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Strain-tuned spin polarization and optical conductivity in MoS2/EuS heterostructures
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We investigate strain-tuned spin transport and optical conductivity in a monolayer (ML) n-type MoS2/EuS
heterostructure under linearly polarized terahertz radiation using a low-energy effective Hamiltonian, which
takes displacement of the Dirac point induced by strain into account. Through modifying the strain modulus,
we find an adjustable relationship between the band edge energy and the strain. Thus the threshold and range
of allowed angles are strongly dependent on the strength of strain ε, whereas the angle θ along which the strain
is applied only acts on the former. Due to spin-flipped scattering generated by Rashba spin-orbit coupling, the
in-plane spin polarizations (i.e., PX and PY ) can be achieved, and their intensity can be enhanced by increasing
ε. Interestingly, we find that the out-of-plane spin polarization (i.e., PZ ) is related to the synergy of ε and the
Rashba parameter λR. Especially, PZ can approach 100% when ε = 9% and λR = 2 meV. Furthermore, the
optical transition between the spin-splitting subbands of the conduction band under the strain is studied. It
is shown that by varying ε we can control the magnitude of both absorption peaks and absorption valleys
in optical conductivity. Moreover, the presence of λR can be used to further enhance the absorption peaks
and valleys because λR can tune the energy difference between the spin-splitting subbands within a specific
valley and thus affect the optical transition channels. Our findings demonstrate that the strain can influence the
tunneling behavior and valley Hall conductivity in a ML n-type MoS2/EuS heterostructure, and these features
are applicable to other two-dimensional ML transition metal dichalcogenides, which is promising for terahertz
and valleytronic devices.
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I. INTRODUCTION

Exploiting the valley pseudospin of electrons to encode
and process information, that is, valleytronics, is a parallel
concept to spintronics. Unlike conventional semiconductors
with multiple valleys, for example, silicon, valleys in two-
dimensional (2D) materials are practically binary quantum
degrees of freedom that can be selectively detected. Mono-
layer (ML) transition metal dichalcogenides (TMDs) have
attracted extensive exploration because of their contribution
to significantly advancing the investigation of valleytronics
[1–3]. Owing to the lack of an in-plane inversion center, the
ML TMD features two degenerate but inequivalent valleys at
the corners of the first Brillouin zone [4,5], i.e., the K and
K ′ points. Breaking inversion symmetry makes carriers with
opposite valley indexes possess opposite Berry curvature �

and orbit magnetic moment m. The coupling of � and the
in-plane electric field gives rise to the anomalous velocity
which is associated with the valley Hall effect (VHE) [6–9].
Besides, m renders energy displacement which is related to
the physical phenomenon of the optical selection rule in the
presence of a magnetic field [10–13].

Because the essence of the connection between valleys
in 2D materials with hexagonal lattice structure is through
time-reversal symmetry, Hall currents from different valleys
under the driving force of an electromagnetic field have equal

*guoy66@tsinghua.edu.cn

magnitudes but opposite directions [13]. Thus the net Hall
current vanishes completely [14]. The major challenge is to
find feasible approaches to lift the valley degeneracy. Cir-
cularly polarized light [15–18], a magnetic field [19], and
magnetic doping [20] have been demonstrated to break the
balance of carrier densities between the two inequivalent val-
leys. However, optical pumping is not applicable for valley
filtering because it is difficult to control accurately [21]. On
the other hand, a tiny valley splitting of 0.1–0.2 meV/T makes
magnetic control feasible only under a strong field, which
is difficult to apply in practice [19,22,23]. Furthermore, the
ability to use magnetic doping to control valley pseudospin is
limited due to the scattering of electrons by impurities [24].

Beyond the abovementioned strategies, constructing a ver-
tical heterostructure formed by a TMD and a ferromagnetic
insulator such as EuS [25,26], CrI3 [27], MnO [24,28,29],
YMnO3 [30], and EuO [31] is a more advantageous means,
which can achieve giant valley splitting by exploiting the
magnetic proximity effect. Theoretically, generation of giant
and tunable valley splitting of 44 meV has been predicted in
a monolayer MoTe2 system based on EuO substrates [32].
Experimentally, Zhao et al. demonstrated the greatly enhanced
valley splitting in a monolayer WSe2/EuS heterostructure and
achieved a valley splitting of 25 meV, which is equivalent
to an effective exchange field of 12 T [26]. In addition, the
strength of valley splitting can be further promoted by the
in-plane strain [21,33]. Together with the preponderance of
a high Young’s modulus [34] and elastic limit [35], ML MoS2

is a flexible and soft material, which can withstand significant
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FIG. 1. (a) Schematic of the proposed model. Regions I and
III represent the pure monolayer (ML) MoS2 regions. Region II
corresponds to the strained MoS2/EuS region, in which a vertical
electric field and a relatively weak terahertz (THz) radiation field
linearly polarized along the 2D MoS2 plane are applied. The selected
x axis is parallel to the zigzag direction of the MoS2 sheet, and the
direction of the uniform planar tension is θ . (b) Energy potential
profile of the strained MoS2/EuS heterostructure with gate voltage
modulation, which is sandwiched between two pure MoS2 MLs. φ is
the incident angle, and the region of positive (negative) incidence
angles is defined as the area in the clockwise (counterclockwise)
direction relative to the normal incidence.

strain without rupture [34,36–38]. The valley splitting induced
by strain in TMDs has been investigated both experimentally
[39] and theoretically [40]. Moreover, recent studies have
shown that linearly polarized terahertz irradiation can be used
as an advanced technology to observe the VHE, when a ML
2D material is placed on ferromagnetic substrates [14,41].

In this paper, we theoretically apply uniaxial strain for
investigation of the VHE in a ML n-type MoS2/EuS het-
erostructure under linearly polarized terahertz irradiation. Our
major motivation is to explore how the strain regulates the
transport properties without and with spin flip and the optical
Hall conductivity with spin-flip interband transition within the
conduction band.

