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The formation of the composite photonic-excitonic particle, known as a polariton, is a phenomenon emerging
in materials possessing strong coupling to light. The organic-based materials besides the strong light-matter
coupling also demonstrate strong interaction of electronic and vibrational degrees of freedom. We study the
vibration-assisted polariton wave-function evolution treating both types of interactions as equally strong. Using
the multiconfiguration Hartree approach we derive the equations of motion for the polariton wave function,
where the vibration degrees of freedom interact with the polariton quantum field through the mean-field
Hartree term. For the conventional quadratic polariton Hamiltonian and the Holstein-type vibration Hamiltonian
(Tavis-Cummings-Holstein model), the obtained equations are in one-to-one correspondence with the original
Schrödinger equation. In the second part of the paper, we show that our theory reproduces the physical properties
of the polariton light emission spectrum. In particular, the theory explains experimental observations of the
molecular Stokes shift in the polariton fluorescence spectra in the systems with strong light-matter coupling.
We also investigate the behavior of the polariton wave function in the vicinity of the anticrossing point and
demonstrate that the Hartree term can produce an infinite potential barrier of a dynamical origin, which is
responsible for the formation of the mixed upper-lower polariton states. The nonlinear nature of the polariton
theory reflects their collective behavior. We expect that the multiconfiguration Hartree approach being applied to
polaritons and similar systems will result in a manifestation of new physical phenomena.
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I. INTRODUCTION

When dye molecules form a microstructure such as a
nanofiber crystal [1], or a molecular solution placed into a
microcavity, the strong light-matter interaction can lead to
the formation of composite photon-exciton particles, known
as exciton polaritons (see [2–5] and references therein). The
systems with strong coupling to light draw a lot of attention
due to their potential to cause changes in chemical reaction
rates [6], to form high-temperature polariton Bose-Einstein
condensate [3,7–9], and to show long-range particle prop-
agation [1,10,11]. The concept, generally used to describe
the polaritons in the organic-based devices, deals with the
Frenkel excitons [12]. This type of excitons possesses the
property to be localized on a few molecules (the typical size
∼10 Å), which, in particular, defines their stability (the bind-
ing energy ∼1 eV). A stronger coupling is achieved due to
the large oscillator strength of the dye molecules. Entangle-
ment of the excitonic states with certain light modes formed
in the microcavity or with the free radiation modes splits
the linearly growing with respect to the wave-vector-q light
dispersion curve in the point of its crossing (the anticrossing
point, AP) with almost constant exciton energy ωex. The gap
width between the lower and the upper polariton dispersion
branches (Rabi splitting) is governed by the strength of the
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light-matter interaction parameter g. In organic materials, g
can reach significant values, up to 1 eV [1,4]. The above
picture becomes more complex when one accounts for the
interaction of the molecular electrons with the vibrational
degrees of freedom, the inherent property of organic mate-
rials. The vibrations are known to assist the exciton-polariton
stability and participate in such dynamic rearrangements of
the polariton systems as Bose-type condensation [3], transport
[1,11,13], and relaxation [14–18]. Therefore, when describing
complex processes involving polaritons, both the interaction
of light with molecules and the interaction of electron density
with vibrations of the molecular cores must be treated on
equal footing [19–24].

Vibrational degrees of freedom in crystals form the num-
ber of acoustic and optical phonon modes, which accounting
is essential for describing semiconductor-based polaritonic
devices. In the solutions of the organic dye molecules, the
vibrations in the vicinity of each optically active center can
be considered as if they were independent, and the other
vibration degrees of freedom in the material or the solu-
tion effectively form a thermal bath. On the other hand, the
large displacement of the equilibrium nuclear positions of
the low-frequency optically active vibrations under the op-
tical electronic transition leads to their excitation with large
quantum numbers. In the monomolecular spectra, the low-
frequency vibration modes reveal themselves in the Stokes
shift between the emission and absorption peaks. The high-
frequency optically active vibrations become visible in the
form of the vibrational progression. Such strong effects must
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also influence the polariton spectra. The influence of the high-
frequency vibration modes on polaritons appeared to be more
diverse. Its study led to some new interesting phenomena.
The main peaks of the polariton fluorescent spectra are nat-
urally associated with the energies of the upper and lower
dispersions. The presence of the additional peaks and thermal
broadening in the polariton spectra was studied in several
works [16,25–27]. Recently, it was shown that the electron-
vibrational interaction could result in the formation of the
non-Markovian Fano resonances and the motional narrowing
of the exciton-polariton luminescence spectrum [28]. In a
number of papers, it was also shown that the molecular Stokes
shift is one of the system parameters which can influence the
polariton dynamics [17,29,30].

The approaches used to describe the polariton-vibration
system were mainly based on phenomenological arguments.
The aim of this research is in developing a rigorous, de-
rived from first principles, approach for the description of
the polariton-vibration system evolution. In particular, we
study the vibration-assisted quantum evolution of the single-
polariton wave function. It is worthy to note that for the
solution of the transport problem, accounting of the polariton-
polariton interaction [31], description of other dynamical
processes [24], and also for developing of the multidimen-
sional spectroscopy methods [18,32], the knowledge of the
polariton wave-function evolution and its spatial propaga-
tion is of importance. A number of attempts to describe the
polariton wave function have been done without accounting
of vibrations [33,34]. In this paper, starting from the Tavis-
Cummings-Holstein model Hamiltonian [35] we derive a set
of equations for the polariton-vibration wave-function evolu-
tion in the Hartree approximation. Using these equations we
consider several problems admitting approximate analytic
solutions.

The vibronic coupling in a molecule interrelates the
electronic and nuclear vibrational motion. In theoretical
chemistry, the vibronic coupling is often neglected within
the Born-Oppenheimer approximation. The couplings become
crucial to the understanding of nonadiabatic processes, espe-
cially near AP, when the energy gap order of magnitude is
comparable with the oscillation quantum energy. The large
magnitude of the vibronic coupling near AP allows the wave
function to propagate from one adiabatic potential energy
surface to another, giving rise to a nonadiabatic phenomenon
such as radiationless decay in molecular systems. The vi-
bronic coupling can also form a singularity of the conical
intersection type. This type of singularity is responsible for
appearance of a nonzero geometric phase, which, in the
context of molecular dynamics, was discovered by Longuet-
Higgins [36]. In this case it becomes essential to account for
the quantum interference of the system wave function with
itself. In the context of the polariton-type systems, this effect
was discussed in [37].

In our work, to describe the vibration degrees of free-
dom we use the language of coherent states. With a few
relatively simple exceptions [38], the direct calculation of
the quantum transitions assisted by vibrations within the
coherent state framework [39] is not common due to the
difficulties associated with their evaluation. To this end, sev-
eral theoretical approaches have been developed, including

the method of coupled coherent states [40]. The concept im-
plies that the quantum trajectories are allowed to explore the
phase space wider than the zero-vibration space. Having been
equipped by a phase, the quantum trajectories start to interfere
with each other. In this sense, the quantum effects can be
thought of as arising from the interaction of the trajectories.
This method belongs to a wider class of methods, which
solve the Schrödinger equation in a time-dependent basis set
and the time evolutions of both the basis vectors and that of
the wave-function expansion coefficients are determined from
the Dirac-Frenkel (sometimes Dirac-Frenkel and McLachlan)
variational principle.

The coupled coherent states method is mainly used to
describe the quantum evolution of a single molecule in an
external field or without it. Contrary to the single-molecule
models, the polariton quasiparticle is a composite particle
and its quantum wave packet is spread over the whole mi-
croscopic sample (the polariton wavelength at AP is about
50 nm) and thus includes the quantum states of all molecules
in the sample. The general nonlinear equations of polariton
motion, obtained in the next section, include the forces act-
ing from the side of each molecule on the polariton particle
and also the backward action of the polariton on the molec-
ular vibrations. Such a general model has to describe the
whole variety of physical effects taking place in the system,
including the effects of decoherence. The influence of differ-
ent effects can be singled out by the special choice of the
molecular Hamiltonian and, which is not less important, by
an appropriate choice of the method for solving the nonlinear
equation. In this paper, we use the multiconfiguration Hartree
approach to formulate the equations of polariton motion in
the mean-field approximation. In this approach the set of
equations of motion split into two parts. The first part are the
classical Newton equations, which describe the evolution of
the vibration degrees of freedom. The presence of polaritons
in this equation is taken into account by the Hartree term,
which enters as a classical force resulting from the quantum
averaging of the polariton field. The second part of the equa-
tions has the form of the Schrödinger equation written for the
coefficients of the polariton wave-function expansion (they
correspond to Hopfield coefficients in the standard polariton
theory). These equations also contain a term proportional to
the Hartree amplitude [41], which makes the equations es-
sentially nonlinear. It turned out that the reformulation of
the initial Schrödinger equation into the set of equations of
the vibration-assisted polariton motion is exact in the case
of the canonical quadratic polariton Hamiltonian and the
Holstein-type vibration Hamiltonian [42]. The nonlinearity of
the polariton equations reflects their collective behavior. We
expect that the nonlinear effects can result in a manifestation
of new physical phenomena in the polariton systems and also
in similar multimolecular systems.

The paper is structured in the following way: In the
next section (Sec. II), we derive equations of motion for
the vibration-assisted polariton wave function. To do this,
first (Sec. II A), we introduce the basis set of quantum
polariton states for the quadratic polariton Hamiltonian
without vibrations. To describe the vibrations in Sec. II B
we introduce the basis of time-dependent coherent states.
Varying the Schrödinger equation formulated for a model
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polariton-vibration Hamiltonian we derive the semiclassical
equations of polariton evolution (Sec. II C). In Sec. III A
we solve the system of polariton equations of motion in the
quasidiagonal approximation to calculate the polariton flu-
orescent spectrum, some details of calculation are given in
Appendices A and C. The equations of motion in the vicinity
of AP and also dynamical formation of a potential barrier
separating the mixed states from the pure polariton states
are discussed in Sec. III B. The results of our research are
discussed in Sec. IV.

