum p of
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FIG. 3. The energy spectrum of the Hamiltonian (19) for the
total momentum P = 8 in units of 2sr7/L. The units are chosen so
that y =i =1 and L = 2m. The solid lines show the positions of
the 22 energy levels for each value of the parameter x. (We have
subtracted P/4 =2 from all eigenvalues to account for the term
—(21?y JL*)P in Eq. (18) [17].) At x = 0, the two highest energy
states are degenerate, corresponding to the single quasiparticle and
quasihole with energies (P — %)3 + % =422.

the system is distributed among an infinite number of bosons
with infinitesimal momentum.

We showed so far that, at y = 0 and x — =00, the eigen-
states of the Hamiltonian (19) with a given momentum p
are confined to regions with the boundaries that scale as
p’. Because both contributions to the Hamiltonian density in
Eqg. (19) have scaling dimension 4, this observation holds for
any value of x. Furthermore, the form of the Hamiltonian (19)
ensures that, for any given y, all the energies are proportional
to y. Thus, the upper and lower boundaries of the spectrum
can be presented in the form:

emkav(p) = ax(X)y P’ (24)

The above results for x = 0 and x — £o00 can be summa-
rized as

5—=X, x— —oo,
ar(x) =1L x =0, (25)
0, X —> +00,
and
0, X — —O00,
a(x)=10, x =0, (26)
I—x, x— +oo.

The Hamiltonian (19) can be diagonalized numerically for
moderate values of the total momentum p. The results for
the full energy spectrum in the case of p = 8 x 2w /ii/L are
shown in Fig. 3. The functions «,(x) and «_(x) can then
be computed by extrapolating the energies of the highest and
lowest levels to the limit L — oo at fixed p, see Fig. 4.

FIG. 4. The functions o, (x) and «_(x) evaluated numeri-
cally [17] are shown by the top and bottom solid lines, respectively.
The dashed lines represent the result % — x for the bosonic excitation
branch, Eq. (23), which controls one of the boundaries at large
[x|, see Egs. (25) and (26). Note that, at x < x, ~ 0.4, we have
a_(x)=0.

The function a—(x ) shows two distinct types of behavior.
When the dimensionless interaction parameter is large and
positive (y — +00), a_ scales as % — X, in agreement with
Eq. (26). As we discussed, the corresponding lowest energy
state of the system at a given value p of the total momentum
has a single bosonic excitation with momentum p. As x is
lowered, o_(x) increases until it reaches zero at y = x, ~
0.4. At x < x,, the lowest possible energy of the system
remains zero. As we saw earlier, this is indeed the case for
x = 0and x — —oo, see Eq. (26). The lowest energy state in
these cases corresponded to the total momentum p being dis-
tributed among an infinite number of elementary excitations
with infinitesimal momentum. The numerical results of Fig. 4
imply that this is the case for all x < x,.

The behavior of the function o, (), which describes the
upper boundary of the spectrum, is qualitatively different. It
scales as % — x at large negative x, which corresponds to
the energy of the system with a single bosonic excitation,
see Egs. (23) and (25). It decreases gradually as y increases.
At x =0, it reaches the value o, (0) = 1, corresponding to
a state of free chiral Fermi gas with a single quasiparticle
or quasihole excitation. It continues to decrease at positive x
and gradually approaches zero at x — +o00, see Eq. (25). The
nature of the highest energy state at x >> 1 is not self-evident,
but our discussion in Sec. II suggests that it may be related to
the classical soliton solutions of the modified KAV equation.

C. Solitons

To study the classical limit of the Hamiltonian (19), we use
the commutation relation (11) to write the equation of motion
for the operator ¢ (x, 1):

1 1
— 0 =—(0:0) + [ = — x |03¢. 27
2y i@ ( ¢>)+(2 X) N 27
In the classical limit, ¢ (x, ¢) is no longer an operator, and thus,
we ignored normal ordering. The conditions under which this
approximation is applicable will be established later.
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Next, we introduce v = i*yt, differentiate Eq. (27) with
respect to x, and obtain a partial differential equation for the
function

u(x, ) = 0, p(x, 7) (28)
in the form

dou+3udu+ x,u=0, ¥=x—1. (29)

This is the well-known classical modified KdV equation [18].
At ¥ > 0, it has two soliton solutions:

ulx, 7)==+ (30)

V2¢
cosh (\/g(x - C‘L’))7

where ¢ > 0. No soliton solutions exist for ¥ < 0.