In Sec. II, we specify the Hamiltonian in the presence of
both proximity interaction and strain terms, and in Sec. III
we present the numerical results and relevant analysis of the
band structures and transport properties. In Sec. IV, we dis-
cuss the strain-tuned spin polarization components, and the
optical conductivity under strain is investigated in Sec. V.
Conclusions follow in Sec. VI.

II. THEORETICAL MODEL

We construct a MoS2/EuS heterostructure with a strained
ML MoS2 placed on a EuS substrate, as shown in Fig. 1.
The Hamiltonian for unstrained ML MoS2 considering the
proximity-induced interaction is [32]

H =
[

at (τkxσ̂x + kyσ̂y) + 	

2
σ̂z + U

]
⊗ Î

+ τ (λcσ̂+ + λvσ̂−) ⊗ ŝz + λR(τ σ̂x ⊗ ŝy − σ̂y ⊗ ŝx )

− (Bcσ̂+ + Bvσ̂−) ⊗ ŝz. (1)

Here, the first part corresponds to the orbit interaction,
where a = 3.193 Å and t = 1.1 eV are the representatives of
the lattice constant and hopping parameter, respectively [42].
τ = ±1 are the valley indexes, kx(y) are the wave vectors,
	 = 1.66 eV is the band gap, and U is the electrostatic po-
tential energy induced by a vertical electric field. The second
contribution is to describe the effective spin-orbit coupling
with λc = 1.5 (λv = 75) meV. Also, σ̂i and ŝi (i = x, y, z)
are the Pauli matrices referring to orbit pseudospin and real
spin, respectively. Î is the unit matrix, and σ̂± = (σ̂0 ± σ̂z )/2.
The third term originates from the substrate and perpendicular
electric field, and λR is the Rashba coupling parameter [43]. It
is worth noting that λR generally contains three contributions:
(1) λR often exists in 2D hexagonal crystals with uniaxial sym-
metry [44,45]. (2) It has been proved that λR can be adjusted
by a perpendicular electric field and determined by ab initio
calculations or by fitting with experimental data. Slobode-
niuk and Basko [46] obtained the relation λR = αR	/(2at )
with αR being the Rashba parameter [47]. (3) λR can be
further enhanced by the inversion-symmetry-breaking field
perpendicular to the plane of the monolayer TMD when the
monolayer TMD is placed on a substrate [26,32]. Bc and
Bv are effective Zeeman fields acting on the conduction and
valence bands of MoS2, respectively, which are generated by
the exchange coupling with the substrate.

We are interested in the situation where the ML MoS2 sheet
is uniformly stretched (or compressed) along a prescribed
direction, as shown in Fig. 1(a). The Cartesian system is
selected in such a way that the x axis is consistent with the
zigzag direction of the lattice. The strain tensor in the lattice
coordinate system is written as [48–50]

ε = ε

(
cos2 θ − ν sin2 θ (1 + ν) sin θ cos θ

(1 + ν) sin θ cos θ sin2 θ − ν cos2 θ

)
, (2)

where ε denotes the strain modulus and ν = 0.21 is the Pois-
son’s ratio for MoS2 [49]. θ represents the angle of applied
strain with respect to the x axis, and we set the x axis to coin-
cide with the zigzag direction. According to the tight-binding
model, strain can influence the electronic properties by the
derivative of the hopping parameter with respect to the lattice
vector [50]. By extending the tight-binding Hamiltonian in
the strain modulus, we find that the low-energy approximation
of the Hamiltonian can still be expressed in Dirac-like form
[51,52]:

H =
[

at (τqxσ̃x + qyσ̃y) + 	

2
σ̂z

]
⊗ Î

+ τ (λcσ̂+ + λvσ̂−) ⊗ ŝz + λR(τ σ̂x ⊗ ŝy − σ̂y ⊗ ŝx )

− (Bcσ̂+ + Bvσ̂−) ⊗ ŝz, (3)

where q = (qx, qy)T = k − qD denotes the wave vector.
qD represents the pseudovector potential, satisfying
q

D
a = τ (κ0ε(1 + ν)cos(2θ ),−κ0ε(1 + ν)sin(2θ ))T .

σ̃i = εiσi (i = x, y), with εi = 1 − λiε, λx = 2(κ0 − 1/2), and
λy = −2(κ0 − 1/2)ν. κ0 = (a/2t )|∂t/∂a| ≈ 1.6 indicates the
logarithmic derivative of the nearest-neighbor parameter t to
the lattice constant a in the absence of strain. The Hamiltonian
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FIG. 2. The band edge energy as a function of (a) ε when θ = 0π

and (b) θ when ε = 3%.

is equivalent to a 4 × 4 matrix

H=

⎡
⎢⎢⎢⎢⎢⎣

	
2 + hc

τ 0 τ�x − i�y 0

0 	
2 − hc

τ 2iλR τ�x − i�y

τ�x + i�y −2iλR −	
2 + hv

τ 0

0 τ�x + i�y 0 −	
2 − hv

τ

⎤
⎥⎥⎥⎥⎥⎦,

(4)

where

hc(v)
τ = τλc(v) − Bc(v),

�i = atεiqi. (5)

It is convenient to refer to the direction of strain as the x
axis, which requires the rotation of the Dirac equation in the
sublattice space by using unitary matrix [53,54]

U (θ ) =
(

1 0
0 e−iθ

)
; (6)

one obtains

H = U †(θ )HU (θ ). (7)

The position of the Dirac points after rotation is q
D
a =

τ (κ0ε(1 + ν)cos(3θ ),−κ0ε(1 + ν)sin(3θ ))T . The transmis-
sion coefficient tτ,ss′ and eigenvalue can be derived from the
strained Hamiltonian, and details of the relevant derivation are
contained in Appendix A.

