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Entropy and Seebeck signals meet on the edges
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We explore the electronic entropy per particle s and Seebeck coefficient S in zigzag graphene ribbons. Pristine
and edge-doped ribbons are considered using tight-binding models to inspect the role of edge states in the
observed thermal transport properties. As a band gap opens when the ribbons are doped at one or both edges,
due to asymmetric edge potentials, we find that s and S signals are closely related to each other: both develop
sharp dip-peak line shapes as the chemical potential lies in the gap, while the ratio s/S exhibits a near-constant
value equal to the elementary charge e at low temperatures. This constant ratio suggests that S can be seen as
the transport differential entropy per charge, as suggested by some authors. Our calculations also indicate that
measurement of s and S may be useful as a spectroscopic probe of different electronic energy scales involved in
such quantities in gapped materials.
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I. INTRODUCTION

Nearly forty years ago, Rockwood argued that the ther-
moelectric power (TEP) or Seebeck coefficient S in any
material is proportional to the total electronic entropy S as
S = −S/F with F the Faraday constant [1]. Another rela-
tion, the Kelvin formula, connects the TEP with the charge
carrier number N derivative of S at constant temperature T ,
SK = (1/e)(∂S/∂N )T [2]. It has also been shown that S ∼ SK

holds qualitatively for noninteracting electrons in a single
band (simple metal), in strongly correlated systems [3,4],
as well as in the incoherent metal regime in ruthenates [5].
Several authors have further analyzed the entropy per particle
s = (∂S/∂N )T to provide a fundamental characterization of
the thermodynamics of electronic states in different material
systems [6–13].

The TEP S is defined as the voltage gradient response �V
to a temperature gradient �T at vanishing electric current
flux, S = �V/�T |I=0 [5]. S can be obtained from electronic
transport calculations and experiments, revealing characteris-
tic line shapes as function of gate voltage or chemical potential
μ, probing particle-hole asymmetries in the systems [3].
On graphene-based samples, S exhibits peak-dip line shapes
given by the contribution of electrons and holes as a gate
voltage or μ changes. For example, in monolayer graphene, a
dip-peak curve is seen near the charge neutrality point, broad-
ening its features with increasing temperature [14]. For gated
bilayer graphene systems, the dip-peak shape appears inside
the band gap of the band structure [15,16], and enhanced
dip-peak magnitudes are seen when graphene ribbon samples
are patterned with defined edges [17,18].
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Thermodynamic measurements of the total entropy S (no-
tice s �= S [6]) have allowed the acquisition of fundamental
information about the electronic state of quantum dots [19],
magic angle twisted bilayer graphene systems [20,21], and
even a universal value in disordered zigzag graphene ribbons
[22]. Similar analysis of the total entropy S has been carried
out in metals and other systems at high temperatures [23], as
well as electrons in disordered materials [24]. The entropy
per particle s provides an excellent thermodynamic tool, ex-
hibiting high sensitivity in low charge density regimes, with
experimental evidence of dip-peak curves showing zeros near
even filling factors [25]. Theoretical results for s(μ) show
that it exhibits peak-dip structures in diverse 2D materials,
including gapped graphene monolayers [8], semiconducting
dichalcogenides [10], and gated germanene [9]. Although s is
not a transport quantity, it can display line shapes similar to
those of S, suggesting a close interconnection between both
quantities not yet explored in 2D materials. We are interested
in how these quantities may reflect the spectral features of
the system and whether they exhibit similar characteristics in
order to fulfill the transport of s as S = s/e as a function of
chemical potential and temperature.

