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We present a systematic classification of emergent particles in all 528 magnetic layer groups and 394 magnetic
rod groups, which describe two-dimensional and one-dimensional crystals, respectively. Our approach is via
constructing a correspondence between a given magnetic layer/rod group and one of the magnetic space groups,
such that all irreducible representations of the layer/rod group can be derived from those of the corresponding
space group. Based on these group representations, we explicitly construct the effective models for possible band
degeneracies and identify all emergent particles, including both spinless and spinful cases. We find that there are
six kinds of particles protected by magnetic layer groups and three kinds by magnetic rod groups. Our work
provides a useful reference for the search and design of emergent particles in lower dimensional crystals.
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I. INTRODUCTION

The research on topological semimetals in the past decade
has driven extensive efforts in understanding various emergent
particles enabled by the crystalline symmetry [1–3]. In these
crystals, novel kinds of quasiparticle states emerge around
band degeneracies in the momentum space and their phys-
ical properties are determined by the character of the band
degeneracies. For example, Weyl and Dirac particles can be
realized around twofold and fourfold band nodal points in
crystals, known as Weyl and Dirac points, respectively [3–6].
These notions are not limited to electronic systems of real
materials, but also extended to many artificial crystals such
as acoustic/photonic crystals [7–9], electric circuit arrays
[10–12], and mechanical networks [13,14].

A main task in this research is to classify all possible types
of emergent particles. The classification is typically based on
the dimension of the degeneracy manifold, the degree of de-
generacy, the band dispersion, and the topological charge. For
instance, in three dimensions (3D), besides nodal points, the
band degeneracies may also form nodal lines [15–18] or nodal
surfaces [19–21], the degeneracy for a nodal point could be 2,
3, 4, 6, and 8 [22–25], the emergent particle may have linear,
quadratic, or cubic dispersion [26–29], and they could have a
maximal chiral charge of four [25,30]. All these properties are
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eventually determined by the symmetry of the bands that form
the degeneracy or, more specifically, how these bands repre-
sent the symmetry group of the system. For 3D crystals, the
pertinent symmetry groups are the (magnetic) space groups.
Their (co)representations have been extensively studied and
well documented in the past [31] (in the remainder of this
paper the “representation” means representation for unitary
group and corepresentation for magnetic group). Based on the
knowledge of space group representations, an encyclopedia
of emergent particles in 3D crystals has been established in
recent works [25,32–35].

Recent years also witnessed a rapid development in the
realization of low-dimensional crystals. Many 2D layered ma-
terials and 1D (or quasi-1D) crystals have been synthesized in
experiment [36–38]. Because lower dimensions permit a high
controllability and easier detection, emergent particles may
have even stronger impact in these systems. As a prominent
example, many intriguing properties of graphene can be at-
tributed to its emergent Dirac fermions [39]. So far, there have
been works on studying specific kinds of emergent particles in
2D [40] and on systematic construction of k · p models for 2D
systems [35,41,42]. However, a comprehensive classification
for all emergent particles in magnetic layer groups (MLGs)
and magnetic rod groups (MRGs), which apply for 2D and
1D crystals, respectively, has not been achieved.

One obstacle here is that the irreducible representations
(IRRs) have not been completely derived for these groups,
but only for certain subgroups (such as magnetic line groups
and type-I and type-II MLGs [43–46]). In this work, we de-
velop an approach to compute IRRs for all 528 MLGs and
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TABLE I. Emergent particles in MLGs. “
√

” (“×”) means the corresponding emergent particle can (cannot) exist in the specified type of
magnetic subperiodic groups. dm is the dimension of the degeneracy manifold. d is the degree of degeneracy. Ld is the leading order dispersion
of the band splitting near the degeneracy. “I” to “IV” represent the four types of magnetic subperiodic groups.