III. TRANSPORT PROPERTIES

First, we investigate the effect of strain on the transport
properties of electron tunneling through the above system, and
the derivations for wave equations and transmission probabil-
ity are given in Appendix A. Figure 2 presents the effects of
the strength of strain ε and the angle along which the strain is
applied, θ , on the band edge energy. It is clearly demonstrated
that the band edge energy strongly depends on strain. For the
case of θ = 0 [see Fig. 2(a)], the band edge energy of the
conduction band minimum (CBM) initially decreases with ε

from a value of 1033 meV and reaches its minimum value
of 838.5 meV at 0% strain; then it rises with the further
increase of ε. Conversely, with an increase in ε, the band edge
energy of the valence band maximum (VBM) first increases to
its maximum value and then decreases. Correspondingly, the
band gap reaches a minimum value of 1660 meV in the re-
laxed situation (ε = 0%) and a maximum value of 2064 meV

at −20% strain. Figure 2(b) gives the band edge energies as
a function of θ when ε = 3%. It demonstrates that both the
CBM and the VBM oscillate with θ and that the correspond-
ing band gap is also sensitive to θ . Especially, at θ = 0π

and θ = 0.5π , the band gap reaches a minimum value of
1664 meV and a maximum value of 1665 meV, respectively.

Figure 3 shows the isoenergy surfaces (ISs) in the strained
region (colored circles) and the unstrained region (black cir-
cles for the K valley and gray circles for the K ′ valley)
under various strain and gate voltage configurations, i.e.,
(ε,U (meV)). It is clear that the transmission segment is asym-
metric with respect to φ = 0. As ε increases from −3 to 3%,
the IS in the K valley of the strained region moves downward,
while the IS in the K ′ valley moves upward. The conservation
of the ky component of the wave vector and the fact that kx

corresponding to the propagating wave is a real value deter-
mine the range of incident angles that are not being filtered
out by the strained region. For example, when ε = −3% and
U = 100 meV, the overlap between the unstrained isoenergy
surface and the strained one for the K valley with spin up
(K ↑) yields a range of ky ∈ (−0.0283, 0.05375) Å−1, which
corresponds to the red shaded region in Fig. 3(a). As shown
in Fig. 1(b), the incident angle along the clockwise direction
relative to the normal incidence is defined as the positive
incidence angle, while the angle along the counterclockwise
direction is defined as the negative incidence angle. In such
a way, the maximum of the positive incidence angle that can
transmit the structure is φ1 = arctan(0.053 75/0.116) ≈ 25◦
[see point A in Fig. 3(a)], while the minimum value of the
negative incidence angle is φ1 = arctan(−0.0283/0.125) ≈
−13◦ [see point B in Fig. 3(a)]. Therefore the threshold of
the allowed angles for an electron with K ↑ and without spin
flip when ε = −3% and U = 100 meV is (−13◦, 25◦), which
will be confirmed in the transmission spectrum and we will
discuss later [see Fig. 4(a)].

The selection rule of ε on the allowed angle is well illus-
trated in Fig. 3: (1) For the K valley, the angular range for
generating propagating waves narrows when φ ⊂ [0, π/2],
while the range widens when φ ⊂ [−π/2, 0] with increasing
ε [see Figs. 3(a) and 3(b)]. (2) For the K ′ valley, the situation
is quite opposite, i.e., the angular range widens when φ ⊂
[0, π/2], whereas the range narrows when φ ⊂ [−π/2, 0] as
ε increases [see Figs. 3(c) and 3(d)]. These results clearly
show the obvious difference in band structures between the
two valleys under strain and indicate that the heterostructure
has the function of filtering valley particles.

The influence of electrostatic potential U on the allowed
angles for obvious transport when ε is fixed is also shown
in Fig. 3. As U is decreased to 10 meV when ε = 3% (pur-
ple circles), the ISs of the strained region in the K valley
shift downward relative to the unrelaxed ones [see Figs. 3(a)
and 3(b)], while the ISs move upward in the K ′ valley [see
Figs. 3(c) and 3(d)], which results are consistent with the trend
of the ISs when (3%, 100). In addition, the IS of (3%, 10) has
the radius closing to the unstrained one. In such a case, ky

of the strained regions for the K (K ′) valley almost overlaps
with that of the unstrained one, which results in the transmis-
sion of particles with almost all incident angles.

Figures 3(e)–(h) show the strained and unstrained band
structures near the Dirac point for different configurations of
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FIG. 3. (a)–(d) Isoenergy surfaces (ISs) of the strained (colored circles) and the unstrained (US) regions (black circles for the K valley
and gray ones for the K ′ valley) under various configurations of (ε,U (meV)). The colored shaded parts represent the range of allowed angles
in which significant transmission may occur. (e)–(h) Band structures under different ε with U = 100 meV. The coordinates of point A are
(0.116, 0.053 75) Å−1, and those of point B are (0.125, −0.0283) Å−1. The parameters are Bc = 10 meV, Bv = 8 meV, λR = 2 meV, and
θ = 0.25π .

spin and valley indexes. One can see that the Dirac point is
shifted compared with the unstrained one, thus generating a
pseudovector potential induced by strain. Take the K valley
as an example [see Figs. 3(e) and 3(f)]; when ε = 0, we
find that the Dirac point is given at kx = 0. When ε = 3%
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FIG. 4. (a)–(d) Angular distributions of Tss′ in the two valleys
with different configurations of (ε,U (meV)). The incident energy is
E = 950 meV, Bc = 10 meV, Bv = 8 meV, λR = 2 meV, L = 10 nm,
and θ = 0.25π .

and θ = 0.25π , the Dirac point shifts to kx = −0.01 Å−1,
whereas the Dirac point shifts to kx = 0.01 Å−1 when
ε = −3%. Figures 3(g) and 3(h) show that the displacement
direction of the Dirac point under strain in the K ′ valley
is opposite in the K valley, which can be explained by the
pseudovector potential q

D
.