To explore the connection between s and S, we consider
edge-doped zigzag graphene ribbons with different widths.
The selection of these systems allows us to analyze how
the flat bands near the charge neutrality point (zero energy)
[26,27], and gapped states when the ribbons are doped on the
edges [28,29], behave as s and S are obtained at low and rela-
tively high temperatures [30]. We find the flat bands for zigzag
edges are captured by a peak-dip signal in s, similar to that
produced by the flat state in Lieb’s square lattice [13]. Such
flat bands result in vanishing S values for pristine ribbons but
transform into S = −2 kB

e ln 2 right at the edge state in gapped
ribbons. Most interestingly, a near proportionality s ∝ S
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FIG. 1. Undoped and doped simulated zigzag graphene ribbons.
(a) Pristine undoped zz0, (b) top edge doped zz1, (c) both edges
doped zz2. (d) Each ribbon is connected to two leads, held at voltage
V1 and temperature T1 on the left and V2, T2 on the right side. Ribbon
size and shape are schematic with length L, width W , and zigzag
edges along the x axis. Black spheres represent carbon atoms with
on-site energy δ0 = 0, cyan spheres in (b) and (c) stand for edge
atoms with on-site energy of δ1 = 0.2 eV, and yellow spheres in
(c) indicate top on-site energies of δ2 = −0.4 eV.

occurs inside the band gap of doped ribbons, both appearing
as sharp peak-dip curves. We in fact find that the ratio s/S has
a nearly constant value of e as μ shifts within the gap at low
T , except for a narrow discontinuity around the gap midpoint.
We then confirm the near equality S � s/e, demonstrating the
Kelvin formula and the relation argued early by Rockwood
[31]. The relation s/S � e is expected to be valid for other
gapped electronic systems, and their strong sensitivity to gaps
and van Hove singularities can be used as practical probes of
the electronic structure. This relation suggests further that the
TEP can be seen as the transported entropy per charge, pro-
viding an interesting connection between a transport quantity
and a thermodynamic measure.

II. MODEL

To describe the low-energy spectrum in pristine and
edge-doped zigzag graphene ribbons, we use π -orbital tight-
binding models constructed in real space with the PYBINDING

code [32]. For pristine ribbons [labeled as zz0 in Fig. 1(a)], we
fix the on-site energies throughout at zero δ0 = 0. Edge-doped
ribbons are modeled by changing the on-site potentials on
the edges to simulate gapped systems, as seen for example
in edge-oxidized and edge-nitrided doped ribbons [29]. In a
single-edge-doped ribbon [zz1 in Fig. 1(b)], the atoms at the
top edge have on-site energy δ1 = 0.2 eV. For both doped
edges (zz2 ribbons), the on-site energies at the top edge are
δ2 = −0.4 eV, and δ1 at the bottom edge, Fig. 1(c). This
allows us to inspect the role that edge states as well as gapped
states have on the thermal transport and thermodynamic re-
sponse, which we will see is quite important, as s and S can
show (non)equivalent signals as T and μ change.

With the dispersion relation results for each ribbon system,
we calculate the ribbon density of states (DoS), D, counting
states along the kx-momentum path X ′ − K − � − K ′ − X .
The ribbons are then connected to extended pristine graphene
ribbon current leads to obtain the charge transport character-
istics (transmission probability τ ) using the KWANT code [33].
The leads at the ribbon left and right are held at a voltage dif-
ference �V = V1 − V2 > 0, and consider the linear response
regime, i.e., |e�V | � μ, where μ is the overall chemical po-
tential. To obtain the TEP response, we consider a temperature
gradient �T between the leads with �T = T1 − T2 > 0, as
illustrated in Fig. 1(d). The TEP is quantified by the Seebeck

coefficient S, which can be expressed in terms of the thermal

integrals Ln = 2
h

∫ ∞
−∞ τ (ε)(ε − μ)n( − ∂ f

∂ε
)dε, as [34]

S = 1

eT

L1

L0
= kB

e

∫ ∞
−∞ τ (ε)α(ε)cosh−2

(
α(ε)

2

)
dε

∫ ∞
−∞ τ (ε)cosh−2

(
α(ε)

2

)
dε

, (1)

where h is the Planck constant, kB the Boltzmann con-
stant, ε the energy eigenvalues for each system, f (ε, T, μ) =
1/[eβ(ε−μ) + 1] the Fermi-Dirac distribution with β = 1/kBT ,
τ (ε) the transmission probability function, and α(ε) = (ε −
μ)/kBT . Similarly, the entropy per particle s can be expressed
as [9,11,12]

s = kB

∫ ∞
−∞ D(ε)α(ε)cosh−2

(
α(ε)

2

)
dε

∫ ∞
−∞ D(ε)cosh−2

(
α(ε)

2

)
dε

. (2)

Note the similarity of Eqs. (1) and (2), considering that by
obtaining τ (ε) and D(ε) respectively, one can capture the
equivalence and/or difference between S and s, providing
an efficient and reliable approach to study thermally acti-
vated electronic signals in diverse quantum materials, such as
gapped graphene ribbons.