II. EQUATIONS OF MOTION FOR THE
VIBRATION-ASSISTED POLARITON WAVE FUNCTION

A. Basis set of the polariton Hamiltonian

In this work, we focus on the type of systems in which in
the first approximation the dipole-dipole interactions between
molecules can be neglected. An example of such a system
is the solution of enhanced green fluorescent protein (eGFP).
The actual fluorophore of FPs is enclosed by a nanocylinder
that consists of 11 β sheets [43,44]. This protective shell acts
as a natural “bumper” and prevents close contact between
fluorophores of neighboring FPs, limiting the intermolecular
energy migration even at the highest possible concentration.
The intermolecular interactions impart [45] the momentum
q dependence to the exciton dispersion ωex. In the case of
weakly coupled molecules the short-range Frenkel exciton
effective mass is large and we can neglect the q dependence
in ωex. Note that there are examples of systems, where the
dipole-dipole interaction (excitonic coupling) is suppressed
even in the crystal phase [44,46,47]. To this end, we also
add that below we consider the polariton operators as those
that satisfy the Bose statistics, which is an assumption taking
place at a low density of excitations. Discussion regard-
ing the admissibility of such approximation one can find in
Refs. [48,49]. It was shown there that the composite nature of
the Frenkel excitons is responsible for the excitation transfer.
In what follows, we consider a single-polariton wave function
when the nonbosonic corrections nullify.

In this section, we introduce the polariton basis vector set
for the basic model of the polariton Hamiltonian Ĥpol. For
systems without any distinguished spatial directions when the
light scattering from the inhomogeneities of the medium can
be neglected, one can work with the basic model polariton
Hamiltonian Ĥpol, which diagonalized form is quadratic in the
upper, Qq, and the lower, Pq, polariton operators [50]:

Ĥpol = h̄
∑

q

�+qQ†
qQq + �−qP†

q Pq. (1)

The polariton operators and the polariton energies, �±q, de-
pend on the wave vector q. The polariton dispersion relations
are known to be the solution of a quadratic equation and
expressed in terms of the exciton energy ωex and the photon
energy ωq:

�±q = 1
2 (ωq + ωex ±

√
(ωq − ωex)2 + 4g2). (2)

The Rabi splitting, i.e., the width of the gap between the
upper and the lower polariton branches, is governed by the

(a)

(b)

FIG. 1. (a) The molecular substance (green area) containing a
thin layer of the molecular solution is placed between two cavity
mirrors (blue rectangles) with the distance L between them. The light
modes formed in the microcavity have the wave vector q with the in-
plane q‖ and transverse qz components q = (q‖, qz ). The transverse
component qz can have only discrete values marked by n = 1, 2, . . . .
(b) The polariton dispersion curves �±q and the Hopfield coefficients
cos2 φq, sin2 φq (in the insert) plotted vs the wave vector q. AP
denotes the anticrossing point ωex = ωq.

light-matter interaction strength constant g. The polariton
operators Qq and Pq are expressed in terms of the material op-
erators by means of the unitary transformation parametrized
by the “Hopfield angle” φq [see Fig. 1(b)],

Qq = cos φqAq − i sin φq
1√
N

∑
m

e−iqmbm, (3)

Pq = sin φqAq + i cos φq
1√
N

∑
m

e−iqmbm, (4)

where N is the total number of molecules and qm denotes
the scalar product of the wave vector q and the radius-vector
pointing at the optical transition center of the mth molecule.
The operators Aq in Eqs. (3) and (4) are the boson annihila-
tion operators of a photon in the mode q. The operators bm

are the annihilation operators of the excited state at the mth
molecule. The exciton annihilation and creation operators are

075404-3



VLADIMIR AL. OSIPOV AND BORIS FAINBERG PHYSICAL REVIEW B 107, 075404 (2023)

known to be Paulions (or composite bosons, according to the
terminology used in Refs. [48,49]): they possess the fermion
properties [bm, b†

m]+ = 1 at one and the same site, and com-
mute for different sites [bm, b†

m′ ] = 0 when m �= m′. Under
the assumption of a small density of the excitations, the op-
erators bm approximately (up to the order 1/N) satisfy the
bosonic commutation relations [bm, b†

m′ ] = δm,m′ , and so do
the polariton operators [Qq, Q†

q′ ] = [Pq, P†
q′ ] = δq,q′ . The sub-

stitution of Paulions by bosons for small excitation densities
historically can be traced back to the method of approximate
second quantization developed in the theory of magnetism
[51]. The Paulion state can be either occupied or unoccupied,
whereas the occupation numbers for bosons can be any pos-
itive integer number. Therefore, the replacement of Paulions
by bosons fails when the number of bosons is larger than
1. In the case of nonlinear optical effects this is avoided by
adding into the quadratic “boson” Hamiltonian [Eq. (1)] the
operator of kinematic interaction, which includes the terms
of the fourth and higher orders [12,52,53]. The operator of
kinematic interaction results in a nonlinear interaction be-
tween the bosons. In this relation, a useful and straightforward
method for accounting of the multi-Frenkel exciton states can
be found in Refs. [48,49]. In our theory, where the interac-
tion between polaritons is caused by vibrations, the nonlinear
equations appear even for the single-polariton state describ-
ing the single-exciton processes. The solution of nonlinear
equations is a nontrivial problem by itself, so to focus on
a new physics related to our nonlinear theory, we exclude
the additional nonlinearities generated by the multiexciton
states in the nonlinear optical processes. Thus, we restrict the
application of our theory to the linear optical processes for
which it is sufficient to take into account the single-exciton
states.

A few remarks have to be made at this point:
(1) The Hopfield angle φq in Eqs. (3) and (4) is defined

through the relation cos 2φq = ωq−ωex

�+q−�−q
. Its value ranges from

0 at large q, q → ∞, to some value close but smaller than π/2
at q = 0. The wave vector satisfying the AP position ωq = ωex

corresponds to φq = π/4.
(2) The problem implies the symmetry with respect to the

generic change of the momentum sign, so that all the equa-
tions have to be invariant under the transformation q → −q,
and, in particular, ωq = ω−q and φq = φ−q.

(3) In our formulation we use the rescaling, where m is
an integer-valued vector and the dimension units are absorbed
by the wave vector q and also by the energy units. In the free
space the photons dispersion ωq is linear in the wave-vector
absolute value. In our notations the free-space photon energy
has the form ωq = c|q|/n0〈�〉, where c/n0 is the speed of
light in the medium and 〈�〉 is the mean distance between
the molecules. Below, for convenience, we omit 〈�〉, bearing
in mind that 〈�〉 is canceled in the final formulas, and q is
measured in conventional units. In the case when the active
media are placed into a microcavity the wave-vector values are
bounded from below by the wave vector qz of the eigenmode
excited in the resonator and ωq = c

n0

√
q2

z + q2
‖ (see Fig. 1).

(4) The single-polariton states of the polariton Hamilto-
nian Ĥpol [Eq. (1)] are composed of the vectors which we
denote by |q, u〉. They are distinguished by the parameters q,

u. Each of |q, u〉 describes an upper (u = 1) or lower (u = 0)
polariton excited with the momentum q,

|q, 0〉 = P†
q |0〉 , |q, 1〉 = Q†

q |0〉 . (5)

The vector |0〉 denotes the ground state of the system with
zero polaritons. The nonzero matrix elements of the polariton
Hamiltonian are

〈q, u| Ĥpol |q, u〉 = (1 − u)�−q + u�+q. (6)

(5) Accounting of the vibrations shifts the energy of the
molecular optical transition by half of the Stokes shift ωSt/2.
In the next section (Sec. II B) it is implied that ωex → ωex +
ωSt/2 in Eq. (2) and in the related equations.

B. Vibration Hamiltonian and the extended basis set
of the polariton wave functions

The total Hamiltonian of the molecular system with po-
laritons Ĥ contains two contributions: the polariton part Ĥpol,
which was discussed in the previous section [Eq. (1)], and the
vibrational part Ĥvib, which describes interaction of electrons
with vibrations:

Ĥ = Ĥpol + Ĥvib. (7)

The vibrational part of the Hamiltonian is modeled by the
standard electron-vibration Holstein-type [42] Hamiltonian

Ĥvib =
∑
m,μ

[Ĥbath(c†
m,μ, cm,μ) + h̄	μc†

m,μcm,μ

− h̄	μXμ(c†
m,μ + cm,μ)b†

mbm]. (8)

It is assumed that the electron transition in the mth molecule is
coupled to a number of quantum harmonic oscillations of the
molecular backbone with various energy quanta h̄	μ indexed
by μ = 0, 1, . . . . The frequencies 	μ and the oscillator equi-
librium coordinate shifts Xμ in the excited electronic state are
equal for all molecules. The optically active vibration modes
(boson operators cm,μ and c†

m,μ, [cm,μ, c†
m′,μ′] = δm,m′δμ,μ′) in-

teract with the dark modes via the thermal bath Hamiltonian
Ĥbath. We assume that this term also includes, if necessary,
the interactions of vibrations localized at different molecules.
Remind here that the excitation energy has to be shifted by the
half of the Stokes shift ωSt ≡ 2

∑
μ 	μX 2

μ, i.e., we imply that
ωex → ωex + ωSt/2 in Eq. (2) and in the related equations.

The basis of coherent states provides a convenient descrip-
tion for vibration degrees of freedom [39]. Each coherent
state |σ 〉 is parametrized by multidimensional complex-valued
vector σ . It encodes the coherent state center, i.e., the clas-
sical coordinate x and the classical momentum p, namely,
σ = x + ip. The vibration operators act on the basis vectors
as follows: c |σ 〉 = σ |σ 〉, 〈σ | c† = 〈σ | σ ∗ and the normalized
coherent state have the representation

|σ 〉 = e− 1
2 |σ |2 eσc† |0〉 , (9)

where |0〉 is the ground state of the corresponding oscillator.
As we mentioned in the previous section, we consider only

the single-polariton state, which is described by two types of
vectors: |q, 0〉, and |q, 1〉. Thus, our working basis consists
of the direct products of the polariton and vibrational states
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(u = 0, 1)

|σ, q, u〉 = |σ〉 |q, u〉 , |σ〉 =
⊗
m,μ

|σm,μ〉 . (10)

The scalar product of the vectors defined above is

〈σ ′, q′, u′|σ, q, u〉 = 〈σ ′|σ〉 〈q′, u′|q, u〉

= exp

(
− 1

2

∑
m,μ

|σ ′
m,μ − σm,μ|2

)
δq′,qδu′,u.

(11)

The completeness and orthogonality relation for the extended
basis [Eq. (10)] takes the form

1 =
∑

σ

∑
q

∑
u=0,1

|σ, q, u〉 〈σ, q, u| . (12)

Here and below the sum
∑

σ denotes the integration∫
d2σm,μ/π over each component of the vector σ.