Notation Abbr. dm d Ld I II III IV

MLGs w/o spin
Linear Weyl point LWP 0 2 (11)

√ √ √ √
Quadratic Weyl point QWP 0 2 (22)

√ √ √ √
Dirac point DP 0 4 (11) × √ √ √
Weyl line WL 1 2 (1)

√ √ √ √
Weyl line net WLs 1 2 (1)

√ √ √ √

MLGs w/ spin
Linear Weyl point LWP 0 2 (11)

√ √ √ √
Quadratic Weyl point QWP 0 2 (22)

√ × √ ×
Cubic Weyl point CWP 0 2 (33)

√ √ × ×
Dirac point DP 0 4 (11)

√ √ √ √
Weyl line WL 1 2 (1)

√ √ √ √
Weyl line net WLs 1 2 (1)

√ √ √ √
Dirac line DL 1 4 (1) × √ √ √
Dirac line net DLs 1 4 (1) × √ √ √

394 MRGs. The approach is based on making a correspon-
dence between a given MLG/MRG and one of the magnetic
space groups. We show that all IRRs of the MLG/MRG
can be derived by restricting the IRRs of the corresponding
space group under a constraint. After obtaining IRRs for these
groups, we identify all possible protected band degenera-
cies and classify the associated emergent particles, for both
spinless and spinful systems. We find six kinds of emergent
particles in MLGs and three kinds in MRGs, as listed in
Table I. Our work offers a comprehensive reference for the in-
vestigation of emergent particles in low dimensional crystals.

II. DERIVE IRRS OF SUBPERIODIC GROUPS

MLGs and MRGs are subperiodic groups in 3D, meaning
that their translational parts form a 2D or 1D subspace of 3D.
Each of their point groups remains one of the 3D crystallo-
graphic point groups. To derive their IRRs, one can of course
pursue the standard way as in Refs. [31,47], e.g., by studying
little cogroups and using the method of projective representa-
tions. Here, we shall adopt an alternative approach, in which
we obtain the IRRs of a magnetic subperiodic group from
a constructed magnetic space group. The reason is twofold.
First, IRRs for magnetic space groups are well known and
documented in standard references [31]. Once a correspon-
dence is obtained between a (given) subperiodic group and
the constructed space group, the IRRs for the subperiodic
group can be readily obtained, as we show below. Second,
this approach has the benefit of establishing connections be-
tween subperiodic groups and space groups. For example, the
labeling of IRRs can be naturally inherited from the standard
ones for the space groups, allowing users to have coherent
understanding of the content.

A. General approach

Our approach is a unified treatment for both MLGs and
MRGs. Consider a given subperiodic group S [48]. We first

construct a magnetic space group G from S . This is done
by taking a lattice translation group N , which consists of
translations normal to the subspace for S . For a MLG, N is
the 1D lattice translations normal to the plane. For a MRG, N
contains the 2D translations normal to the line. Then the space
group G is constructed as the semidirect product:

G = N � S. (1)

Following this construction method, for a given subperi-
odic group S , we can always construct a unique space group
G, despite the fact that there is usually more than one space
group containing S as a subgroup. In the Supplemental Ma-
terial (SM), we present the constructed G for each MLG and
MRG in Table S1 [49].

By definition, N is a normal subgroup of G and S is
isomorphic to G/N , with the isomorphism

φ : s ∈ S �→ N s ∈ G/N . (2)

Thus to get IRRs of S is equivalent to obtaining the IRRs
of the quotient group G/N .

Since G is one of the magnetic space groups, its IRRs
are already known (here obtained by using the MSGCorep
package) [50,51]. With this information, all IRRs of S can
be obtained from restricting IRRs of G to S . However, not all
IRRs of G lead to IRRs of S under restriction. For some IRRs
of G, the restriction to its subgroup would lead to reducible
representations. What then are the suitable IRRs ρ of G that
we need to consider? From group representation theory, these
are the IRRs which satisfy the condition that ker ρ contains N
as a subgroup [52], i.e.,

N ⊆ ker ρ = {g ∈ G|ρ(g) is identity matrix}. (3)

In other words, the normal translations must be represented
as the identity matrix in the IRR ρ of G. The restriction of
such ρ to S , i.e., ρ ↓ S , is indeed an IRR of S . This can be
easily verified from the corresponding restricted character χ ↓
S , where χ is the character of ρ. Recall that a representation ρ

of G is an IRR if and only if its character satisfies 〈χ, χ〉G =

075405-2



ENCYCLOPEDIA OF EMERGENT PARTICLES IN 528 … PHYSICAL REVIEW B 107, 075405 (2023)

FIG. 1. Flow chart for classification of emergent particles in subperiodic groups.