We are now in a position to obtain the condition of ap-
plicability of the classical approximation used in deriving
Eq. (27). Equation (30) yields the order of magnitude estimate
u ~ 4/c. Given that the spatial scale of the soliton solution
is /% /c, Eq. (28) yields ¢ ~ uy/%/c ~ /X%. According to
Eq. (11), the commutator of ¢(x) and ¢(y) is of order unity.
Classical approximation assumes that it is small compared
with ¢(x)¢(y) ~ . Thus, the classical results are applicable
at || > 1 or, equivalently, | x| > 1.

Integrating the standard bosonization expression for the
particle density n(x) = d,¢ /2w = u/2mw with respect to x, we
find the total number of fermions carried by a single soliton:

N, = :l:\/:. 31)

Thus, at ¥ > 1, when the classical mKdV theory applies to
the chiral Fermi system with cubic dispersion, the soliton
carries a large number of particles, |N;| > 1.

Next, we substitute Eq. (28) into Egs. (7) and (19) to
obtain the expressions for the momentum and energy of the
soliton (30) in the limit L — oo. This yields

| >

= — u“dx = —,/cx,
p dr J_o b4 X
h3 o) h3
E="Y | w*+a-20udx = X35,
87 J_ o 37

These expressions give the dispersion relation for the soliton
in the form:

n?
E(p) = ﬁyp‘- (32)

As expected, the energy scales with the third power of
momentum.

Similar to the case of a system of chiral fermions with
quadratic dispersion discussed in Sec. II, soliton behaves as
an elementary excitation of the system. Although states in-
volving many solitons are possible, the convex shape of the
dispersion relation (32) suggests that the state with one soliton
has the largest energy at a given momentum. This implies the
following behavior of o () ) at large x:

272

EYC IR 1, 33
324 = 1) x> (33)

(X)) =~

0.0b I L 1 1 I L 17

FIG. 5. Comparison of the numerically computed o, (x ) for x =
1,2,..., 35 (dots) with the asymptotic behavior (33) shown by the
solid line.

where we used Egs. (24) and (32) and the definition of ¥
from Eq. (29). The asymptotic behavior (33) is consistent with
our earlier expectation of the limiting value at y — 400 in
Eq. (25). It can also be compared with the numerical results
for a4 (x), but this requires extending the computation to
much larger values of x than those shown in Fig. 4. Such a
comparison shows good agreement at x 2> 20, see Fig. 5.

D. Interpretation in terms of elementary excitations

In Sec. II, we discussed the dispersions (12) of the el-
ementary excitations of the quantum KdV model (8) and
demonstrated that they also define the boundaries of the many-
body spectrum of the system at L — oo. The elementary
excitations were studied in Ref. [9] with the help of the
Bethe ansatz solutions of the Lieb-Liniger [14] and hyper-
bolic Calogero-Sutherland [16] models, which reduce to the
quantum KdV model under proper limiting procedures. Un-
fortunately, no mapping of this kind is known for the quantum
mKdV model (19). Furthermore, even though this model is
believed to be integrable [10], a Bethe ansatz solution is not
currently available. Thus, we so far focused on obtaining
the boundaries of the many-body spectrum of the Hamilto-
nian (19) at L — oco. We now discuss to what extent they can
be interpreted as elementary excitations of the system.

We start with the case of noninteracting fermions. If the
dispersion is quadratic, the quasiparticle and quasihole with
momentum p have energies p?/2m and — p? /2m, respectively.
These values are the highest and lowest possible energies of
any eigenstate with the total momentum p. In contrast, if the
dispersion is cubic, both the quasiparticle and quasihole have
the same energy yp’, which can be interpreted as a con-
sequence of the particle-hole symmetry of the Hamiltonian.
Due to the convexity of the dispersion y p?, it also yields the
upper boundary of the many-body spectrum. The lowest
energy state can be constructed by distributing the total
momentum p among a large number of quasiparticles and
quasiholes [17]. At L — oo, the corresponding energy is 0.