C. Polariton wave-function evolution in the time-dependent
basis and equations of motion

The basis of vectors [Eq. (10)] defined in the previous
section does not diagonalize the total Hamiltonian Ĥ. To
describe the evolution of the wave function we make use an
anzatz, which states that the basis of the coherent states is
time dependent, i.e., in addition to the time dependence of the
expansion coefficients C(σ, q, u|t ), we assume that the basis
vectors also depend on time, |σ(t ), q, u〉. The wave function
of the system can be standardly expanded in this basis

|�(t )〉 =
∑
σ,q,u

C(σ, q, u|t ) |σ(t ), q, u〉 . (13)

To work with such wave functions we use the approach which
is based on the Dirac-Frenkel variation principle. This ap-
proach is known to be useful for the description of quantum

dynamics in systems with a large number of vibration degrees
of freedom [40,54–56]. In our case it allows us to separate the
time evolution of the vibration subsystem and the quantum
evolution of the polariton wave function. The wave-function
(13) variation is

〈δ�(t )| =
∑
σ,q,u

〈σ, q, u|
{
δC∗(σ, q, u|t ) + C∗(σ, q, u|t )

×
∑
m,μ

(
δσ ∗

m,μcm,μ − 1

2
[σm,μδσ ∗

m,μ + σ ∗
m,μδσm,μ]

)}
.

(14)

The second term in Eq. (14) results from the variation of
the coherent state written in the form (9). Variation of the
Schrödinger equation 〈�| ih̄ d

dt − Ĥ |�〉 = 0 with respect to
the bra-vector and equating to zero each term proportional
to the independent variations δC(σ ′, q′, u′|t ), and δσm,μ yields
the system of coupled equations,

〈σ ′, q′, u′| ih̄
d

dt
− Ĥ |�〉 = 0, (15)

C∗(σ ′, q′, u′|t ) 〈σ ′, q′, u′| cm,μ

(
ih̄

d

dt
− Ĥ

)
|�〉 = 0. (16)

From Eq. (14) we also derive the expression for the time
derivative of the wave function,

d

dt
|�(t )〉 =

∑
σ,q,u

{
Ċ(σ, q, u|t ) + C(σ, q, u|t )

∑
m,μ

(
σ̇m,μc†

m,μ

− 1

2
[σm,μσ̇ ∗

m,μ + σ ∗
m,μσ̇m,μ]

)}
|σ, q, u〉 . (17)

The overdot symbol, as usual, denotes the time derivative.
Substitution of the above expression [Eq. (17)] into Eqs. (15)
and (16) leads to two equations which extended forms are

∑
σ

〈σ ′|σ〉 Ċ(σ, q′, u′|t ) = − i

h̄

∑
σ,q,u

〈σ ′, q′, u′| Ĥ |σ, q, u〉 C(σ, q, u|t ) + 1

2

∑
σ

〈σ ′|σ〉 C(σ, q′, u′|t )
∑
m,μ

[σm,μσ̇ ∗
m,μ − σ ∗

m,μσ̇m,μ]

−
∑

σ

〈σ ′|σ〉 C(σ, q′, u′|t )
∑
m,μ

(σ ′∗
m,μ − σ ∗

m,μ)σ̇m,μ, (18)

C∗(σ ′, q′, u′|t )
∑

σ

〈σ ′|σ〉 [σm,μĊ(σ, q′, u′|t ) + σ̇m,μC(σ, q′, u′|t )]

= − i

h̄
C∗(σ ′, q′, u′|t )

∑
σ,q,u

〈σ ′, q′, u′| cm,μĤ |σ, q, u〉 C(σ, q, u|t ) + 1

2
C∗(σ ′, q′, u′|t )

∑
σ

〈σ ′|σ〉 σm,μC(σ, q′, u′|t )

×
∑
n,ν

([σn,ν σ̇
∗
n,ν − σ ∗

n,ν σ̇n,ν] − 2(σ ′∗
n,ν − σ ∗

n,ν )σ̇n,ν ). (19)

Now we have to specify the terms including the Hamilto-
nian Ĥ. The system Hamiltonian Ĥ consists of two parts Ĥpol

and Ĥvib. The polariton Hamiltonian (1) is diagonalized in the
basis (10), its nonzero entries are

〈σ ′, q′, u′| Ĥpol |σ, q, u〉 = h̄ 〈σ ′|σ〉 δq′,qδu′,u

× [(1 − u)�−q + u�+q], (20)

〈σ ′, q′, u′| cm,μĤpol |σ, q, u〉 = σm,μh̄ 〈σ ′|σ〉 δq′,qδu′,u

× [(1 − u)�−q + u�+q].
(21)

To continue our calculations we make use the general ob-
servation that the matrix elements 〈σ ′, q′, u′| Ĥ |σ, q, u〉 of a
generic normally ordered in c†

m,μ and cm,μ Hamiltonian Ĥ can
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be obtained by replacing of c†
m,μ and cm,μ by σ ′

m,μ
∗ and σm,μ,

respectively, i.e.,

〈σ ′, q′, u′| Ĥ |σ, q, u〉 = 〈σ ′|σ〉 〈q′, u′| Ĥ(σ ′∗, σ ) |q, u〉 (22)

and correspondingly

〈σ ′, q′, u′| cm,μĤ |σ, q, u〉 − σm,μ 〈σ ′, q′, u′| Ĥ |σ, q, u〉
= 〈σ ′|σ〉 ∂

∂σ ′
m,μ

∗ 〈q′, u′| Ĥ(σ ′∗, σ ) |q, u〉 . (23)

The matrix elements of the vibration Hamiltonian can be
calculated with the help of Eqs. (3) and (4). The electron
operators expressed in terms of the polariton operators yield

b†
mbm = 1

N

∑
q′,q

e−i(q′−q)m(sin φq′Q†
q′ − cos φq′P†

q′ )

× (sin φqQq − cos φqPq). (24)

The matrix elements of the polariton operator products are
calculated from Eq. (5), namely,

〈q′, u′| Q†
s′Qs |q, u〉 = u δu′,uδs′,q′δs,q, (25)

〈q′, u′| P†
s′ Ps |q, u〉 = (1 − u) δu′,uδs′,q′δs,q, (26)

〈q′, u′| P†
s′ Qs |q, u〉 = u(1 − u′) δs′,q′δs,q, (27)

〈q′, u′| Q†
s′Ps |q, u〉 = u′(1 − u) δs′,q′δs,q. (28)

Note that the indices s and s′ are not necessarily equal so
that each of the above operator products is responsible for the
polariton annihilation in some mode q and its creation in some
other mode q′ or in the same mode q when s′ = s.

Combining all results we derive the matrix elements of the
vibration Hamiltonian

〈σ ′, q′, u′| Ĥvib |σ, q, u〉 = − 〈σ ′σ〉
∑
m,μ

h̄	μXμ

N
(σ ′

m,μ

∗ + σm,μ)e−i(q′−q)m[vq′,q]u′,u + 〈σ ′|σ〉 δq′,qδu′,uh̄
∑
m,μ

	μσ ′
m,μ

∗
σm,μ

+ 〈σ ′|σ〉 δq′,qδu′,uHbath(σ ′∗, σ ), (29)

where [vq′,q]u′,u denotes the (u′, u) component of the matrix of the Hopfield coefficients vq′,q,

vq′,q =
(

[vq′,q]1,1 [vq′,q]1,0

[vq′,q]0,1 [vq′,q]0,0

)
≡

(
sin φq′ sin φq − sin φq′ cos φq

− cos φq′ sin φq cos φq′ cos φq

)
. (30)

Correspondingly, we obtain

〈σ ′, q′, u′| cm,μĤvib |σ, q, u〉 − σm,μ 〈σ ′, q′, u′| Ĥvib |σ, q, u〉

= − 〈σ ′|σ〉 h̄	μXμ

N
e−i(q′−q)m[vq′,q]u′,u + 〈σ ′|σ〉 δq′,qδu′,uh̄	μσm,μ + 〈σ ′|σ〉 δq′,qδu′,u

∂

∂σ ′
m,μ

∗ Hbath(σ ′∗, σ ). (31)

Equations (18) and (19) after substitution of the results of Eqs. (20) and (21) and (29) and (31) give rise to the complete set
of equations of motion for the polariton wave function. The obtained equations, however, are overcomplicated and even their
numeric solution can be difficult. To proceed we appeal to the multiconfiguration Hartree framework [57]. The multiconfiguration
Hartree approach is the method restructuring the set of equations of motion obtained in the time-dependent basis set. The
rigorous approach to the generic solution is discussed in [55]. In our particular model [Eqs. (18) and (19)] we end up with the
equations similar to the equations of the mean-field Hartree theory.

Equation (18) contains integration over σ inside the window cut in the narrow vicinity of σ ′. Structurally, the equation can be
presented as follows:

∑
σ

〈σ ′|σ〉
[

S̄(σ, q′, u′) +
∑
m,μ

(σ ′
m,μ

∗ − σ ∗
m,μ) ¯̄S(m, μ; σ, q′, u′)

]
= 0. (32)

The explicit forms of the coefficients in Eq. (32) are

S̄(σ, q′, u′) ≡ −Ċ(σ, q′, u′|t ) − iC(σ, q′, u′|t )[(1 − u′)�−q + u′�+q] + i
∑
q,u

∑
m,μ

	μXμ

N
(σ ∗

m,μ + σm,μ)e−i(q′−q)m

× [vq′,q]u′,uC(σ, q, u|t ) − i

h̄
C(σ, q′, u′|t )Hbath(σ∗, σ ) − iC(σ, q′, u′|t )

∑
m,μ

	μσ ∗
m,μσm,μ

+ 1

2
C(σ, q′, u′|t )

∑
m,μ

[σm,μσ̇ ∗
m,μ − σ ∗

m,μσ̇m,μ], (33)
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¯̄S(m, μ; σ, q′, u′) ≡ i
∑
q,u

	μXμ

N
e−i(q′−q)m[vq′,q]u′,uC(σ, q, u|t ) − C(σ, q′, u′|t )σ̇m,μ

− iC(σ, q′, u′|t )	μσm,μ − i

h̄
C(σ, q′, u′|t )

∂

∂σ ′∗
m,μ

Hbath(σ ′∗, σ ). (34)

The structure of the second equation (19) is similar to that of Eq. (32) up to the integration measure. The equation in terms of
the above introduced functions [Eqs. (33) and (34)] reads as∑

σ

〈σ ′|σ〉 C∗(σ ′, q′, u′|t )

[
¯̄S(m, μ; σ, q′, u′) + σm,μS̄(σ, q′, u′) + σm,μ

∑
n,ν

(σ ′
n,ν

∗ − σ ∗
n,ν ) ¯̄S(n, ν; σ, q′, u′)

]
= 0. (35)