III. RESULTS AND DISCUSSION

We compare graphene ribbons zz1 and zz2 with different
sizes and contrast their response with that of pristine ribbons
zz0. We look at ribbons with a nominal length L = 8 nm;
L is large enough to consider these results valid for any
mesoscopic ribbon. Most relevant characteristic is the ribbon
width, as it determines the spacings of the bulk subbands and
associated DoS features. The three ribbon widths considered
are W = 2 nm, W = 8 nm, and W = 12 nm, which we label
L8W 2, L8W 8, and L8W 12, respectively.

It is well known that pristine zigzag ribbons are metal-
lic, regardless of the width, with flat bands at zero energy,
Figs. 2(a) and 2(b) [35], due to extended states along both
ribbon edges. Edge-atom doping changes that, opening a gap
at the charge neutrality point. Figures 2(c) and 2(d) show the
band structure, D, and τ for a zz1-L8W 2 ribbon, while panels
(e) and (f) are for the wider ribbon zz1-L8W 8. Both ribbons
exhibit gaps with a magnitude of δ1 = 0.2 eV at the X, X ′
points, and smaller gaps near the K, K ′ points of � 0.11 eV
for L8W 2, and � 0.04 eV for L8W 8. The energy gaps near
K, K ′ decrease as the ribbon width increases and the two
edges further decouple [36]. The gaps at X, X ′ open because
of the asymmetric on-site potentials on the bottom (δ0 = 0)
and top (δ1) ribbon edges, which break inversion symmetry
in the ribbon. The top valence band shows a zero-energy
flat band within the (X ′, K) and (K ′, X ) windows, associated
with the unperturbed bottom edge [35]. The corresponding
DoS shows a large peak around zero energy, for both ribbon
widths. The gap opening near K, K ′ results in a parabolic
bottom conduction band with local inverted curvature at the
X, X ′ points. These characteristics result in large van Hove
singularities (vHs’s) in the DoS at the energies of the bottom
conduction and inverted bands. Additional van Hove peaks
at higher (and lower) energies are due to the onset of bulk
subbands, as those shown for L8W 8 in panels (e) and (f),
at energies � ±0.32 eV. These bulk states at larger energies
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FIG. 2. Electronic spectra for pristine ribbon zz0-L8W 2 [(a),
(b)]; ribbon zz1-L8W 2 [(c), (d)]; and ribbon zz1-L8W 8 [(e), (f)].
Left panels show band structure along X ′ − K − � − K ′ − X ; right
panels show transmission τ and density of states D. Numbers along
the horizontal axis indicate high-symmetry kx values, highlighted
with orange vertical lines in (a), (c), and (e). Gray vertical lines in
(b), (d), and (f) indicate integer steps for τ .

are common for pristine and doped ribbons [35]. The DoS
naturally vanishes for energies within the band gap near the
K, K ′ points. The gaps and van Hove peaks in the DoS will be
shown to produce strong signatures in the entropy per particle
response, as anticipated from Eq. (2).

When �V is turned on at �T = 0, charge carriers can be
transported along with allowed zigzag channels in the ribbon
system with probability τ (ε). As a channel opens, τ jumps
by 1, as we assume the current leads are pristine graphene
ribbons, resulting in the steplike curves seen in Figs. 2, 4, 6.
In Figs. 2(d) and 2(f), τ (ε) (dotted pink lines) jumps from
1 to 0 at the top valence energy, vanishes in the energy gap,
and jumps from 0 to 2 to 1 near the bottom of the conduction
band. This quantized electronic transport in ribbons is directly
linked to S via Eq. (1). When the ribbons are placed in a
temperature gradient �T , the charge carriers are thermally
excited and move from the hottest to the coldest lead and vice
versa.