1; 〈θ, φ〉G denotes the inner product of characters for group G.
Now, the restricted character χ ↓ S satisfies

〈χ ↓ S, χ ↓ S〉S = 1

|S|
∑
s∈S

χ (s)χ∗(s)

= 1

|S||N |
∑
n∈N

∑
s∈S

χ (ns)χ∗(ns)

= 1

|G|
∑
g∈G

χ∗(g)χ (g) = 〈χ, χ〉G, (4)

where, in the second step, we used the fact that χ (ns) = χ (s)
since N ⊆ ker ρ. Thus the restricted representation ρ ↓ S for
S shares the same irreducibility as ρ for G.

In a similar way, one can show that the indicator function
for such ρ is also preserved in the process of restriction to S
[47], i.e.,

1

|S|
∑

s∈AS
χ (s2) = 1

|S||N |
∑
n∈N

∑
s∈AS

χ ((ns)2)

= 1

|G|
∑

g∈AG
χ (g2), (5)

where AS and AG are the antiunitary parts of S and G,
respectively. In the equation, we used the fact that χ ((ns)2) =
χ (nsns) = χ (nssn′) = χ (s2) with n′ ∈ N and N ⊆ ker ρ.
This proves that the restricted IRR for S shares the same type
of corepresentation as the original IRR for G.

To illustrate our approach, let us consider the layer group
p6/mmm as an example, which is the one for graphene.
Following our construction method, we choose group N con-
taining translations normal to the 2D plane. The semidirect
product in Eq. (1) gives a space group G being P6/mmm (no.
191). Consider the � point for p6/mmm. One looks for IRRs ρ

for P6/mmm such that N ⊆ ker ρ. This condition is fulfilled
only at � point of P6/mmm and it turns out that all IRRs there
for P6/mmm are also IRRs for p6/mmm. In a similar way,
IRRs for p6/mmm at K point can be obtained from the IRRs
for P6/mmm at K point.

B. Algorithm for aligning coordinate systems

It is not difficult to identify the IRRs of G that satisfy
condition (3). For example, for S describing a 2D system in
the x-y plane, one can easily see that the required IRR for G
should correspond to the kz = 0 plane of the 3D Brillouin zone
(BZ). Similarly, for a MRG describing a 1D system along z,
the IRR for G should correspond to the kx = ky = 0 path of
the BZ.

There is another technical issue arising in practical calcula-
tions. Usually, the coordinate system for the standard setting
of a magnetic space group, as in well-known references, is

different from the G constructed here. The two generally differ
by a proper rotation and a shift of origin. Thus, in order to use
the documented IRRs for magnetic space groups, we need to
align the two coordinate systems.

Let L = (a, b, c) be lattice vectors for the G constructed
from S and L′ = (a′, b′, c′) be lattice vectors in the standard
setting for this space group. The two sets of lattice vectors
differ by a linear transformation Q:

L = L′Q, (6)

where Q is a 3 × 3 matrix and det Q = 1 and is determined by
Q = LL′−1.

Besides the rotation, the two coordinate systems may have
a shift in origin. Consider a general point labeled by coordi-
nate x in the L system. Its coordinate in L′ is given by

x′ = Qx + �, (7)

where � is the shift of origin between the two coordinate
system. This shift enters into the expression of general space
group symmetry operation. Considering the expression of any
space group symmetry operation, we should have

{R′|τ ′} = {QRQ−1|Qτ − QRQ−1� + �}. (8)

In our current case, we already know the lattice vectors
L and L′ and the expressions {Ri|τ i} and {R′

i|τ ′
i} (i labels the

symmetry generators). The target is to solve out �. This is done
by using the following algorithm.