The integration domain in Eqs. (32) and (35) is defined by the scalar product of the coherent states 〈σ ′|σ〉 =
exp(−∑

m,μ |σ ′
m,μ − σm,μ|2/2). Due to the large total number of the oscillators this product cuts a very narrow region in

the whole configuration space. In the semiclassical approximation we set 〈σ ′|σ〉 = δ(σ ′ − σ ), so that the resulting set of
equations read as S̄(σ, q′, u′) = 0 and ¯̄S(m, μ; σ, q′, u′) = 0. The same set of equations can be obtained from the assumption
that the terms S̄ and ¯̄S nullify independently. Remarkably, this solution exhausts all possible solutions. Here is the sketch of the
proof. First, we formally convert the integral equations (32) and (35) into a matrix form. For that we are indexing by integer
numbers the nonintersecting domains of σ and replace the integration by summation. Also, we enumerate all possible couples
of the vibration indices (m, μ) and of the polariton states (q′, u′). The matrix of the coefficients of the obtained system of linear
equations (the variables are S̄ and ¯̄S) is quadratic and, generically, its determinant is nonzero. This immediately means that only
trivial solution satisfies the equations. The determinant can become zero if one or several coefficients C(σ, q′, u′|t ) are equal
to zero. Obviously, when all coefficients C(σ, q′, u′|t ) are equal to zero there is no polariton excited and the vibration degrees
of freedom behave independently, which problem is out of our attention. Now we show that the solution with the nonzero
C(σ, q′, u′|t ) is self-consistent solution of the system. By equating S̄(σ, q′, u′) = 0 we obtain the first equation of motion

C(σ, q′, u′|t )

[
σ̇m,μ + i	μσm,μ + i

h̄

∂

∂σ ′∗
m,μ

Hbath(σ ′∗, σ )

]
= i

	μXμ

N

∑
q,u

e−i(q′−q)m[vq′,q]u′,uC(σ, q, u|t ). (36)

The other condition ¯̄S(m, μ; σ, q′, u′) = 0 yields the second equation of motion

Ċ(σ, q′, u′|t ) = −iC(σ, q′, u′|t )[(1 − u′)�−q + u′�+q] + i
∑
q,u

∑
m,μ

	μXμ

N
(σ ∗

m,μ + σm,μ)e−i(q′−q)m[vq′,q]u′,uC(σ, q, u|t )

− i

h̄
C(σ, q′, u′|t )Hbath(σ∗, σ ) − iC(σ, q′, u′|t )

∑
m,μ

	μσ ∗
m,μσm,μ + 1

2
C(σ, q′, u′|t )

∑
m,μ

[σm,μσ̇ ∗
m,μ − σ ∗

m,μσ̇m,μ].

(37)

Consider the first consequence of the formulated equations [(36) and (37)]: a special combination of the equations, which
generates the equation for the time evolution of the squared amplitude |C(σ, q′, u′|t )|2, yields

∂

∂t
|C(σ, q′, u′|t )|2 = i

∑
q,u

[vq′,q]u′,u[C(σ, q′, u′|t )α∗(q′ − q)C∗(σ, q, u|t ) − C∗(σ, q′, u′|t )α(q′ − q)C(σ, q, u|t )] (38)

with the electron-vibration coupling α(q′ − q) given by the
expression

α(q′ − q) ≡ 1

N

∑
m

αme−i(q′−q)m, (39)

αm ≡
∑

μ

	μXμ(σ ∗
m,μ + σm,μ). (40)

At the derivation of Eq. (38) it has been assumed that the
bath Hamiltonian is linear in σm,μ, which is the standard
form of the phonon interaction Hamiltonian. The obtained
equation [Eq. (38)], in particular, shows that the amplitudes
|C(σ, q′, u′|t )| for all allowed values of q get nonzero values
as soon as any of αm has a nonzero value. This finishes the

proof that the nonzero coefficients C(σ, q′, u′|t ) generate a
self-consistent solution of the system (32) and (35).

One more critical condition follows from Eq. (38): it is
conservation of the total probability of finding polariton in any
of the allowed states. Indeed, since α∗(q′ − q) = α(q − q′)
and due to the symmetry of the matrix vq,q′ ([vq,q′ ]u,u′ =
[vq′,q]u′,u) after summation over q′ and u′ we immediately
derive

Ṅ (t |σ) = 0, N (t |σ) =
∑
q,u

|C(σ, q, u|t )|2. (41)

The total probability conservation allows us to sum up the
equations (36) over q′ and u′ after multiplication of each of
them by the corresponding coefficient C∗(σ, q′, u′|t ). In such a
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way we derive the equation of motion for the (m, μ) oscillator

σ̇m,μ = −i	μσm,μ + i
	μXμ

N
χm(t |σ)

− i

h̄

∂

∂σ ′
m,μ

∗ Hbath(σ ′∗, σ ). (42)

This equation contains the mean-field Hartree term
i 	μXμ

N χm(t |σ), which describes influence of the polariton
field on the quantum oscillators. The Hartree term amplitude
is

χm(t |σ) =
∑

q′,q,u′,u

e−i(q′−q)m[vq′,q]u′,uρ

(
t

∣∣∣∣ q, u

q′, u′

∣∣∣∣σ
)

, (43)

where ρ is the density matrix

ρ

(
t

∣∣∣∣ q, u

q′, u′

∣∣∣∣σ
)

= C∗(σ, q′, u′|t )C(σ, q, u|t )

N (t |σ )
. (44)

The symmetry [vq,q′ ]u,u′ = [vq′,q]u′,u guarantees that χm is a
real-valued function, i.e., χ∗

m(t |σ) = χm(t |σ).
At the final step we substitute σ̇m,μ from Eq. (42) into

Eq. (37) to obtain the second equation of motion

Ċ(σ, q′, u′|t ) = −i[(1 − u′)�−q′ + u′�+q′ )]C(σ, q′, u′|t )

− i

2N
C(σ, q′, u′|t )

∑
m

αmχm(t |σ)

+ i
∑
q,u

α(q′ − q)[vq′,q]u′,uC(σ, q, u|t ). (45)

Equation (45) together with Eq. (42) form a system of equa-
tions of vibration-assisted polariton motion. Deriving the
equations, we did not make any approximations.

To investigate influence of the Hartree term in the next
section we consider two problems: we calculate the polari-
ton luminescence using the diagonal approximation in the

equations of motion (Sec. III A); and solve the equations of
motion in the vicinity of AP (Sec. III B).

III. SOLUTION OF POLARITON EQUATIONS
IN VARIOUS REGIMES

It is instructive to investigate the influence of the nonlinear
Hartree term in a somewhat simplified setup. To this end,
we consider two types of problems, namely, we calculate
the fluorescence spectra in the regime of large Rabi splitting
when some sort of linearization of the equations of motion
is possible (Sec. III A). Second, in Sec. III B we consider the
evolution of the polariton wave function in the AP vicinity,
when nonlinearity plays a crucial role.

A. Fluorescent spectrum in quasidiagonal approximation

1. Equations of motion at large Rabi splitting
in the quasidiagonal approximation

In the quasidiagonal approximation one keeps only the
diagonal terms q′ = q corresponding to the largest value of the
vibational perturbation [28] in the second equation of motion
[Eq. (45)]. The processes with q �= q′ describe the polariton
relaxation along the dispersion curve. In our consideration we
neglect such processes assuming that they are much slower
than any other process under consideration, so we make use
the replacement α(q′ − q) → α(0) in Eq. (45). We return
back to the discussion of this issue at the end of Sec. III A 2.
In addition, we consider the regime of the large Rabi splitting,
i.e., when the difference �−q − �+q is larger of all relevant
characteristic frequencies of the problem. In this case, the
terms describing the exchange between the polariton branches
can be neglected. Using explicit form of the diagonal entries
of the matrix v [Eq. (30)], which are the electronic Hopfield
coefficients sin2 φq and cos2 φq corresponding to the upper
and lower polariton branches, respectively, we obtain

Ċ(σ, q, 0|t ) = −i

(
�−q − 2α(0)

[
cos2 φq − 1

2

∑
q

(sin2 φq|C(σ, q, 1|t )|2 + cos2 φq|C(σ, q, 0|t )|2)

])
C(σ, q, 0|t ), (46)

Ċ(σ, q, 1|t ) = −i

(
�+q − 2α(0)

[
sin2 φq − 1

2

∑
q

(sin2 φq|C(σ, q, 1|t )|2 + cos2 φq|C(σ, q, 0|t )|2)

])
C(σ, q, 1|t ). (47)

The factor 2 at α(0) appears due to the symmetry q →
−q. The factors with the opposite momenta contribute
identically.

To estimate the time dependence of α(0) we return back
to Eq. (42). Instead of solving all equations for σm,μ in-
dependently we replace the Hartree m-dependent term χm

[Eqs. (43) and (44)] by its average value, an m-independent
approximate polariton field acting on each molecule identi-
cally. For that we use the diagonal approximation and omit
the highly oscillating terms in the same way as we did in the
solutions (46) and (47). These approximations are identical to
the “maximal action” approximation, when one replaces χm

by the exact upper border of its estimator (see Appendix B).
Therefore, the approximate equations for the function σm,μ

become

σ̇m,μ ≈ −i	μσm,μ − 2iγ Imσm,μ − iξm(t ) + i	μXμ

×
∑

q

(sin2 φq|C(σ, q, 1|t )|2 + cos2 φq|C(σ, q, 0|t )|2).

(48)

Here we modeled the bath degrees of freedom by some
damping with the rate γ and by a stochastic force ξm(t ).
Equation (48) is the Langevin equation with an external
force. Following the standard procedure we assume that the
noise ξm(t ) is Gaussian with zero mean value. We imply
that the noise is δ correlated in time, i.e., 〈ξm(t )ξn(τ )〉 =
γ	μkBT (δm,n + Rm,n)δ(t − τ ) (kBT is the bath temperature
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expressed in the energy units) and Rm,n generates some (small)
correlations between the molecules. We make the stochastic
averaging in the regime when the equilibration of the vibra-
tions happens very fast after the optical excitation. For the case
of overdamped oscillator the averaged over the noise function
σm,μ is easy to calculate, it is〈 ∑

m

(σ ∗
m,μ + σm,μ)

〉
= 2NXμ

∑
q

(sin2 φq|C(σ, q, 1|t )|2

+ cos2 φq|C(σ, q, 0|t )|2), (49)

which means that the averaged 〈α(0)〉 is proportional to the
Hartree term

〈α(0)〉 ≡
〈

1

N

∑
m

αm

〉
= ωSt

∑
q

(sin2 φq

× |C(σ, q, 1|t )|2 + cos2 φq|C(σ, q, 0|t )|2). (50)

Reformulation of the stochastic equation [Eq. (48)] in terms of
the Fokker-Planck equation and consequent application of the
theorem for a sums of weighted normally distributed random
variables allows us to write the distribution for α(0) as [28]

P(α(0)) =
√

1

2πkNωStkBT
e− [α(0)−〈α(0)〉]2

2kN ωStkBT , (51)

where

kN =
⎛
⎝N+2

N∑
i< j

ri j

⎞
⎠/

N2, (52)

0 � ri j � 1 are the correlation coefficients that are different
from zero when the vibrations include both the intramolecular
and the intermolecular ones [see the definition of the stochas-
tic force ξm(t ) in the paragraph between Eqs. (48) and (49)].
The assumption of the intramolecular nature of the optically
active vibrations means that, in this case, they are statistically
independent, so that the coefficient kN equals 1/N . In the
other extreme case when the optically active vibrations are
intermolecular ones, the correlation coefficients ri j = 1 and
kN = 1.