A similar interpretation of the boundaries of the spectrum
applies in the limit of strong attractive interactions, y —
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—oo0. In this case, to leading order, the Hamiltonian takes
the form (23). The highest energy state has a single bosonic
excitation:

Yo(p) = b310),  Ef(p)=v(3—x)p". (34)

Here, the subscript o indicates that the state contains an odd
number of bosonic excitations, which means that it is odd
with respect to the particle-hole symmetry, see Eq. (21). The
highest energy even state is

. 3
Vo(p) = b,_,, b}, 10), Eg(p)on(p)(l—%), (35)

where p; = 2w/i/L. In the limit of infinite system size, the
respective energies are equal, E,(p) = E.(p). The lowest en-
ergy eigenstates of the Hamiltonian (23) with large negative
x in the two parity sectors are

b5 10), (b)) 7B}, 10). (36)

The corresponding energies vanish at L — oo.

In the above examples, the system has two branches of
elementary excitations, which correspond to states that are
even and odd with respect to particle-hole symmetry, with
energies that become identical at L — oco. The dispersion
e(p) of the excitations defines the upper boundary of the
excitation spectrum of the quantum mKdV Hamiltonian (19),
while the lower boundary is at zero energy. Our results for
the boundaries of the energy spectrum at L — oo given by
Eq. (24) and Fig. 4 suggest that the same picture applies
at all x < x. =~ 0.4. Then the dispersion of the elementary
excitations is

Efkav(P) = a GOV P (37)

The function o4 (x) shown by the upper line in Fig. 4 con-
tinues into the region x > x., suggesting that the excitation
branch with dispersion given by Eq. (37) exists at all interac-
tion strengths. On the other hand, the lower boundary of the
spectrum corresponds to negative energies at x > x.. Further-
more, at x — 00, the approximation (23) applies again. The
dispersion associated with the two excitation branches (34)
and (35) is now concave and thus describes the lower bound-
ary of the energy spectrum. This suggests that, in addition to
the excitation branch (37), there is another one, with disper-
sion

X > Xe (38)

Our results for the boundaries of the spectrum do not
preclude the possibility that this branch continues into the
region x < x.. Indeed, a mode with energy o*y p* would not
affect the boundaries of the many-body spectrum at x < x.
if 0 < a® < ay. We note, however, that at x = 0, when the
model describes free fermions, quasiparticles and quasiholes
are the only types of excitations present, and their dispersion
is given by Eq. (37). Thus, the branch (38) must terminate at
some value of y between 0 and .. Some numerical evidence
supporting this scenario is obtained by studying overlaps of
the single boson state with all the eigenstates of the Hamilto-
nian with 0 < x < x. [17].

emxav(P) = 2 (X)y P,

IV. DISCUSSION OF THE RESULTS

In Sec. II, we studied the elementary excitations and the
boundaries of the many-body spectrum of the system of
spinless chiral fermions with short-range interactions. Upon
bosonization, the problem reduces to the quantum KdV
model (8), for which exact results for the excitation spec-
trum are available [9]. We concluded that, at p <« p*, the
excitations are essentially the quasihole and quasiparticle of
the free Fermi gas, while at p > p*, they are the bosonic
density wave and the KdV soliton. Using the definition (13)
of p*, this can be alternatively interpreted as crossover be-
tween the regimes of weak and strong interactions. Given the
curvature of the dispersions of the two excitation branches,
Fig. 1, it is natural to expect that they would coincide with
the lowest and highest energies of many-body states with total
momentum p. This conjecture is confirmed by our numerical
calculations.

Our main focus was on the study of the system of interact-
ing spinless chiral fermions with cubic dispersion, Sec. III.
Bosonization reduces this problem to the quantum mKdV
model (19). The scaling properties of this model dictate that
the energy scales associated with it must be proportional
to p*. This applies, in particular, to the boundaries of the
many-body spectrum, which we obtained numerically, see
Eq. (24) and Fig. 4. Unlike the case of quadratic dispersion
studied in Sec. II, we found two distinct regimes of interaction
strength. At y > ., the system behaves like the quantum
KdV model (8) in that both boundaries of the many-body
spectrum can be viewed as states with one elementary exci-
tation. The excitation belongs to one of two branches, with
dispersions given by Eqgs. (37) and (38). This analogy fails
at x < x., where only the upper boundary of the excitation
spectrum behaves as an elementary excitation; its dispersion
is given by Eq. (37). At x =0 and y — —oo, the lower
boundary corresponds to states with an infinite number of ex-
citations, each carrying infinitesimal momentum. It is natural
to apply the same interpretation to the lower boundary of the
spectrum at all x < x..