In Fig. 3 we present S (dashed) and s (solid lines) signals as
function of μ at T = 10 and 100 K for pristine zz0-L8W 2 and
different width zz1 ribbons. The μ scan can be implemented
by gate voltages, which would produce corresponding charge
density changes in the system [16]. The pristine ribbon shows
an antisymmetric response for s around the flat band (μ = 0)
while S vanishes regardless the value of T , Figs. 3(a) and
3(b). When ribbons are doped, S turns on for each ribbon,
and at low temperatures, T = 10 K, s and S exhibit a dip-peak
structure with nearly identical shape and amplitude within
the energy gap of each ribbon zz1, Figs. 3(c) and 3(e). The
shapes are sharper for zz1-L8W 8 as the electronic structure
[Fig. 2(e)] shows a narrower gap for wider ribbons. The large

FIG. 3. Entropy per particle s (solid lines) and Seebeck signal S
(dashed lines) for zz0 [(a), (b)] and zz1 ribbons [(c)–(f)]. (a)–(d) Nar-
row ribbon, L8W 2; (e), (f) wide ribbon, L8W 8. Left panels, T = 10
K; right panels, T = 100 K. Notice different vertical scales for zz1
ribbons.

discontinuous sign change for both s and S occurs near the
gap midpoint μgmp, as the contributions from charge carrier
densities (electrons and holes) cancel each other at this μgmp

value. The similarity s � S whenever μ crosses the gap comes
from the vanishing of the relevant quantity, τ (ε) = D(ε) = 0
in this region, making Eqs. (1) and (2) equivalent. As T
increases to 100 K, Figs. 3(d) and 3(f), s and S decrease by
one order of magnitude, broaden their shape, and are no longer
similar for ribbons W > 2 nm. Much higher T destroys the s,
S equivalence [35].

Interestingly, the presence of the flat edge state and its
associated sharp DoS are captured by a positive peak in s at
μ � 0, decreasing only slightly with T . In contrast, S(μ = 0)
has a finite value = −2 kB

e ln 2 at low temperatures (� 100 K)
for both ribbon widths, as expected from an analytical esti-
mate that sets τ as a Heaviside function [35]. The (inverted)
parabolic band edge at ε = 0.2 eV is seen in both s and S as
a negative peak near μ = 0.2 eV, with larger amplitude for
s, that decreases with T . The flat and parabolic s and S edge
responses will be discussed in more detail below. As μ shifts
away from the gap edges for L8W 8 in Figs. 3(e) and 3(f),
bulk subband features appear in s and S, with s showing a
sign change near each DoS maximum. The peaks in S are
positive for electrons and negative for holes; such sign reversal
is clear in Fig. 3(d) for μ ∼ ±0.3 eV. Similar behavior for s
and S at larger μ values is also present for bulk subbands in
pristine ribbons [35]. One could use such sign reversal in S(μ)
to monitor subband curvature changes, as external fields (e.g.,
strains or voltages) may produce band inversions [37].

For a wider zz1 ribbon L8W 12, the band structure, DoS,
and τ are shown in Fig. 4. In Fig. 4(a), the zz1-L8W 12 ribbon
presents a narrow gap of � 0.027 eV near the K, K ′ points,
and a local gap of 0.2 eV at X, X ′ points is obtained as in
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FIG. 4. Electronic spectra for zz1-L8W 12 ribbon. (a) X ′ − K −
� − K ′ − X band structure, (b) transmission τ and density of states
D.

the narrow ribbons L8W 2 and L8W 8 [2(c), 2(e)]. The band
structure shows more bulk subbands at closer energies from
the flat band at zero energy (compared to the zz1-L8W 8 rib-
bon), as there are more allowed zigzag channels. In Fig. 4(b),
the DoS shows a large vHs for the flat band as well as for
the parabolic edge state at 0.2 eV; a smaller vHs is seen
for the inverted parabolic band at � 27 meV, and also for each
bulk subband as expected. Similarly to the narrow ribbons, the
transmission exhibits the expected jumps at the energy values
of the flat band, inverted and parabolic bands, and for each
bulk subband vHs.