2. Luminescence spectrum calculation

In an experiment, the polariton system is irradiated by
the pumping light and emits light which carries information
about the polariton states. The pronounced advantage of the
polariton devices is the one-to-one correspondence between
the polariton states and the emitted photons. Since the emitted
photon is a part of the polariton particle it preserves the po-
lariton energy and the in-plane wave vector. A fixed polariton
decay rate makes it possible studying of the dynamics of these
composite particles.

Formally, to relate the outer field with the intracavity
one, we appeal to the quasimode approximation [58], when
the in-out coupling conserves the in-plane components q‖ of
the intracavity wave vector q = (q‖, qz ) (see Fig. 1). The z

components of the wave vector in free space are determined
by the emitted photon energy. Thus, to denote the external
electromagnetic field components (emitted photons) one can
use solely the wave-vector component q‖ [26,59,60]. The
luminescence signal amplitude Sq‖ (ω) detected out of the sam-
ple and coming from the direction marked by the wave vector
q‖, which frequency ωq̃ = c

n0
|q̃| is generally calculated from

the two-time correlation function of the quantized electric
field generated by the leakage of photons (with the charac-
teristic rate κ) through the mirrors of the microcavity [61].
The details of the calculation are given in Appendix A. The
signal amplitude Sq‖ (ω) is expressed in terms of the Fourier
transform of the quantum correlation functions G1(ω,ω3) and
G2(ω,ω3) [Eqs. (A12) and (A13)]:

Sq‖ (ω) ∝ h̄ω
r̄2

exκ
2

π
Re

∫ +∞

−∞
dω3〈(G1(−ω,ω3)G2(ω,−ω3)

+ G∗
1(ω,ω3)G∗

2(−ω,−ω3))〉, (53)

where the frequency ω coincides with the frequency of the
wave freely propagating in the outer space. The coefficients
κ and r̄ex are the effective rates of the polariton decay and
creation, respectively. In addition to the quantum average
of the correlation functions, we also perform the thermo-
dynamic average, which is denoted by 〈. . . 〉. The quantum

correlation function 〈0| Pq0 Tei
∫ τ1

t0
Ĥ(τ )dτ/h̄A†

q |0〉, entering the
functions G1(ω,ω3) and G2(ω,ω3) [Eqs. (A12) and (A13)],
describes evolution of the wave function of a polariton created
with the wave vector q0 at some instant of time t0. The polari-
ton evolves up to the time τ1 when it is annihilated at the state
with the wave vector q. Schematically, the process is depicted
by the diagram shown in Fig. 2. The equations connecting the
material and the polariton operators [Eqs. (3) and (4)] allow
us to express the field operator Aq in terms of the operators Pq

and Qq. Assuming, at the moment, that only the lower branch
is excited we use the replacement Aq → sin φqPq. Calculation
of the spectrum essentially depends on the particularities of
the polariton creation process. To specify it, we focus on the
process when the polaritons are created by a short light pulse
at the instant of time t0 with the initial distribution Fu(q) (the
subscript u stands for the lower u = 0 and the upper u = 1
branch). Therefore, after simplification the expression for the
signal reduces to

Sq|| (ω) ∝ h̄ωr̄2
exκ

2〈G(ω)G∗(ω)〉,

G(ω) =
∫ +∞

t0

dτ1eiωτ1C(σ, q, 0|τ1), (54)

where C(σ, q, 0|τ1) is the solution of the polariton equa-
tions of motion with the initial condition C(σ, q, u|t0) =
Fu(q). The factor sin2 φq in Eq. (54) was included into the
parameters r̄2

exκ
2.

In the diagonal approximation the evolution of the polari-
ton expansion coefficient is defined by Eqs. (46) and (47).
From these equations, it follows immediately that the am-
plitude of the wave function is conserved, while the time
dependence is contained solely in the phase factor. Thus, the
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(a)

(b)

FIG. 2. (a) The ladderlike diagram depicting the contribution to
the fluorescent signal [Eq. (A11)]: two polaritons (vertical lines),
initially (at time t0) created in the conjugated states with the mo-
mentum q0 (operators Pq0 and P†

q0
), evolve due to interaction with

the vibrational bath (the region denoted by σ ) to the states with
the momentum q and decay into intracavity photons (operators Aq

and A†
q). The system’s initial and final states are the vacuum states

|0〉. (b) Pictorial representation of the cavity polariton fluorescence
intensity (in arbitrary units) plotted vs the luminescence frequency
ω and the wave vector q in the assumption that the polariton is
excited at a single q, i.e., F0(q′) = 1√

2
(δq,q′ + δq,−q′ ) and F1(q′) = 0

in Eq. (58) for the lower polariton branch when the radiation is mea-
sured at the same q. The upper polariton branch is plotted by analogy.
The dispersion curves of the cavity photons ωq and the polariton
dispersion curves �±q are shown for comparison. In the numerics
we used the parameters ω0 = 3.1 eV, ωSt = 0.15 eV, g = 0.5 eV,
kN kBT = 0.03 eV, the dispersions �±q [Eq. (2)] are calculated with
the substitution ωex = ω0 + ωSt/2.

formal solution is given by

C(σ, q, 0|t ) = F0(q)e−i�−q (t−t0 )+i|uq|2
∫ t

t0
α(0|τ )dτ

, (55)

where for convenience we introduced the notation for the
effective lower branch Hopfield coefficient

|uq|2 ≡ 2

[
cos2 φq − 1

2

∑
q′

cos2 φq′F2
0 (q′)

]
. (56)

Therefore, in the regime of thermal equilibrium of the vi-
bration subsystem the function G(ω) can be immediately

calculated to give

G(ω) = ieiωt0F0(q)

ω − �−q + |uq|2α(0) + iγ̄
, (57)

where the small parameter γ̄ is introduced for regularization
of the integrals. After averaging with the probability measure
(51) we eventually derive

Sq|| (ω) ∝
√

π

2kNωst kBT

h̄ωr̄2
exκ

2F2
0 (q)

|uq|2

× exp

[
− (ω − �−q + 〈α(0)〉|uq|2)2

2kN |uq|4ωStkBT

]
. (58)

In the final expression for the fluorescent signal Sq‖ (ω)
[Eq. (58)] shows that the frequency is distributed around
the polariton frequency �−q, which is shifted by the factor
−〈α(0)〉|uq|2. In the quasistationary regime (i.e., when the
polariton relaxation process is much slower than any other
process, see the first paragraph of Sec. III A 1) we can approxi-
mate the polariton time-dependent wave-function coefficients
in Eq. (50) by their initial values, so using the normalizing
condition for Fu(q) we write

〈α(0)〉 = ωSt − ωSt

∑
q

(cos2 φq|F1(q)|2

+ sin2 φq|F0(q)|2). (59)

Therefore, both the frequency shift and the distribution width
depend on the initial population of the mode q, F0(q). Equa-
tion (58) structurally reproduces the result (72) in [28], where
the factor ωSt|ūs0(q)|2 has to be replaced now by the product
〈α(0)〉|uq|2. Therefore, our rigorous approach shows that the
spectral shift is produced by the Hartree term. Notice also
that the luminescence spectrum [Eq. (58)] is narrowing for the
intramolecular nature of the low-frequency optically active vi-
brations (kN = 1/N) as the number of molecules N increases.
The narrowing of the polariton luminescence spectrum by
increasing the number of molecules was predicted in Ref. [28]
and resembles the exchange (motional) narrowing in the ab-
sorption of molecular aggregates [62]. The difference lies
in the nature of the interaction responsible for the exchange
effects [28].

In Fig. 2(b) we plotted the numeric estimation of the polari-
ton fluorescence for all values of q according to the obtained
formulas [Eqs. (56), (58), and (59)]. We also extended our
numerics for the upper polariton branch. It is assumed that the
fluorescence is measured at the same wave vector q where
the polariton was excited. The two limiting photonic and
excitonic regimes are smoothly connected in the intermediate
region.

For completeness, we investigate the obtained solution
in two limiting cases. The simplest for the analysis case is
the one which describes the polaritons created with a small
momentum q and the initial amplitude F0(q′) = 1√

2
(δq,q′ +

δq,−q′ ). In this case the Hopfield coefficient cos2 φq is very
small. Thus, the combination of factors generating the fre-
quency shift, −〈α(0)〉|uq|2 ≈ −ωSt cos4 φq [Eqs. (50) and
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(56)], is essentially suppressed by the fourth order of cos φq

and can be neglected. In the limit when cos2 φq → 0 the spec-
trum formula can be further reduced by using the δ-function
Gaussian representation δ(x) = limβ→0

1
β
√

π
e−( x

β
)2

. Since in
the case under consideration �−q ∼ ωq [see Fig. 1(b)],
the system radiates at the photon frequency, i.e., Sq‖ (ω) ∝
h̄ωδ(ω − ωq) [see the upper polariton branch at large q and
the lower branch for small q on the fluorescence plot in
Fig. 2(b)].

When the polariton is created in the state with large q, the
lower polariton branch Hopfield coefficient cos2 φq becomes
very close to unity, so that the second term in Eq. (59) can be
neglected. When the polariton field is initially fully concen-
trated at the wave vector q so that |uq|2 ≈ 1. The expansion
of �−q over small ωex/ωq and g/ωq in the leading order gives
�−q ≈ ωex, so that the central luminescence frequency 	 co-
incides with the exciton radiation frequency 	 ≈ ωex − ωSt =
ω0 + ωSt/2 − ωSt = ω0 − ωSt/2. The linewidth reaches the
value kNωStkBT [see the lower polariton branch at large q
and the upper branch for small q on the fluorescence plot in
Fig. 2(b)].