In Fig. 4, we display the valley- and spin-dependent trans-
mission probabilities without (T↑↑ and T↓↓) and with spin flip
(T↑↓ and T↓↑) as a function of the incident angle with various
combinations of (ε,U (meV)). It is seen that the spin-flipped
scattering is finite because the effect of the Rashba spin-orbit
coupling (SOC) is considered [see Figs. 4(b) and 4(c)]. In the
presence of the strain modulus ε, both the spin-conserved and
spin-flipped transmissions show asymmetric angular distribu-
tions about φ = 0. As ε increases, the transmission spectra
show distinct valley-dependent transport behaviors. That is,
for the K valley, the region of incident angle that can trans-
mit the strained segment is reduced when φ ⊂ [0, π/2] and
increases when φ ⊂ [−π/2, 0] [see Fig. 4(a)], while the re-
gion for the K ′ valley gets wider when φ ⊂ [0, π/2] and
gets narrower when φ ⊂ [−π/2, 0] [see Fig. 4(d)]. Thus the
difference in the angular distribution of transmission between
the K and K ′ valleys can be effectively controlled via the
strain. The physical mechanism of this valley filtering effect
can be explained by the ISs, indicated by the shaded areas in
Fig. 3, which are determined by the conservation of energy
and momentum.

With decreasing applied voltage, it is observed that the
allowed sectors are significantly broadened and dependent on
the valley index. Furthermore, compared with (3%, 100), the
transmission spectra at (3%, 10) show the effect of remarkable
resonant enhancement [see Figs. 4(a) and 4(d)]. Moreover, it
is evident that the allowed range for the transparent state with
spin up is misaligned with the spin-down one. Therefore, since
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the transmission of spin- and valley-related particles depends
on ε and U , the heterostructure with a suitable combination of
(ε,U (meV)) can be used as the spin valve and valley valve to
filter the incoming beam at the same time.

T↑↑ as a function of φ and incident energy with various
combinations of (ε,U (meV)) in the K valley is plotted in
Figs. 5(a), 5(c), and 5(e), and that in the K ′ valley is plotted
in Figs. 5(b), 5(d), and 5(f). In the presence of ε, T↑↑ reveals
asymmetric behavior about φ = 0. Comparing Figs. 5(a) and
5(b), one can see that the degree of asymmetric behavior about
φ = 0 is significantly controlled by ε. When U = 100 meV,
T↑↑ under strains of both −3 and 3% is blocked within a
broad angular range, as shown in Figs. 5(a)–5(d). However,
the suppressed area becomes quite small when U = 10 meV
[see Figs. 5(e) and 5(f)]. Note that the spectrum of the K valley
is misaligned with that of the K ′ valley, i.e., the degeneracy
of the valley is removed. Therefore one can expect that the
strained MoS2/EuO heterostructure can give rise to a valley
filter effect.

In Fig. 6, we exhibit the valley-related ISs with spin-
up state and TK (K ′ ),↑↑ under different configurations of
(θ, λR(meV)). From Figs. 6(a) and 6(b), it can be seen that
with the changing of θ , the radius of the IS is unchanged, and
the range of the allowed angles is unchanged. Apparently, the
radius of the IS is caused by the elliptic equation εx

2qx
2 +

εy
2qy

2 = K2 according to Eq. (A4), and the two axes of the
IS have lengths 2|K/εx| and 2|K/εy|, respectively, which are
independent of θ . Besides, the strained IS for the K (K ′)
valley moves in the direction of positive (negative) incidence
angle around the center of the unstrained IS with increasing
θ . The equation of the ellipse shows that the center of the
IS is (qD, qDy ) in phase space, which indicates that θ has
an effect on the threshold of the allowed angles. Moreover,
with increasing λR, the reduced radius of the IS results in
the reduced range of allowed angles at both valleys [see the
insets in Figs. 6(a) and 6(b)]. This can be understood with the
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valleys, respectively. The incident energy is E = 950 meV, Bc =
10 meV, Bv = 8 meV, U = 100 meV, and ε = 3%.

help of the elliptic equation since increasing λR causes |K| to
decrease.

Next, we present TK (K ′ ),↑↑ versus the incident angle φ un-
der different configurations of (θ, λR(meV)). The following
can be seen from Figs. 6(c) and 6(d): (1) Increasing θ does
not affect the transport characteristics, but makes the sector
of allowed angles for the K (K ′) valley move towards the
region of positive (negative) incidence angle. (2) Increasing
λR can suppress tunneling and narrow the range of allowed
angles for both valleys. These phenomena can be explained
by the overlap of ISs between the unstrained region and the
strained region under the premise of ky conservation, as de-
picted in Figs. 6(a) and 6(b). When λR = 2 meV, the IS in
the unstrained segment overlaps well with that in the strained
one. Therefore the transmission is significant. Increasing λR

reduces the radius of the IS in the strained region, resulting
in a reduction of the overlap with the unstrained one. Conse-
quently, the transmission is suppressed dramatically, and the
range of the allowed angles decreases.