We write down the following set of equations obtained
from (8):

τ ′
i = Qτ i − QRiQ

−1� + � (mod 1), (9)

where the lattice periodicity allows the two sides differing
by a lattice period. Note that this set of equations is not
conventional linear congruence equations, since τ ′

i, τ i, and �

can be fractional numbers. We can multiply Eq. (9) by integer
N to turn them into linear congruence equations

Nτ ′
i = Q(Nτ i ) − QRiQ

−1(N�) + (N�) (mod N ), (10)

where N is the least common multiple of the denominators of
τ ′

i, τ i, and �. Here, although we do not yet know the denomi-
nator of �, in space groups, it will not be a large integer. In fact,
from our calculation, the maximum N is just 12. Therefore, in
practice, one may just try to increasingly select a N , solve �

from (10) by using the Chinese remainder theorem [53], and
check whether such a solution is valid.

The whole process for obtaining the IRRs of a subperiodic
group S is schematically illustrated in Fig. 1.
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TABLE II. Emergent particles in MRGs. The format of this table is similar to Table I.

Notation Abbr. dm d Ld I II III IV

MRGs w/o spin
Weyl point WP 0 2 (1)

√ √ √ √
Triple point TP 0 3 (1)

√ √ √ √
Dirac point DP 0 4 (1)

√ √ √ √

MRGs w/ spin
Weyl point WP 0 2 (1)

√ √ √ √
Triple point TP 0 3 (1)

√ √ √ √
Dirac point DP 0 4 (1)

√ √ √ √

III. CLASSIFICATION OF EMERGENT PARTICLES

After deriving the IRRs of a given MLG or MRG, we
can use them to identity possible band degeneracies and the
associated emergent particles. The remaining steps are exactly
the same as our previous works in Refs. [33,34] on the classi-
fication for magnetic space groups.

For emergent particles around a degeneracy point k in
BZ, we construct the k · p effective models constrained by
symmetry conditions:

H (k) =
{

D(S)H (R−1k)D−1(S), if S = {R|τ},
D(S)H∗(−R−1k)D−1(S), if S = {R|τ}T ,

(11)

where the rotation part of S will run through all symmetry
generators in the magnetic little cogroup at k, D is its represen-
tation corresponding to the band degeneracy, and T is the time
reversal operation. We have developed a general algorithm
to construct such effective models and implemented it in the
MagneticKP package, as introduced in Ref. [54].

The main results from our classification are summarized
in Table I (for MLGs) and Table II (for MRGs). In the first
column, we list the kinds of emergent particles that are pro-
tected by MLGs or MRGs. In Refs. [25,33,34], we showed
that there are 27 kinds of emergent particles protected by
magnetic space groups in 3D. Here, for MLGs and MRGs, due
to the reduced symmetry, we find that the variety of particles is
also much reduced. In MLGs, there are six kinds of particles,
corresponding to (linear) Weyl point, quadratic Weyl point,
cubic Weyl point, Dirac point, Weyl line, and Dirac line. In
the naming, we use Weyl and Dirac to indicate the number
of degeneracy to be 2 and 4, respectively, consistent with
the convention in Refs. [25,33,34]. For MRGs, there are only
three kinds of emergent particles, which correspond to Weyl
point, triple point, and Dirac point. Some basic characters of
these band degeneracies, such as the dimension, the degree
of degeneracy, and the leading order band splitting, are also
listed in Tables I and II.

The remaining columns of Tables I and II show the possible
appearance of a kind of emergent particle in the four types of
MLGs or MRGs.

The type-II MLGs and MRGs describe the nonmagnetic
2D and 1D crystals, which cover most existing materials.
Taking them as examples, we list the candidate type-II MLGs

and MRGs that host each kind of emergent particle in Table III
(for MLGs) and IV (for MRGs).

In the Supplemental Material [49], we present the follow-
ing detailed information. For each kind of emergent particle,
we list all MLGs or MRGs that can host it. For each MLG or
MRG, we list the band degeneracies it can have, their loca-
tions in BZ, the symmetry generators, their representations,
and the effective models. The format of such a dictionary
follows the convention set in Ref. [34].

We have a few remarks before proceeding. First, the well-
known double degeneracy for all points in BZ due to the
space-time inversion symmetry PT for spinful systems is
not counted in our classification. Second, most degeneracies
occur on high-symmetry points or high-symmetry paths of
BZ. However, there are three mechanisms that can protect
Weyl point or Weyl lines at generic points of BZ. (i) Spinless
MLGs with PT symmetry can protect Weyl points at generic
k points. (ii) Spinless or spinful MLGs with C2zT symmetry
can protect Weyl points at generic k points. (iii) MLGs with a
horizontal mirror plane can protect Weyl lines passing through
generic k points. For these cases, one needs to carefully scan
the BZ when looking for band degeneracies.