The diagonal approximation, which we use to obtain
the spectrum [Eq. (58)], obviously is not sufficient when
the polariton characteristic decay time is large in compar-
ison with the effective inverse rate of transitions between
the states with various q. During this time the polariton
wave-function amplitudes can spread over a large range
of wave vectors. The time dependence of the amplitudes
|C(σ, q, u|t )|2 and the change in the momentum distribution
can influence the luminescence spectrum. To go beyond the
diagonal approximation, one can additionally equip the prob-
lem [Eqs. (46) and (47)] by the system of balance equations,
which are formulated for the density matrix ρ(q, u|q′, u′; t ) ≡
C∗(σ, q′, u′|t )C(σ, q, u|t ). Following the method proposed by
Zwanzig [63], von Neumann’s equation can be resolved for
the diagonal entries of the density matrix ρ(q, 0|q, 0; t ) ≡
|C(σ, q, 0|t )|2 (see details of derivation in Appendix C). The
obtained balance equation [Eqs. (C11) and (C12)] describes
the evolution of the polariton quantum amplitudes. Note that
von Neumann’s equation does not contain the Hartree term
in any explicit form. The estimation of the transition rate in
the leading order yields

√
kNωStkBT/N (see Appendix C).

The small factor
√

kN/N , suppressing the polariton relaxation
along the dispersion curve, gives us the supporting argument
in favor of our quasidiagonal approximation used for calcula-
tion of the fluorescent spectrum [Eq. (58)].

There are two more remarks. The obtained luminescence
spectrum is defined as a thermal average of Green’s function
G(ω) [Eq. (57)]. The pure polariton (no vibrations) Green’s
function pole is located at the polariton energy. The correction
to its value [|uq|2α(0)] can be interpreted as the polariton
self-energy. Indeed, its structure repeats the typical structure
of the self-energy term: it is a product of the Hartree forces
[χm(t |σ)] exciting the vibrations and those that enter the am-
plitude |uq|2 with the characteristic interaction energy ωSt.
Also, we note that at the construction of our theory we made
a voluntary decision, when inserted the ωSt/2 directly into the
definition of the polariton dispersion �±q. This, however, can
be done differently by inserting ωSt/2 into the definition of

α(q). This should not bring any difference when the problem
is solved nonperturbatively, while the perturbative approach
can be sensitive to this choice especially close to the AP.

To conclude this section we note that the effect of molec-
ular Stokes shift on polariton spectra at a strong light-matter
coupling was seen and discussed in a number of experimental
works [17,29,30]. It is worth noting that the theory developed
in this paper and also in Ref. [28] can serve as a basis for
the heuristic model formulated in Ref. [30]. The latter model
[see Fig. 1(d) in Ref. [30]] qualitatively explains the effect of
the increase of the Stokes shift in the resonant cavities com-
pared to the one measured for the same material (dye-doped
films R6G:PMMA) deposited on glass. Indeed, according to
Eq. (58) with the substitution (59), the fluorescence signal
maximum is found near the frequency �−q − ωSt|uq|2, i.e.,
the polariton energy is corrected by the Stokes shift weighted
with the excitonic contribution to the polariton. Moreover,
our theory explains also the narrowing of the luminescence
spectrum of R6G:PMMA film placed in the cavity with re-
spect to the luminescence spectrum of the same film deposited
on glass [see Fig. 3(c) in Ref. [30]]. The second moment of
the polariton luminescence spectral line equals to the second
moment of the molecular luminescence (ωStkBT ) multiplied
by the factor kN |uq|4 < 1 [Eq. (58)]. This means that there are
at least two sources of the spectral line narrowing observed in
Ref. [30]: the motional narrowing (when kN < 1), and due to
effective decrease of the excitonic component in the polariton
accounted by the weight |uq|4 < 1.

B. Behavior of the polariton wave function in the vicinity of AP

In the previous section the solution of the equations of mo-
tion have been found in the regime where their linearization is
possible. In this section we consider evolution of the polariton
wave function in the AP vicinity, when the nonlinear terms are
essential. As a simplifying condition, we use the assumption
that the polariton wave function is initially activated at a single
momentum mode q = q0. To formulate our equations for this
case in a convenient way we introduce the following no-
tations: Cu ≡ C(σ, q0, u|t ), s ≡ sin φq0 , c ≡ cos φq0 . We also
redefine the time variable as tg → t , and set �± ≡ �±q0/g.
At this choice the Rabi frequency becomes (�+ − �−) =
1/cs � 2. We also set N (t |σ) = 2|C1|2 + 2|C2|2 = 1, then the
Hartree factor simplifies to the m-independent function of
time χm(t |σ) = 2|sC1 − cC0|2. The multiplier 2 arises from
the identical contributions of the polariton modes with +q0

and −q0 due to the mirror symmetry of the dispersion curves.
The equations for the components of σ no longer contain the m
dependence and we define the dimensionless frequency shift
amplitude

x(t ) = − 1

Ng

∑
m

αm = −α(0; t )

g
. (60)

In the case of m-independent vibrations the electron-vibration
coupling α(q′ − q) [Eq. (39)] is proportional to Nδq′,q, so that
there are no transitions between the states with various q,
while the interbranch exchange still takes place. In the above
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simplified notations, the equations of motion [Eq. (45)] read
as

Ċ1 = −i�+C1 + ix(t )|sC1 − cC0|2C1

+ 2ix(t )s(cC0 − sC1), (61)

Ċ0 = −i�−C0 + ix(t )|sC1 − cC0|2C0

− 2ix(t )c(cC0 − sC1). (62)

It is convenient to use the equations written in a trigonometric
form. For the following reparametrization of the polariton
coefficients

C1(t ) = 1√
2

e−i�+t+i�(t )+iη(t )+i�(t ) sin �(t ), (63)

C0(t ) = 1√
2

e−i�−t+i�(t )+iη(t )−i�(t ) cos �(t ), (64)

the set of equations for the coupled angles � and � reads as

�̇(t ) = 2csx(t ) sin

(
t

cs
+ �(t )

)
, (65)

�̇(t ) = (c2 − s2)x(t )

+ 2csx(t ) cot 2�(t ) cos

(
t

cs
+ �(t )

)
. (66)

The equations for the other two dependent angles are

�̇(t ) = x(t )(2|sC1 − cC0|2 − 1), (67)

η̇(t ) = 2csx(t )

sin 2�(t )
cos

(
t

cs
+ �(t )

)
. (68)

In the trigonometric form of the equations of motion, one
can clearly see the dynamic formation of the infinite (im-
penetrable) potential barrier for the polariton phase �(t ) and,
consequently, for the polariton amplitude cos2 �(t ) due to
presence of the cot 2�(t ) function in Eq. (66). This function
forms a number of infinite barriers, which separate the phase
space onto a set of permitted regions: kπ

2 < �(t ) < (k+1)π
2

with k = 0,±1, . . . . When �(t ) comes close to the border
of the permitted region, the cotangent function in Eq. (66)
becomes significant. Then the rapidly growing phase �(t )
changes the sign of the derivative �̇(t ) in Eq. (65). Therefore,
presence of the nonlinear Hartree term in the equations of
motions causes the splitting of the phase space.

The polariton wave-function symmetry with respect to
the phase shift �(t ) → �(t ) ± π

2 k (k = 1, 2, . . . ) trivially
follows from the same type of symmetry of the amplitude
cos2 �(t ). Physically, the role of the barrier can be described
as follows. The repulsive nature of the barrier forbids the
amplitude to become zero. In other words, the barrier sepa-
rates the mixed polariton states from the pure states, i.e., the
probability to find the system, when only the upper or the
lower polariton is excited, equals to zero. This property dis-
appears when the Hartree term is absent or when the vibration
amplitude x0 equals zero.

To demonstrate the repulsive properties of the barrier we
solved Eqs. (65)–(68) numerically for the model function
x(t ) = 	Xx0 cos 	t , corresponding to a coherent excitation
of a single vibration mode as, for example, in the coherent Ra-
man spectroscopy experimental method [64]. In other words,

we assume that only a single vibration degree of freedom
with the parameters 	 and X is excited with some amplitude
x0, and both the polariton subsystem and all other lower-
frequency vibration modes (thermal bath) are neglected. The
typical solutions of Eqs. (65)–(68) under the above choice of
x(t ) are presented in Fig. 3. As expected, the phase space of
� is split onto permitted regions and the trajectory cannot
cross the boundaries between the regions. For completeness
we also calculated behavior of the phases �(t ), �(t ), η(t ).
Since the largest increment of the phase �(t ) is defined by
the cotangent, the linear asymptotic behavior of �(t ) is deter-
mined by these increments, which are regular in time due to
quasiperiodicity of �(t ). The solution for the small vibration
frequency case [the case (1) in Fig. 3 with 	 = 0.1/cs] is
less typical. Here the short-scale dynamics is defined by the
Rabi frequency 1/cs [the curves marked by (1) in Fig. 3], this
dynamics is modulated by the oscillations of x(t ).

Let us switch to another regime when one optically active
vibration is resonantly activated by polariton, i.e., when the
Rabi splitting equals to the vibration frequency. In particular,
we assume that the frequency 	 of some optically active
vibration mode is in resonance with the Rabi splitting, i.e.,
	 = �+ − �− = 1/cs. The equations of motion for these
optically active vibration modes without the bath terms read
as [see Eq. (42)]

σ̇m = −i	σm + 2i
	X

N
|sC1 − cC0|2. (69)

At the initial time, before the formation of the dynamical
barrier [σm(0) = 0], the polariton wave-function coefficients
oscillate with the eigenpolariton frequencies �±. From
Eq. (69) we can independently calculate the linearly growing
with time resonant term, it is

σ (t ) ∝ it
	X

N
e−i	t sc cos �(0) sin �(0), (70)

so that α(0; t ) in Eq. (60), which is proportional to the real part
of σ (t ), can reach significant values. This linear behavior at
relatively large times is suppressed by the factors in Eqs. (63)
and (64) proportional to x(t ), which eventually lead to in-
crease of the detuning and thus constrain the resonant growth.
Therefore, when the Rabi frequency is in resonant with the
frequency of the vibration the model predicts dynamical for-
mation of the barrier, which separates the mixed polariton
state from the pure states through the resonant growth of the
amplitude at the infinite barrier. Note also that influence of
any decoherence, noise processes, and delocalization of the
polariton packet in the regime of the vibronic level resonance
pumping is inessential.