In Fig. 7, TK (K ′ ),↑↑ are plotted as a function of the inci-
dent angle φ and the incident energy. When λR and ε are
fixed, i.e., λR = 2 meV and ε = 3%, the overall section of
the allowed angles for the K (K ′) valley moves towards the
region of positive (negative) incidence angle, but the shape
remains the same when θ is changed from 0π to π/2, as
shown in Figs. 7(a)–7(d). When λR = 50 meV is considered
[see Figs. 7(e) and 7(f)], it is found that increasing λR can
reduce the range of the allowed angles and suppress the trans-
mission probability. Another prominent feature of increasing
θ is to amplify the asymmetry of transmission between the two
valleys; that is, enhanced valley polarization appears when
θ is increased. This enhanced effect is further demonstrated
in Fig. 8, which displays the valley polarization of the in-
cident particles with spin up and without spin flip and is
determined by P↑↑

V = (TK,↑↑ − TK ′,↑↑)/(TK,↑↑ + TK ′,↑↑). Our
study suggests the possibility of addressing a specific valley
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FIG. 7. T↑↑ as a function of the incident angle φ and the incident
energy under different configurations of (θ, λR(meV)) in the K valley
[(a), (c), and (e)] and K ′ valley [(b), (d), and (f)]. Bc = 10 meV, Bv =
8 meV, U = 100 meV, ε = 3%, and L = 10 nm.

by controlling the incident angle and the incident energy. On
the other hand, the valley polarization can also be enhanced
by regulating θ .

IV. SPIN POLARIZATION VECTOR

Figures 9 and 10 plot the components of the spin polariza-
tion vector as a function of the Fermi energy under different
ε for λR = 2 meV [Figs. 9(a), 9(c), and 9(e) and Figs. 10(a),
10(c), and 10(e)] and λR = 50 meV [Figs. 9(b), 9(d), and 9(f)
and Figs. 10(b), 10(d), and 10(f)]. Combining Fig. 9 when
θ = 0 and Fig. 10 when θ = 0.25π , we can draw the follow-
ing conclusions. (1) The spin-flipped scattering generated by
Rashba SOC leads to the in-plane spin polarizations, i.e., PX

and PY , as shown in Figs. 9(a)–9(d) and Figs. 10(a)–10(d).
(2) When ε is fixed, the components of the spin polarization
oscillate with the Fermi energy. (3) The valleys and peaks of
the in-plane spin polarization components PX and PY move to
the lower-energy region with the increase of ε. (4) Increasing
ε significantly enhances the strengths of PX and PY , and this
tendency is not affected by λR. (5) The strength of PZ depends
on the competition between ε and λR. When λR is small, i.e.,
λR = 2 meV, the increase of ε increases the amplitude of PZ ;
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θ=00.5π

-0.5π

Energy (meV)

(a) (b)

920 930 940 950

P
θ=π/2

FIG. 8. Valley polarization as a function of the incident angle φ

and the incident energy for (a) θ = 0 and (b) θ = π/2. Bc = 10 meV,
Bv = 8 meV, λR = 2 meV, ε = 3%, and L = 10 nm.
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FIG. 9. The components of the spin polarization vector with
variable ε. Bc = 10 meV, Bv = 8 meV, θ = 0, and U = 100 meV.
λR = 2 meV for (a), (c), and (e), and λR = 50 meV for (b), (d), and
(f).

especially, when ε = 9%, PZ approaches to 1 [see Figs. 9(e)
and 10(e)]. When λR becomes larger, i.e., λR = 50 meV, we
can see that the amplitude of PZ decreases with the increase of
ε [see Figs. 9(f) and 10(f)]. (6) Increasing λR enhances PX and
PY but suppresses PZ . (7) The three components of the spin
polarization vector change slightly with θ .

In order to better understand the regulation of strain on
spin polarizations, we show the three components of the spin
polarization vector as a function of ε at fixed Fermi energy
EF = 932 meV in Fig. 11. With increasing ε, both PX and
PY show oscillatory behaviors. One can observe that, for ε in
the range −20% � ε � 1% and λR = 2 meV, PX decreases
distinctly with the increase in ε and closes to its minimum
at 1%. When 1% < ε � 14.5%, PX increases, and then it
decreases when ε > 14.5%. Besides, the variation of PY with
ε is just opposite to that of PX , which is determined by the con-
servation of |P| [see Fig. 11(a)]. For the case of λR = 50 meV
[see Fig. 11(b)], it is interesting that the extreme values of
PX and PY can be enhanced to 2.85 times and 34 times the
corresponding values when λR = 2 meV, respectively.

Figures 11(c) and 11(d) clearly show that the strain can
be used to modulate and magnify the magnitude of PZ , in
which PZ can reach 100% at ε = 20% when λR = 2 meV. We
also find that, for relatively small λR, i.e., λR = 2 meV, PZ

increases continuously with ε [see Fig. 11(c)]. However, when
λR = 50 meV, PZ is suppressed and shows fluctuation with the
increase in ε. From the evolution of PX , PY , and PZ with ε, we
can arrive at the conclusion that strain is an effective means to
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100 meV. λR = 2 meV for (a), (c), and (e), and λR = 50 meV for
(b), (d), and (f).

adjust the strength of the spin polarizations and that the mag-
nitude of PX , PY , and PZ is also sensitive to the Rashba field.

Further understanding of ε-modulated spin polarizations
can be gained through Fig. 12, where Gxy and Gss are plotted
as a function of ε. When ε varies from −20 to 20%, Re[Gxy]
under both λR = 2 meV and λR = 50 meV mainly under-
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FIG. 11. The components of the spin polarization vector as a
function of ε. Bc = 10 meV, Bv = 8 meV, θ = 0, EF = 932 meV,
and U = 100 meV. λR = 2 meV for (a) and (c), and λR = 50 meV
for (b) and (d).
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100 meV. The insets in (c) and (d) are the total conductance vs ε.
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goes the process of first decreasing, then increasing, and then
decreasing [see Figs. 12(a) and 12(b)]. Correspondingly, the
magnitude of PX is oscillatory with ε according to Eq. (A8).
In contrast, the fluctuating behavior of Im[Gxy] is the opposite
of Re[Gxy], which leads to the corresponding change in PY .
In addition, the magnitude of both Re[Gxy] and Im[Gxy] is
enhanced when λR increases from 2 to 50 meV. Consequently,
PX and PY are enlarged when λR = 50 meV. G↑↑ and G↓↓
are plotted in Figs. 12(c) and 12(d). It is clearly shown that
G↑↑ possesses obvious value, while G↓↓ is greatly suppressed.
Accordingly, the magnitude of PZ is quite large. We also find
that the decreasing trend of G↑↑ when −8% � ε � 10% and
λR = 2 meV is canceled out by the more rapid decrease of
Gt [see inset in Fig. 12(c)], resulting in the increase of PZ

with ε. However, the more pronounced reduction in G↑↑ when
−12% � ε � 7% and λR = 50 meV cannot be eliminated by
the drop in Gt [see inset in Fig. 12(d)], causing PZ to oscillate
with ε.