TABLE III. List of type-II MLGs that host each kind of emergent
particle.

Name Layer groups

W/o spin
LWP 8–10,14–48,53–64,66–73,75–80
QWP 49–80
DP 29,33,40,43–45,63
WL 5,7,9,12,15–17,20–21,24–25,27–48,51–52,54,56,58

60–64,74–75,78–80
WLs 7,21,25,32,34,39,42,44,46,52,54,56,58,60,62–64

W/ spin
LWP 1,3,5,8–13,19–26,31–34,36,49–50,53–60,65,67–70

73,76–77
CWP 65,67–70,73,76–77
DP 7,15–17,21,25,28–30,32–34,38–39,41–43,45–46,48,52

54,56,58,60,62,64
WL 4–5,9,12,17,20–21,24–25,27–36,54,56,58,60,74,78–79
WLs 74,78,79
DL 40,43,44,45,63
DLs 44,63
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TABLE IV. List of type-II MRGs that host each kind of emergent
particle.

Name Rod groups

W/o spin
WP 5,7–9,11–26,28–44,46–58,60–75
TP 27–29,34–41,45,49–52,59–61,68–75
DP 36,40,50,52,60,61,68–70,72–75

W/ spin
WP 1,3–5,8–10,13,14,18,19,23–26,30–33,42–44,46–50,53–59

62–67,71,72
TP 49,50,59,71,72
DP 7,12,16,17,21,22,28,29,34–36,38–41,45,50–52,60,61

68–70,72–75

IV. DISCUSSION AND CONCLUSION

It is worth mentioning that the spinful quadratic Weyl
point, which was found not existing in type-II MLGs, can
exist in type-I and type-III MLGs, as shown in Table I. For
example, consider the type-III MLG p6̄′ (no. 74.3.494). The
corepresentation matrices for two symmetry generators C3z

and σhT in the basis of �4�5 degeneracy are

D(C3z ) = eiπσ3/3, D(σhT ) = σ1, (12)

where σi’s are the Pauli matrices. Then the effective model for
states around the �4�5 degeneracy is

H (k) = c1
(
k2

x + k2
y

) + [(c2k2
− + c3k2

+)σ+ + H.c.], (13)

where the momentum and the energy are measured from the
degeneracy point and the ci’s are real-valued parameters. This
model confirms that the degeneracy point is a quadratic Weyl
point in a spinful system. Furthermore, for MLG p6̄′, this
quadratic Weyl point can be the only Fermi point of a band
structure. To show this, we construct a tight-binding model
on a hexagonal lattice as shown in Figs. 2(a) and 2(b). Here,
each active site (marked by red color) has two s-like orbitals
{|s↑〉, |s↓〉}. The gray colored sites are added to enforce the
proper MLG, but they do not contain active orbitals. We
construct the following model that satisfies the p6̄′ symmetry
[55]:

H (k) = ε +
(

α1 · (t1A + t2B) α2 · t3A
† α1 · (t1A − t2B)

)
, (14)

where the bold symbols are vectors, α1 = (1, 1, 1),
α2 = (e− iπ

6 ,−e
iπ
6 , i), A = [cos ka, cos kb, cos(ka + kb)], B =

[sin ka, sin kb, sin(ka + kb)], ka and kb are wave vector
components along the two reciprocal lattice vectors, and
ε, t1, t2, t3 are real parameters. The resulting band structure
in Figs. 2(b) and 2(c) demonstrates our claim. Interestingly,
when one adds an extra horizontal mirror σh to the system,
the type-III MLG p6̄′ is turned into the type-II MLG p6̄1′.
The Weyl point at � will no longer be an isolated nodal point,
but sit on the intersection of three nodal loops, as illustrated
in Fig. 2(d).