IV. DISCUSSION AND CONCLUSION

In this paper, we derive the set of equations of vibration-
assisted polariton motion [Eqs. (45) and (42)]. To derive them
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FIG. 3. The typical behavior of the phases �(t ), �(t ), �(t )/t , and η(t ) in the zero-noise single-mode model. The momentum q0 is chosen
such that φq0 = π/4, the initial phase of �(t ) is �̃0 = 0.1, the other parameters are different for each case: the case (1) 	 = 0.1/cs, 	Xx0 = 5,
the initial phase of �(t ) is �̃0 = 0.1; (2) 	 = 2.1/cs, 	Xx0 = 2.5, �̃0 = π/2 + 0.1; (3) 	 = 3.1/cs, 	Xx0 = 5, �̃0 = π − 0.4; (4) 	 =
0.5/cs, 	Xx0 = 1, �̃0 = −0.5; (5) 	 = 5.9, 	Xx0 = 4, �̃0 = −π/2 − 0.5.

we start from the conventional quadratic polariton Hamilto-
nian [Eq. (1)] and the Holstein-type vibration Hamiltonian
[Eq. (8)]. The derivation method is based on the Dirac-Frenkel
variation principle applied to the time-dependent basis of po-
lariton states and on the multiconfiguration Hartree approach
[55,57]. In Sec. II C we derive the set of equations of polariton
motion [Eqs. (42) and (45)] and prove the correctness of the
derivation procedure on the physical level of rigor. Note that
the set of obtained equations for the given Hamiltonian Ĥ
[Eq. (7)] is in exact one-to-one correspondence with the origi-
nal Schrödinger equation, no approximations were made at the
derivation. Obviously, the theory becomes approximate when
one goes beyond the standard harmonic oscillator approx-
imation for the vibrations and/or includes the nonresonant
light-matter interaction terms into the polariton part.

To investigate the influence of the Hartree term we con-
sidered two particular examples. In Sec. III A we estimate the
polariton luminescence spectrum in the regime of large Rabi
splitting and use the quasidiagonal approximation [28]. This
allows us to linearize the equations of motion. Calculation of
the polariton frequencies and the corresponding Hopfield co-
efficients is usually performed for the electronic Hamiltonian
[65,66]. In this case, however, the dispersion equation for the
polaritons cannot be reduced to the equation for the trans-
verse eigenmodes of the medium [19,20,67]. To resolve this
problem, the averaging of the Hopfield coefficients with re-
spect to the low-frequency optically active vibrations has been
done in Ref. [28], which made it possible to get the disper-
sion equation coinciding with the equation for the transverse

eigenmodes. In the present approach this procedure can be
performed consistently as we demonstrated in Sec. III A. The
resulting spectra accurately reproduce the physical properties
of the spectra [see Fig. 2(b)]. Note that the theory catches the
effect of the Stokes shift in the polariton luminescence spectra.
Namely, in the region of large q, where the polariton particle
has a large exciton weight, the position of the luminescence
maximum is redshifted by the factor ωSt from the position
of the polariton energy �−q. In the opposite regime, when
the polariton particle is essentially a photon, the fluorescence
peak coincides with the energy of the photon component of
the polariton. Note also that the energy shift can be smaller
than the maximal possible shift equal to ωSt. The shift value
depends on the particular distribution of the polariton wave
function in q space. The effect of molecular Stokes shift on
polariton spectra for strong coupling was seen and discussed
in a number of experimental works [17,29,30]. Our theory
can serve as a basis for the heuristic model formulated in
Ref. [30] qualitatively explaining why the Stokes shift in
resonant cavities filled with R6G:PMMA is larger than that
in the same dye-doped films deposited on glass. Moreover,
our theory explains also the luminescence spectrum narrow-
ing of the R6G:PMMA film in the cavity with respect to
the luminescence spectrum of the same film deposited on
glass [30].

Our theoretical approach originates from the theory of
diabatic and adiabatic processes in quantum systems with the
avoided-energy level crossing [55,57,68]. In such theories, the
temporal switching between the energy branches is usually
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introduced through a time-dependent external parameter [68].
According to our consideration, in the polariton-vibration
system, the time dependence comes from the vibrations dy-
namically activated by the polariton mean-field molecular.
Such kind of equations are typical for the many-particle
theories [55,57]. In Sec. III B we considered the polariton
wave-function behavior in the vicinity of AP. In particular, we
showed that when an optically active vibration is resonantly
excited, the polariton particle in the AP vicinity exists only
in a mixed quantum state of the upper and lower polaritons.
This state is prevented from further decay into a pure upper
or lower polariton state by the infinite energy barriers of a
dynamical origin.

In this paper, we provide a rigorous derivation of the
equations governing the vibration-assisted evolution of the
polariton wave function. There are a number of special prob-
lems, which were left aside from the focus of this paper, such
as revealing the vibronic progression in the polariton spectra,
polariton diffusion along the dispersion curve, and the Bose-
Einstein condensation description. In a more general context,
our theory can be useful in the construction of rigorous ap-
proaches for the purposes of multidimensional spectroscopy
[18]. Although, as noted, our theory describes the effects of
molecular Stokes shift in polariton spectra at strong coupling
[30], the same effects can be described within our previous
approach [28]. However, the fundamental advantage of the
developed here theory is in the rigorous formulation of non-
linear equations of motion. Therefore, its significance goes
far beyond the explanation of the spectral Stokes shift at the
strong light-matter coupling. We expect that the theory will
lead us to new, associated with the nonlinearity, manifes-
tations of the collective behavior in polaritonic and similar
systems, for example, mutual synchronization of interacting
oscillators, oscillation death, etc. [69]. These issues will be
considered elsewhere.
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APPENDIX A: DERIVATION OF THE POLARITON
FLUORESCENT SIGNAL

According to the optic version of the Wiener-Khintchine
theorem, the frequency-resolved signal S(ω) is expressed in

terms of the radiation field autocorrelation function

S(ω) = 1

π
Re

∫ +∞

−∞
dτ

∫ τ

−∞
dτ ′e−iω(τ−τ ′ )

× 〈E (−)(r, τ )E (+)(r, τ ′)〉. (A1)

The correlation function is the quantum expectation value
(τ ′ < τ )

〈E (−)(r, τ )E (+)(r, τ ′)〉
= Tr [E (−)(r, τ )E (+)(r, τ ′)ρtot(τ |τ ′)], (A2)

where ρtot is the density matrix of the total system, including
the external field. The quantized outer electric field E (±)(q̃, t ),
defined in the space of wave vectors q̃, which tangential com-
ponent equals q‖, is

E (−)(q̃, t ) + E (+)(q̃, t )

= −i
∫

dω

√
h̄ω

c
[F †

q̃ (ω)eiωt − Fq̃(ω)e−iωt ], (A3)

where Fq̃(ω) is the field operator, which also includes
the dispersion relation δ(ω − ωq̃) in the outer space.
The Hamiltonian term of the outer field is Hout =∑

q̃

∫
dω h̄ωF †

q̃ (ω)Fq̃(ω). The coupling V between the outer
and the cavity light modes we describe in the minimal cou-
pling assumption, i.e.,

V = i
h̄κ

2π

∑
q

∫
dω[AqF †

q̃ (ω) − A†
qFq̃(ω)], (A4)

where the photon leakage coefficient κ is assumed to be q
independent. The tangential component q‖ of the wave vectors
q̃ and q coincide, while z component of q is fixed by the
photon mode excited in the cavity [Fig. 1(a)] and z component
of q̃ is determined by the emitted photon energy and by q‖.
Thus, the sum in Eq. (A4) effectively runs over q‖.

The density matrix evolution satisfies the von Neumann’s
equation ρ̇tot = − i

h̄ [Hout + V + Ĥ + Hexcit, ρtot], which in the
interaction picture transforms into the equation ρ̇tot,I =
− i

h̄ [VI , ρtot,I ] with

VI (t |t0) = i
h̄κ

2π

∑
q

∫
dω[Aq(t |t0)F †

q̃ (ω)e−iω(t−t0 )

− A†
q(t |t0)Fq̃(ω)eiω(t−t0 )], (A5)

and the time-dependent photon operators

Aq(t |t0) = Tei
∫ t

t0
[Ĥ(τ )+Hexcit (τ )]dτ/h̄Aq Te−i

∫ t
t0

[Ĥ(τ )+Hexcit (τ )]dτ/h̄
.

(A6)

The Hexcit part of the total Hamiltonian is responsible for
creation of polaritons by the external classical pump field.

The density matrix expanded up to the second order over
the interaction VI is

ρtot,I (t |t0) = ρ
(0)
tot,I − i

h̄

∫ t

t0

dτ
[
VI (τ |t0), ρ (0)

tot,I

] + 1

h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2
[
VI (τ1|t0),

[
VI (τ2|t0), ρ (0)

tot,I

]]
. (A7)

This expansion has to be substituted under the trace in Eq. (A2). Since the product E (−)(r, τ )E (+)(r, τ ′) already contains
the F †

q Fq and we assume that initially the outer light modes are empty, we obtain that Tr[F †
q Fqρ

(0)
tot,I ] = 0. The nontrivial
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combinations of operators has to contain the traces Tr[F †
q FqF †

q ρ
(0)
tot,I Fq] = 1. These combinations are generated by the prod-

ucts F †
q FqV (−)

I (τ1|t0)ρ (0)
tot,IV

(+)
I (τ2|t0) and F †

q FqV (−)
I (τ2|t0)ρ (0)

tot,IV
(+)

I (τ1|t0). The first contribution to the signal amplitude S1(ω),
measured at the position marked by the radius vector r, has the form

S1(ω) = 1

2π h̄
Re

∫ +∞

−∞
dτ

∫ τ

−∞
dτ ′

∫
dω1

√
ω1

∫
dω2eiω1τ

√
ω2e−iω2τ

′
e−iω(τ−τ ′ )

∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2

∑
q̃,q̃′

ei(q̃−q̃′ )r

× [
Tr F †

q̃ (ω1)Fq̃′ (ω2)V (−)
I (τ1|τ ′)ρ (0)

tot,IV
(+)

I (τ2|τ ′) + Tr F †
q̃ (ω1)Fq̃′ (ω2)V (−)

I (τ2|τ ′)ρ (0)
tot,IV

(+)
I (τ1|τ ′)

]
. (A8)

Since the detector is positioned far from the sample, the major
contribution to the signal comes from the terms with q̃ = q̃′,
thus the signal amplitude measured in the direction marked
by a given vector q̃ is determined by the tangential component
q‖:

S1
q‖ (ω) = h̄ωq̃κ

2

2π2
Re

∫ +∞

−∞
dτ

∫ τ

−∞
dτ ′−i(ω−ωq̃ )(τ−τ ′ )