V. OPTICAL CONDUCTIVITY

To demonstrate how the longitudinal and transverse optical
conductivities are modified by strain, we employ the Kubo-
Greenwood formula within the linear response theory and
in the optical limit, and a derivation of the strained optical
conductivity is given in Appendix B. Figure 13 represents
the real part of the transverse conductivities Re σxy and the
longitudinal conductivities Re σxx as a function of radiation
frequency f without and with strain at various Fermi energies.
The spin splitting of the conduction band in the TMD system
is up to 72 meV induced by the proximity, which is less than
the band gap and within the terahertz regime. Therefore the
analysis only focus on the VHE contributed by the spin-flip
interband transition of electrons within the conduction band.
In addition, for ML MoS2, the Fermi energy can be tuned
by the gate voltage. As can be seen from Fig. 13, for a
specific EF , the position of the absorption peak or valley and
the width of the absorption window are slightly affected by
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and (d2) EF = 950 meV. Bc = 10 meV, Bv = 8 meV, λR = 2 meV,
and T = 5 K.

strain. Nevertheless, it is interesting that the amplitudes of
both the absorption peak and the absorption valley are reduced
when ε changes from −20 to 20%. Apart from the effect
of strain on the window of optical transition, the intensity
of the absorption peak or valley and the position and the
width of the absorption window are also obviously affected
by the Fermi energy. As shown in Fig. 13, we find that the
first absorption peak and valley shift to the lower frequency,
whereas the second absorption peak and valley shift to the
higher frequency with increasing EF .

The Fermi energy and the strain-tuned band structure
determine the possible interband spin-flip optical transition
channels and then characterize the features of the absorp-
tion window. To reveal the response mechanism of the Hall
conductivity to terahertz frequency under the application of
strain, we plot the band structure under variable strain, with
EF = 830 meV falling between the two spin-split conduction
bands and EF = 950 meV falling above the higher conduction
band. As can be seen in Figs. 14(a) and 14(b), the splitting
of subbands in K and K ′ is asymmetric; that is, the spin-
up subband is above the spin-down one for the K valley,
while this splitting behavior is reversed for the K ′ valley. The
inequivalent spin-splitting behavior between the two valleys
and the distinct difference of the spin splitting between the
subbands in a certain valley lead to the observable VHE
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FIG. 14. (a) and (b) Band structures of the conduction band
and possible transition channels under different strain moduli. The
solid and dotted colored lines indicate the spin-up and spin-down
subbands, respectively. The solid and dashed black lines are the
positions of EF = 830 meV and EF = 950 meV, respectively. (c) and
(d) Radiation frequency range within which excitation of the spin-flip
interband transition is possible when EF = 830 meV; the shaded
areas indicate the range of wave vectors kx and the corresponding fre-
quency interval where the transition can occur. For the red shading,
ε = −20%; for the blue shading, ε = 0%; and for the green shading,
ε = 20%. Bv = 10 meV, Bc = 8 meV, λR = 2 meV, and T = 5 K.
(a) and (b) are for the K valley, and (b) and (d) are for the K ′ valley.

within the terahertz frequency. Moreover, it can be proved
from Eq. (B1) that the interaction matrix element decreases as
ε increases. Therefore such a feature leads to the suppression
effect of increasing ε on the absorption peak and valley. Be-
sides, we find that the strained Dirac points on the two valleys
shift in opposite directions relative to the unstrained Dirac
point. The strain-modulated energy difference between spin-
splitting subbands in a specific valley and the valley-related
displacement of the Dirac point under strain affect the absorp-
tion windows of optical conductivities. Moreover, varying the
Fermi energy results in the change of the transition channel
and the shift of the absorption window. For example, when
EF = 830 meV and ε = −20% [see Figs. 14(c) and 14(d)],
the range of the wave vectors wherein the optical transition
from the lower occupied state to the higher empty state may
occur is about −0.14 to −0.09 Å−1 for the K valley, and it
is about 0.088–0.15 Å−1 for the K ′ valley. As a result, the
absorption window of the transition within the K valley is
around 4 THz [the first absorption peak in Fig. 13(a1)], while
it is around 6 THz in the K ′ valley [the second absorption peak
in Fig. 13(a1)]. For the case of EF = 950 meV, the transition
window corresponding to the K valley is around 2 THz [the
first absorption peak in Fig. 13(d1)], whereas the window in
the K ′ valley is around 8 THz [the second absorption peak in
Fig. 13(d1)].

Next, we characterize the dependence of the Hall conduc-
tivity on the Rashba parameter λR and temperature. In Fig. 15,
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FIG. 15. Real parts of the optical conductivities as a function of
radiation frequency with variable λR. (a1) and (a2) T = 5 K, (b1)
and (b2) T = 25 K, and (c1) and (c2) T = 50 K. Bc = 10 meV, Bv =
8 meV, ε = −20%, and EF = 830 meV.

we show Reσxy [Figs. 15(a1), 15(b1), and 15(c1)] and Reσxx

[Figs. 15(a2), 15(b2), and 15(c2)] as a function of the radia-
tion frequency under several combinations of (λR(meV), T ).
It is observed that the value of Reσxy is almost zero and is
independent of temperature when λR is not considered. With
increasing λR, the positions of peak and valley move to the
higher-frequency region. Furthermore, we find that increasing
λR not only can strengthen the absolute values of both peaks
and valleys, but also can increase the numbers of peaks and
valleys. Our study illustrates that λR has the effect of exciting
the generation of optical Hall conductivity within the terahertz
frequency and adjusting the response of the Hall conductivity
to the frequency. Besides varying λR, the profile of optical
conductivity can also be modulated by the temperature. As
shown in Fig. 15, we find a strong T dependence. As the
temperature T increases from 5 to 50 K, the magnitudes
of both the absorption peaks and the absorption valleys are
significantly weakened.