Figure 5 presents s and S for zz1-L8W 12 ribbon. In panel
(a), both quantities show high correlation at T = 10 K, except
for the flat band near μ = 0, comparable to the zz1-L8W 2 and
zz1-L8W 8 ribbons shown in Figs. 3(c) and 3(e). However, a
clear difference occurs here for the zz1-L8W 12 ribbon com-
pared to zz1 narrower ribbons, as the first conduction bulk
subband is at nearly the same energy as the parabolic edge
state around μ = 0.2 eV [see Fig. 4(a)]. Consequently, both
s and S at T = 10 K have a mix behavior around 0.2 eV,
showing a negative peak followed by a positive peak as |μ|
increases, with larger magnitude for s. In Fig. 5(b), s and
S at T = 100 K lose their interconnection, especially inside
the band gap and at the parabolic state around the region
0 � μ � 0.3 eV.

Another interesting case is when both zigzag edges are
asymmetrically doped, as in the zz2 ribbons in Fig. 1(c). This

FIG. 5. Entropy per particle s (solid lines) and Seebeck signal S
(dashed lines) for zz1-L8W 12 ribbon. (a) T = 10 K, (b) T = 100 K.
Notice different vertical scales.
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FIG. 6. Electronic spectra for zz2 ribbons. Top row L8W 2,
bottom L8W 8. (a), (c) X ′ − K − � − K ′ − X band structure; (b),
(d) transmission τ and density of states D.

system is similar to ribbons with hydrogen-oxygen doped
edges [29], or to a nonmagnetic version of ribbons with
antiferromagnetic edges [36,38], [39]. Figure 6 shows the
electronic dispersion, DoS, and τ for L8W 2 and L8W 8 zz2
systems. The gaps are larger than for zz1 ribbons, as the on-
site potentials on the edges contribute additively, producing
0.6 eV gaps at X, X ′. Near K, K ′ the gaps narrow to � 0.3 eV
for L8W 2 and � 0.1 eV for L8W 8. We notice there is no flat
edge state around zero energy as in zz1 or pristine ribbons.
Instead, there is an asymmetric gap about ε = 0, and the edge
dispersions are parabolic. The structure is otherwise similar
to the case shown in Fig. 2, with rescaled energies: τ and
D present similar structure to the zz1 devices but with larger
band gaps. As a consequence, the dip-peak structure for s and
S in Fig. 7 is nearly identical within the gaps, with s � eS at
both 10 K and 100 K. The vanishing DoS on both ribbon gap
edges results in even more symmetric responses in s and S for
zz2 systems.

We now turn our attention to the electronic-thermodynamic
states of zz1 ribbon systems as their dispersions present a
flat band at the valence gap edge and a parabolic band at
the conduction gap edge. Figure 8(a) clearly exhibits the dip-
peak shapes of s and S within the gap at T = 10 K (region
highlighted in yellow) for the zz1-L8W 2 ribbon; the small
mismatch near midgap is related to the asymmetric shape of
the DoS (dot-dashed black line), especially around the flat
band near μ = 0. The area inside the red rectangle focuses on
s and S near the flat band, as shown amplified in the bottom
inset. s (blue solid line) presents a positive peak of height
s ∼ 3kB ln 2 for negative μ, changes sign near μ = 0 where
D has a maximum, and then continues with a constant slope
for positive μ [35]. The inset also shows s for the flat band
of the pristine ribbon (thin magenta line) with an antisym-
metric shape around μ = 0 with peak values of s ∼ ±3kB ln 2
[35,40]. In contrast, S (dashed cyan line) drops monotonically
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FIG. 7. Entropy per particle s (solid lines) and Seebeck signal S
(dashed lines) for zz2 ribbons. Top row L8W 2, bottom row L8W 8.
(a), (c) T = 10 K; (b), (d) T = 100 K. Notice different vertical
scales.

at the gap edge, reaches a value S(μ = 0) = −2 kB
e ln 2, before

having a constant slope for μ � μgmp [35].
The parabolic band edges at X, X ′ produce features at

μ � 0.2 eV, as displayed in the top inset. The associated
van Hove peak in D produces a sign change in s with peak
value ∼ − 3kB ln 2, whereas S has a negative peak of height
S � −0.46 kB/e, its sign indicating the inverted parabolic dis-
persion. Approximate results for s, S arising from edge and
bulk states can also be described by Sommerfeld expansions
for different Ln integrals [35], which agree with these results.