We find that the cubic Weyl point can exist in spinful
type-II MLGs, consistent with the prediction in Ref. [56]. In
addition, our result shows that it also exists in spinful type-I
MLGs, but not in type-III and type-IV MLGs. This can be

K Γ M K
-0.5

0

0.5

QWP

FIG. 2. (a) Top view and (b) side view of our constructed QWP
lattice model. The green shaded region indicates the unit cell. The
active orbitals are at the red colored sites. The gray colored sites
with local magnetic moments are added to enforce the proper MLG
symmetry. (c) Band structure of the model (14). In the calculation, we
take ε = 0.06, t1 = −0.02, t2 = 0.2, and t3 = −0.3. Inset shows
the dispersion around the QWP. (d) After adding a horizontal mirror
to the model, the MLG changes to the type-II MLG p6̄1′. Then there
appears three WLs as indicated by the red lines.

understood from the following analysis. A cubic Weyl point
necessarily requires one of these six symmetry groups gen-
erated by {C3, T }, {C6, T }, {C6,C21}, {C6,C21, T }, {C6, σd},
and {C6, σd , T }, respectively, where C21 and σd are rotation
and mirror perpendicular to the C6 axis. It turns out that
the index 2 subgroup of above six magnetic point groups
cannot be a type-III magnetic point group, indicating that
the type-III MLGs cannot host a cubic point. Moreover, if a
type-IV MLG can host the cubic point, the combination of a
half lattice translation and T must be compatible with the C3

symmetry. However, the relation C3{T | 1
2 0}C−1

3 = {T |0 1
2 } (or

C3{T | 1
2

1
2 }C−1

3 = {T | 1
2 0}) will give rise to an invalid symme-

try element {E | 1
2

1
2 } (or {E |0 1

2 }). Therefore, cubic Weyl points
also cannot exist in type-IV MLGs.

Although the number of kinds of emergent particles in
MRGs is less than that in MLGs, we find that the triple points
can exist in MRGs but not in MLGs. Triple points have been
extensively studied in 3D systems. In magnetic space groups,
they may appear as essential degeneracies at high-symmetry
points. However, this is possible only in cubic system, and
we find that such triple points cannot be maintained when
restricting to 2D or 1D subperiodic systems. Another possi-
bility to form a triple point is by crossing a doubly degenerate
band with a nondegenerate band, corresponding to a direct
sum of a 1D corepresentation and a 2D corepresentation on
a high symmetry line or plane. In MLGs, this has to be on a
high-symmetry path of 2D BZ. The little cogroup L on this
path should be one from C1, C2, Cs, and C2v . By using the
property of characters

∑
i

χ2
i (e) = |L|, (15)
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where e is the identity element and the sum is over all IRRs.
One finds that, for the four little cogroups, the dimensions
of IRRs are either all 1 or all 2. Therefore, it is impossible
to generate a triple point. When taking antiunitary operations
into account, one can show that the dimensions of corepresen-
tations are either unchanged or multiplied by 2. Thus MLGs
cannot host triple points but can host Dirac points and Dirac
lines. By contrast, MRGs can have other rotational symme-
tries (such as C3,C4,C6) in addition to C2 along its periodic
direction. Therefore, these additional symmetries can enable
triple points in MRGs.

It must be noted that MRGs are defined as subperiodic
groups of magnetic space groups. They only contain sym-
metries that are inherited from 3D crystals. However, for 1D
or quasi-1D crystals, they may have symmetries that do not
exist for 3D crystals. For example, one can easily picture a 1D
crystal with C5 symmetry or even C∞ symmetry. The groups
that capture all these possibilities are known as the line groups
[57,58]. Our study here can be extended to line groups in the
near future.

In conclusion, we systematically classify the emergent par-
ticles in 528 MLGs and 394 MRGs. In the process, we develop
a general approach to derive all IRRs of a subperiodic group

by constructing a corresponding superperiodic group and by
properly restricting the IRRs of the superperiodic group. This
approach is applied to obtain all IRRs of MLGs and MRGs.
Using these IRRs, we established an encyclopedia of emer-
gent particles in MLGs and MRGs. It can serve as a valuable
reference for the search of novel emergent particles in lower
dimensional materials. It can also be used to facilitate the
design of artificial crystals to study the fascinating properties
of emergent particles.
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Math. Theor. 55, 325202 (2022).
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