Plots of the band structures and the ranges of radiation
frequency in which the spin-flip interband transition within
the conduction band occurs for several values of λR are
shown in Fig. 16. With the enhancement of λR, the upper
spin subband moves upward, whereas the lower spin subband
changes slightly, which leads to the increase in the energy dif-
ference between the two spin subbands in the specific valley
and the shift of the absorption window to the higher-frequency
region [see Figs. 16(c) and 16(d)]. Note that there are more
channels transiting from the lower occupied state to the higher
empty state when λR increases, which gives the features of
the rise in the magnitude of the absorption peak and the
broadening of the absorption window.
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FIG. 16. (a) and (b) Band structures of conduction band and
possible transition channels under different λR. The solid and dotted
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tively. The solid black line is the position of EF = 830 meV. (c) and
(d) Radiation frequency range within which excitation of the spin-flip
interband transition is possible; the yellow shaded area indicates the
range of wave vectors kx and the corresponding frequency interval
where the transition can occur when EF = 830 meV. Bc = 10 meV,
Bv = 8 meV, and ε = −20%. (a) and (c) are for the K valley, and
(b) and (d) are for the K ′ valley.

VI. CONCLUSIONS

In this paper, we theoretically studied spin- and valley-
dependent transmission and valley Hall conductivity in the
strained n-type MoS2/EuS heterostructure under linearly
polarized terahertz radiation. We mainly investigated how
strain intensity ε, strain direction θ , and Rashba coupling pa-
rameter λR regulate the threshold and range of allowed angles,
spin polarization components, and optical conductivity. The
main conclusions are summarized as follows.

(1) Due to the presence of λR, there appear spin and
valley splittings simultaneously in the n-type MoS2/EuS het-
erostructure. Thus we find that the displacement of the Dirac
point induced by the strain becomes valley dependent, and
the band edge energy oscillates as a function of ε and θ .
Interestingly, it is found that ε can tune the threshold and range
of allowed angles and transmission probability, while θ only
affects the former.

(2) Owing to the spin-flipped scattering generated by
Rashba spin-orbit coupling, in-plane spin polarizations, i.e.,
PX and PY , can be achieved. We demonstrate that the strength
of PX and PY can be distinctly enhanced by varying ε but is
only slightly affected by θ , which is due to the effect of strain
on the spin-dependent transmission. It is worth emphasizing
that PZ is subject to the complicated competition between
λR and ε. For the case of a smaller λR, i.e., λR = 2 meV,
PZ increases monotonically as a function of ε. Nevertheless,
when λR is larger, i.e., λR = 50 meV, PZ shows oscillatory
behavior with increasing ε.

(3) The optical conductivity can be obtained in our pro-
posed heterostructure in the presence of linearly polarized
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terahertz radiation. It is demonstrated that by changing ε we
can tune the magnitude of both the absorption peaks and the
absorption valleys in optical conductivity, which originates
from the modulation, by strain, of the band structure and band
edge energy. Furthermore, the absorption window of optical
conductivity can also be modulated by varying λR.

Our work demonstrates that the strain is an effective means
of tuning the transport characteristics without and with spin
flip and the strength of spin polarizations. It is found that
the regulation and enhancement of optical conductivity in
the terahertz frequency region can be achieved by applying
strain. Our results provide a possibility to use elastic strain to
improve and control the optical Hall effect through terahertz
technology in n-type MoS2-based heterostructures.
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APPENDIX A: DERIVATION OF THE TRANSMISSION
PROBABILITY

In this Appendix, we start by considering the so-
lution of the Dirac equation of the unstrained region

U †(θ )�↑(↓)
I (x)eiky y for the electron with incident energy E0

and incident angle φ, in which �
↑(↓)
I (x) can be expressed as

�
↑(↓)
I (x) = A↑(↓)(1(0), 0(1), a±(0), 0(b±))T e±ik↑(↓)

x x,

(A1)

where

a± = at (∓τk↑
x − ik↑

y )/d2,

b± = at (∓τk↓
x − ik↓

y )/d3,

A↑(↓) = (1 + a(b)2
+)−1/2,

d0(1) = 	/2 ± τλc − E0,

d2(3) = −	/2 ± τλv − E0,

k↑(↓)
x =

√
(d0d2 + d1d3 ∓ (d1d3 − d0d2))/2 cos φ,

k↑(↓)
y =

√
(d0d2 + d1d3 ∓ (d1d3 − d0d2))/2 sin φ. (A2)

The wave function in the strained region can be written as
U †(θ )�II (x)eiky y, with

�II (x) = B
(
e±, j, 1, g±

)T
e±i(qx±qD )x, (A3)

where

e± = ∓at (τεxqx ∓ iεyqy)/h0,

j = [ − a2t2
(
ε2

x q2
x + ε2

y q2
y

) + h0h2
]
/2iλRh0,

g± = [∓at f (τεxqx ± iεyqy)]/h3,

B = (e2
+ + f2 + 1 + g2

+)−1/2,

h0(1) = 	/2 ± hc
τ − E0 + U,

h2(3) = −	/2 ± hv
τ − E0 + U,

qx =
√(

K2 − ε2
y q2

y

)
/ε2

x ,

K =
√(

h0h2 + h1h3 − sτ
√

(h0h2 − h1h3)2 + 16λ2
R
h0h3

)
/2a2t2. (A4)