× Re
∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2Tr F †

q̃ (ωq̃)Fq̃(ωq̃)A†
q(τ1|τ ′)

× F †
q̃ (ωq̃)ρ (0)

tot,I Aq(τ2|τ ′)Fq̃(ωq̃)e−iωq̃ (τ1−τ2 ). (A9)

After taking the trace and summing up all terms we obtain the
expression

Sq‖ (ω) = h̄ωq̃κ
2

π2
Re

∫ +∞

−∞
dτ

∫ τ

−∞
dτ ′−i(ω−ωq̃ )(τ−τ ′ )

× Re
∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2e−iωq̃ (τ1−τ2 )

× 〈q, τ ′| A†
q(τ1|τ ′)Aq(τ2|τ ′) |q, τ ′〉 . (A10)

The quantum state |q, τ ′〉 here is a state with a previously (at
instant of time τ ′) created polariton, which quantum ampli-
tude has a nonzero projection onto the state with the wave
vector q during the time of the polaritonic system evolu-
tion. Note that the creation of polariton is governed by the
Hexcit Hamiltonian. Its structure Hexcit = h̄

∑
q(rex(q, t )P†

q +
r (+)

ex (q, t )Q†
q ) + c.c. describes creation of the upper and the

lower q polaritons with some time-dependent rates rex and
r (+)

ex , respectively. To have a nonzero quantum average
〈q, τ ′| A†

q(τ1|τ ′)Aq(τ2|τ ′) |q, τ ′〉 the polariton has to be excited
twice. The form of the excitation term depends on the partic-
ular realization of the excitation mechanism. Assume that the
excitation happens for the lower polaritons only (r (+)

ex ≡ 0).
Thus, explicitly, after expansion over Hexcit we write

〈q, τ ′| A†
q(τ1|τ ′)Aq(τ2|τ ′) |q, τ ′〉

= r̄2
ex

∑
q′

∫ τ1

τ ′

rex(q′, τ ′
1)

r̄ex
dτ ′

1 〈0| Pq′Te
i
∫ τ1
τ ′
1
Ĥ(τ )dτ/h̄

A†
q |0〉

×
∑

q′′

∫ τ2

τ ′

rex(q′′, τ ′
2)

r̄ex
dτ ′

2 〈0| AqTe
−i

∫ τ2
τ ′
2
Ĥ(τ )dτ/h̄

P†
q′′ |0〉 .

(A11)

Here we introduced a typical excitation rate constant r̄ex. Such
factorization [Eq. (A11)] allows us further simplification of

the expression for the signal [Eq. (A10)] by taking the Fourier
transform of each component,

G1(ω2, ω3) =
∫∫ +∞

−∞
dτ1dτ ′iω2τ1+iω3τ

′ ∑
q′

∫ τ1

τ ′
dτ ′

1

× rex(q′, τ ′
1)

r̄ex
〈0| Pq′Te

i
∫ τ1
τ ′
1
Ĥ(τ )dτ/h̄

A†
q |0〉 ,

(A12)

G2(ω4, ω5) =
∫∫ +∞

−∞
dτ2dτ ′iω4τ2+iω5τ

′ ∑
q′′

∫ τ2

τ ′
dτ ′

2

× rex(q′′, τ ′
2)

r̄ex
〈0| AqTe

−i
∫ τ2
τ ′
2
Ĥ(τ )dτ/h̄

P†
q′′ |0〉 ,

(A13)

such that the overall expression for the signal becomes

Sq‖ (ω) = h̄ω
r̄2

exκ
2

π
δ(ω − ωq‖ )Re

∫ +∞

−∞
dω3

× (G1(−ω,ω3)G2(ω,−ω3)

+ G∗
1(ω,ω3)G∗

2(−ω,−ω3)). (A14)

At the derivation of the last expression we implied strict
conservation of energy and committed the off-resonant con-
tributions.

APPENDIX B: ESTIMATION OF THE HARTREE TERM
IN EQ. (42)

The Hartree term in Eq. (42), 	μXμ

N χm(t |σ), can be
estimated from above by means of the Cauchy-Bunyakovsky-
Schwarz inequality (the square of a sum is less or equal to the
sum of squares). Namely,

χm(t |σ)
(i)=

∣∣∣∣∣
∑

q

eiqm(sin φqC(σ, q, 1|t ) − cos φqC(σ, q, 0|t ))

∣∣∣∣∣
2

(ii)
�

∣∣∣∣∣
∑

q

eiqm sin φqC(σ, q, 1|t )

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

q

eiqm cos φqC(σ, q, 0|t )

∣∣∣∣∣
2

(iii)
� N

∑
q

(sin2 φq|C(σ, q, 1|t )|2

+ cos2 φq|C(σ, q, 0|t )|2), (B1)
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the equivalence (i) follows directly from the definitions of
the Hartree force [Eqs. (43), (44), and (30)], the approx-
imate inequality (ii) is achieved after omitting the highly
oscillating terms, while the inequality (iii) represents the
Cauchy-Bunyakovsky-Schwarz inequality. The latter inequal-
ity becomes close to the exact equivalence for a narrow
Gaussian distribution of C(σ, q, u|t ) in the q space. The lat-
ter argument allows us to use the exact upper border as the
estimator of the Hartree term χm (see Sec. III A 1). Note also
that the diagonal approximation, i.e., when the exponential
function ei(q−q′ )m is replaced by unity, ends up in the same
resulting expression.

APPENDIX C: ESTIMATION OF THE TRANSITION RATE
IN THE BALANCE EQUATIONS

The sum of the equation of motion [Eq. (45)] taken
with the multiplier C(σ, q, u|t ) with its complex conjugation
yields the equation for the density matrix ρ(q, u|q′, u′; t ) =
C∗(σ, q′, u′|t )C(σ, q, u|t ) of the polariton subsystem [we took
into account that N (t ) = 1]. The corresponding von Neu-
mann’s equation reads as

∂

∂t
ρ(q′, u′|q, u; t ) = −i

∑
q′′,u′′

[h(q′, u′|q′′, u′′; t )ρ(q′′, u′′|q, u; t )

− ρ(q′, u′|q′′, u′′; t )h(q′′, u′′|q, u; t )]
(C1)

with the Hermitian matrix h(q′, u′|q′′, u′′; t ):

h(q′, u′|q, u; t ) ≡ h0(q′, u′|q, u) − h1(q′, u′|q, u; t ), (C2)

h0(q′, u′|q, u) ≡ [(1 − u′)�−q′ + u′�+q′ ]δq′,qδu′,u, (C3)

h1(q′, u′|q, u; t ) ≡ α(q′ − q)[vq′,q]u′,u. (C4)

The Hermiticity of h(q′, u′|q′′, u′′; t ) follows from the symme-
tries α∗(q − q′′) = α(q′′ − q) and [vq,q′ ]u,u′ = [vq′,q]u′,u.

Our aim is to obtain a system of equations for the diagonal
entries of the density matrix. To this end we use the method
proposed by Zwanzig [63] and represent the density operator
as a sum of diagonal and off-diagonal terms by means of the
projection operator D̂ [a three-dimensional tensor with the
entries D̂m,n,k = δm,nδn,k and satisfying the properties D̂2 = D̂,
(1 − D̂)2 = (1 − D̂)], such that ρ = D̂ρ + (1 − D̂)ρ. Using
the obvious properties D̂[h, D̂ρ] = [D̂h, D̂ρ] = 0, which hold
for any h and ρ, we obtain

D̂ρ̇ = −iD̂[h, (1 − D̂)ρ], (C5)

(1 − D̂)ρ̇ = −i(1 − D̂)[h, D̂ρ]

−i(1 − D̂)[h, (1 − D̂)ρ]. (C6)

It is natural to assume that the initial density matrix has the
diagonal entries only, so that (1 − D̂)ρ(0) = 0. Therefore, the
solution for (1 − D̂)ρ(t ) is given by the integral

(1 − D̂)ρ(t ) = −i(1 − D̂)
∫ t

0
u†(τ, t )[h(τ ), D̂ρ(τ )]u(τ, t )dτ,

(C7)

with the unitary matrix

u(τ, t ) = T exp

[
−i

∫ τ

t
h(τ1)dτ1

]
. (C8)

Substitution of the expression (C7) into (C5) gives rise to
the balance equations for the diagonal entries of the density
matrix in the form

D̂ρ̇ = −D̂
∫ t

0
dτ [(1 − D̂)h(t ),

× u†(τ, t )[(1 − D̂)h(τ ), D̂ρ(τ )]u(τ, t )]. (C9)

Having formulated the equation for the diagonal en-
tries of the density matrix [Eq. (C9)] we have to
make the thermodynamic averaging. To perform the av-
eraging, we can assume that the vibration degrees of
freedom equilibrate very fast between the optical transi-
tions. This allows us, first, to make the factorization of
the expectation value 〈h(q′, u′|q′′, u′′; t )ρ(q′′, u′′|q, u; t )〉 =
〈h(q′, u′|q′′, u′′; t )〉〈ρ(q′′, u′′|q, u; t )〉; second, to draw the den-
sity matrix out the time integration; and to use the limiting
distribution for αm, as in Sec. III A [Eq. (51)], which is the
Gaussian distribution with some mean value ᾱm:

P(αm) = 1√
2πNkNωStkBT

exp

[
− (αm − ᾱm)2

2NkNωStkBT

]
. (C10)

From the definition of 〈α(0)〉, which is 〈α(0)〉 = N−1 ∑
m ᾱm,

we can also approximately replace each ᾱm by 〈α(0)〉. One
can show that under the above assumption the balance equa-
tion (C9) for the lower polariton branch, eventually, reduces
to the form

d

dt
〈ρ(q, 0|q, 0; t )〉

=
∑

q′
K(q, q′)(〈ρ(q, 0|q, 0; t )〉 − 〈ρ(q′, 0|q′, 0; t )〉),

(C11)

with the time-independent kernel K(q, q′), which is approxi-
mately calculated as

K(q, q′) ≈
〈 ∫ t

0
dτ [(1 − D̂)h(t )]q,q′ [(1 − D̂)h(τ )]q′,q

× (u†
q′,q′ (τ, t )uq,q(τ, t ) + uq′,q′ (τ, t )u†

q,q(τ, t ))

〉
.

(C12)

The rough estimation of the transition rate can be done by
averaging of the leading term 1

N2

∑
m α2

m in the kernel (C12)
with respect to the probability measure (C10). It gives the
estimation |K(q, q′)| ∝ √

kNωStkBT/N .
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