The existence of two qualitatively different regimes
depending on the interaction strength could have been antici-
pated by considering the limit of strong interactions, |x| —
oo. In this limit, the system is described by the classical
mKdV equation (29). The latter has harmonic wave solutions
with infinitesimal amplitude, for which the nonlinear term in
Eq. (29) can be neglected. They correspond to the bosonic
excitations giving the upper (lower) boundary of the spectrum
at y — —oo (x — +o00). In addition, at ¥ > 0, the mKdV
equation (29) has soliton solutions. In analogy with the quan-
tum KdV model (8), the soliton gives the upper boundary of
the excitation spectrum, see Sec. III C. In contrast, no soliton
solutions exist at § < 0, resulting in the qualitatively different
behavior of the lower boundary of the spectrum at y — —oo.

The energy eigenvalues of the original model of chiral
fermions with cubic dispersion are related to those of the
quantum mKdV model by Eq. (22). Our results are illustrated
in Fig. 6, where the boundaries of the energy spectrum are
shown in the two regimes, x < x. and x > x.. The behavior
of the energy spectrum in the latter regime is similar to that
for fermions with quadratic dispersion, see Fig. 1.

075438-7



K. A. MATVEEV

PHYSICAL REVIEW B 107, 075438 (2023)

&(p) &(p)

FIG. 6. Boundaries of the many-body spectrum of the system
of chiral fermions with cubic dispersion and short-range interac-
tions. For all x, the upper boundary is given by & = vp + &/ v (),
see Eq. (37). At x < x., the lower boundary of the spectrum is
the straight dotted line ¢ = vp, while at x > x., it is given by
& =vp+ & xqav(P), see Eq. (38).

Let us now briefly discuss the expected behavior of the
dynamic response functions of the system, which include the
spectral function A(p, €) and the dynamic structure factor
S(p, €). The shaded regions in Figs. 1 and 6 correspond to
the possible energies of the system at a given momentum.
The response functions must vanish outside these regions. In
nonchiral systems, the behavior of A(p, €) and S(p, €) near
the edge of support was studied phenomenologically using the
mobile impurity model [19,20]. This approach should be ap-
plicable near the boundaries of the spectrum of chiral fermions
with quadratic dispersion, which allow for the interpretation
as states with one elementary excitation. It should also apply
to the boundaries shown by solid lines in Fig. 6 for the case
of fermions with cubic dispersion. In the nonchiral case, both
A(p, €) and S(p, €) were predicted to scale as a power of the
distance from the boundary [19,20]. We expect an analogous
power-law scaling in the chiral case.

The lower boundary of the spectrum at x < x., shown by
the dotted line in Fig. 6, has a different nature. The states
near this boundary involve a large number of excitations with
very small momenta. A similar problem has been studied in
the case of phonons in liquid helium, where the exponential
suppression of the response was found [21]. In the case of one-

dimensional systems with linear spectrum, equivalent to the
limit x — —oo of our model, the exponential suppression of
the spectral function was found in Ref. [22]. Furthermore, in
the case of weakly interacting fermions, |x| < 1, the overlap
of a low-energy state involving a large number of particle-hole
pairs with that involving a single pair occurs in a high order
of the perturbation theory. As a result, the response func-
tions must again be exponentially small near the boundary.
We therefore expect exponential suppression of the dynamic
response functions near the lower boundary of the spectrum
at x < xc. Our numerical treatment of the Hamiltonian (19)
supports this conclusion [17].

The qualitative change of the energy spectrum at the inter-
action strength y = x, can be interpreted as a phase transition
in the system. Interestingly, this phase transition is purely
dynamic, in that it appears only in the dynamic response
functions of the system. Indeed, due to the chiral nature of the
problem, the ground state |0), which corresponds to the filled
Fermi surface, does not depend on the interaction strength.
Thus, the static properties of the system are not affected by
the interactions. Alternatively, one can consider the behavior
of the system at a fixed value p of the total momentum. In
this case, the ground state energy as a function of the in-
teraction strength y shows nonanalytic behavior at x = x,,
which can be interpreted as a quantum phase transition. A
similar nonanalytic behavior of the boundary of the energy
spectrum at a fixed momentum was recently found in the sys-
tem of chiral fermions with quadratic spectrum and Coulomb
interactions [23]. Finally, we note that, in our numerical data
represented in Fig. 4, we have not been able to find a deviation
of x. from 0.4, i.e., we expect that the exact value is . = %
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