The conservation of the particle current ensures that
〈Jx〉 is constant, which can be derived from the cur-
rent density operator J = −ie/h̄[H, r]. In this case, the
wave function at the interface satisfies the following
relations:

�I(x = 0) = ε−1/2
x �II(x = 0),

ε−1/2
x �II(x = L) = �III(x = L). (A5)

Employing the above boundary conditions, we eventually
arrive at the transmission probability, Tτ,ss′ = |tτ,ss′ |2, where
tτ,ss′ represents the transmission coefficient for an incident
electron with spin s in region I being transmitted into region
III with spin s′. The eigenvalue of the strained Hamiltonian is
given by

E4 + γ3 E3 + γ2 E2 + γ1 E + γ0 = 0, (A6)

with
γ3 = − 4U,

γ2 = − 2A2
(
ε2

x q2
x + ε2

y q2
y

) − 	2/2 − hc
τ

2 − hv
τ

2− 4λ2
R
+ 6U 2,

γ1 = 4A2U
(
ε2

x q2
x + ε2

y q2
y

)
+ (

hc
τ + hv

τ

)( − 	hc
τ + 	hv

τ + 2Uhc
τ + 2Uhv

τ

)
,

+ 4U
(
	2/4 − hc

τ hv
τ − U 2) + 4λ2

R

(
hc

τ − hv
τ + 2U

)
,

γ0 = A4
(
ε2

x q2
x + ε2

y q2
y

)2

+ A2
(
ε2

x q2
x + ε2

y q2
y

)(
	2/2 − 2hc

τ hv
τ − 2U 2

)
+ ( − 	2/4 + hc

τ hv
τ + U 2)2

− (
	/2hc

τ − 	/2hv
τ − hc

τU − hv
τU

)2

− 4λ2
R

(
	/2 + hc

τ + U
)( − 	/2 − hv

τ + U
)
. (A7)
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The components of the spin polarization vector P =
(PX , PY , PZ ) are [55]

Gss′ = G0

∑
τ

∫ π/2

−π/2
|tτ,ss′ |2 cos φdφ,

PX = Re

[
2Gxy

Gt

]
,

PY = Im

[
2Gxy

Gt

]
,

PZ = G↑↑ + G↓↑ − G↓↓ − G↑↓
Gt

, (A8)

where Gxy = G0
∑

τ,s

∫ π/2
−π/2 tτ,s↓t∗

τ,s↑ cos φdφ and Gt is the
total conductance

Gt = G↑↑ + G↓↑ + G↓↓ + G↑↓. (A9)

APPENDIX B: OPTICAL CONDUCTIVITY

In order to calculate the Hall conductance under the action
of linearly polarized terahertz radiation, we follow the Kubo-
Greenwood formula within the linear response theory [56]:

σμν (ω) = σ dia
μν + ie2

ω

∑
β �=β ′

× 〈β|υμ|β ′〉〈β ′|υν |β〉[F (Eβ ) − F (Eβ ′ )]

Eβ − Eβ ′ + h̄(ω + iδ)
, (B1)

where μ, ν = x, y, σ dia
μν = −e2ne

iωm δ(k − k′)δμν is the diamag-
netic term, β = |τ, s, k〉 is the single electron state when only
the conduction is considered, υμ(ν) = ∂H/∂ pμ(ν) is the com-
ponent of group velocity, ω is the photon frequency, δ → 0+,
and F (Eβ ) is the Fermi-Dirac distribution. Notice that for
intraband transition, F (Eβ ) − F (Eβ ′ ) = 0, which causes the
transverse Hall conductivity to disappear. Therefore only the
spin-flip interband transition within the conduction band is
taken into account in the following discussion.

The velocity matrix elements are

〈β ′|υx|β〉 = τB′BAεx

h̄
(e∗′ + j∗′g + e + g∗′ j),

〈β ′|υy|β〉 = iB′BAεy

h̄
(−e∗′ − j∗′g + e + g∗′ j); (B2)

thus

〈β|υx|β ′〉〈β ′|υx|β〉

= B′2B2A4ε2
x K2

h̄2 (P2 + W2 + 2PWcos2α)δk,k′ (B3)

and

〈β|υx|β ′〉〈β ′|υy|β〉

= −iτB′2B2A4εxεyK2

h̄2

(
P2 − W2 + 2iτPWsin2α

)
δk,k′ ,

(B4)

with

P = 1/h′
0 + (−A2K2 + h0h2)(−A2K2 + h′

0h′
2)/4λ2

Rh0h′
0h3,

W = 1/h0 + (−A2K2 + h0h2)(−A2K2 + h′
0h′

2)/4λ2
Rh0h′

0h′
3.

(B5)

Since the intervalley transition requires a considerable
momentum transfer, which is impossible for direct electron-
phonon interaction, the total optical conductivity can be
regarded as the sum of the conductances of the two valleys:

σμν (ω) =
∑

τ

σ τ
μν (ω). (B6)

When only the spin-flip transition between subbands in
the conduction band is considered, the contributions of each
valley to the longitudinal conductivity and transverse conduc-
tivity are

σxx = σ0

∑
τ

∫
dK

iB′2B2A4ε2
x K3(P2 + W2)

π2h̄2 f

× F
(
E τ

s

) − F
(
E τ

s′
)

ωss′ + ω + i/τs
, (B7)

σxy = σ0

∑
τ

∫
dK

τB′2B2A4εxεyK3(P2 − W2)

π2h̄2 f

× F
(
E τ

s

) − F
(
E τ

s′
)

ωss′ + ω + i/τs
, (B8)

where σ0 = e2/4h̄, f = ω/2π is the radiation frequency,
ωss′ = (Es − Es′ )/h̄, and τs = 3 ps is the spin relaxation time
for electrons [57].
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