FIG. 8. (a) Entropy per particle s(μ) (solid blue) and Seebeck
signal S(μ) (dashed cyan line) at T = 10 K for zz1-L8W 2 ribbon.
Dash-dotted black line is the density of states D; solid magenta line
shows s for the pristine zz0-L8W 2 ribbon. Red (green) rectangle
indicates areas near the edge states at μ = 0 (μ = 0.2 eV) in the
bottom (top) inset. (b) Ratio s(μ)/S(μ) in units of e for curves within
the yellow rectangle in (a); results for T = 100 K are also included.

FIG. 9. Ratio s/S for zz1-L8W 12 ribbon at T = 6 K and T =
10 K in units of the elementary charge e. Horizontal dashed gray line
indicates a value of e.

Figure 8(b) shows the ratio s(μ)/S(μ) for the gap region
highlighted in yellow in Fig. 8(a). The ratio presents an asym-
metric line shape due to the asymmetry of both τ and D at the
gap edges of the zz1-L8W 2 ribbon; see Fig. 2(d). The ratio
at T = 10 K grows from the valence gap edge near μ = 0
reaching a constant value of ∼e across the gap, except for
a sharp discontinuity at midgap (μgmp � 0.055 eV), and falls
down near the conduction gap edge. At higher temperature,
T = 100 K, the ratio s/S shows smoother variation and nearly
constant e value over a smaller region.

The relation S � s/e is also valid in the gap region of wider
zz1 ribbons. Figure 9 shows the ratio s/S for the L8W 12
ribbon at low T . As the band gap for this ribbon is � 0.027 eV,
an approximated constant ratio of e occurs within this gap
value at T = 6 K and T = 10 K. For both T , the ratio exhibits
a discontinuity near the gap midpoint μgmp � 0.014 eV. The
thermal quantities s and S at low T for this wider zz1-L8W 12
system in Fig. 5(a) present similar behavior compared to the
narrower zz1-L8W 2 ribbon shown in Fig. 8. The main dif-
ference is that the band gap narrows for the wider L8W 12
ribbon, and as a result, the interconnection between s and S
signals, and their ratio s/S, occurs over a smaller energy scale.
Similar results for the ratio persist even at higher temperatures
for the zz2-L8W 2 system, as expected from the larger en-
ergy scales involved [35]. The equivalence between electronic
transport and thermodynamic response, as given by S � s/e,
suggests that S can be regarded as the transported entropy per
unit charge in the gapped regime. The connection between
these quantities could be explored and exploited in different
materials.

IV. CONCLUSIONS

When graphene ribbons are asymmetrically doped along
the zigzag edges a gap opens, and a flat band can remain for
an undoped edge of the ribbon. The entropy per particle s is
sensitive to the flat band, resulting in an antisymmetric (for
pristine ribbons) and an asymmetric peak-dip curve whereas
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the Seebeck signal S has a finite value of S = −2 kB
e ln 2 right

at the flat-band energy for a one-doped-edge ribbon. s and
S reach their highest amplitudes inside the gap with a dip-
peak structure and fulfilling the relation S � s/e all across the
gap—except at midpoint for narrow and wide ribbons. This
relation is especially clear at low temperatures, since at higher
temperatures its dependence on chemical potential is blurred
and softened. The Seebeck coefficient can then be seen as
the transported entropy per charge within the gapped regime.
The large magnitudes of s and S signals within transport gaps
can be useful for band gap estimation [41], while the sign S
is determined by the local band curvature. It would also be
interesting to explore if the ratio s/S as function of chemi-
cal potential can indicate changes in the quasiparticle charge

as materials may undergo transitions to strongly correlated
regimes and possible charge fractionalization [42].
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