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Phonon-induced transition between entangled and nonentangled photon emission
in constantly driven quantum-dot–cavity systems
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Entangled photon pairs are essential for many applications in quantum technologies. Recent theoretical studies
demonstrated that different types of entangled Bell states can be created in a constantly driven four-level quantum
emitter-cavity system. Unlike other candidates for the realization of the four-level emitter, semiconductor
quantum dots unavoidably interact with their environment, resulting in carrier-phonon interactions. Surprisingly,
phonons change the entanglement of emitted photon pairs in a qualitative way, already at low temperatures on
the order of 4 K. While one type of Bell state can still be generated using small driving strengths, the other
type is suppressed due to phonon interactions in strongly confined quantum dots. The degree of entanglement
decreases with rising temperature and driving strength until it vanishes at a certain parameter value. Because it
remains zero afterward, we encounter a phonon-induced transition between entangled and nonentangled photon
emission that resembles a phase transition. The transition occurs at temperatures below 30 K and, independent
of the driving strength, the concurrence as a function of the reduced temperature is found to obey a power law
with exponent one near the transition point.
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I. INTRODUCTION

The phenomenon of quantum entanglement is one of the
most fascinating and unintuitive effects in nature. Being a pure
quantum effect, entanglement is interesting not only from a
fundamental view, but it also prompted the development of
innovative applications in novel research fields, like quantum
cryptography [1,2], quantum communication [3,4], and quan-
tum information processing and computing [5–8].

An often discussed realization of entangled qubits are po-
larization entangled photon pairs. Typically, one aims for the
generation of one of the four Bell states

|�±〉 = 1√
2

(|HH〉 ± |VV 〉), (1a)

|�±〉 = 1√
2

(|HV 〉 ± |V H〉), (1b)

the most prominent maximally entangled states established
for linearly polarized photon pairs. Here H and V denote
horizontally and vertically polarized photons, respectively,
and their order reflects the order of photon detection. One can
distinguish between two different types of Bell states (or Bell
state entanglement); while in a � Bell state (�BS), the first
and second detected photon possess the same polarization, in
a � Bell state (�BS), they exhibit the opposite one.

A promising platform for the generation of a maxi-
mally entangled Bell state are semiconductor quantum dots
(QDs), which realize a four-level quantum emitter [9,10].

*tim.seidelmann@uni-bayreuth.de
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Physics, TU Dortmund, 44221 Dortmund, Germany.

The biexciton-exciton cascade in QDs comprises its ground
state, two exciton states, and the biexciton. Due to the optical
selection rules, these four electronic levels display a diamond-
shaped configuration, cf., Fig. 1. After an initial excitation
of the biexciton [11–17], the subsequent photon emission in-
duced by the cascade, should, in an ideal situation, result in the
generation of a maximally entangled �BS. By embedding the
QD inside a microcavity, one can enhance the light-collection
efficiency and photon emission rate due to the Purcell effect
[18]. Furthermore, the energy of the cavity modes can have a
profound impact on the resulting type and degree of entangle-
ment [10,19–22].

Indeed, various theoretical and experimental studies
demonstrated the possibility to obtain �BS entangle-
ment in the chosen basis of linearly polarized photons
[11,18,19,22–45]. Furthermore, recent theoretical studies
[10,21,46] showed that a four-level emitter-cavity system,
e.g., a QD embedded inside a cavity, can also facilitate the
creation of �BS entanglement, when a constant laser driving
is applied to the emitter. In this setup, four laser-dressed states
emerge and their characteristics depend on the applied driving
strength. By adjusting the cavity modes to a direct two-photon
transition between these dressed states, entangled photon pairs
can be created. The resulting type and degree of entanglement
depends crucially on the applied driving strength and the
energy of the cavity modes [10,46].

In contrast to other possible realizations of the quan-
tum emitter, e.g., atomic systems, QDs unavoidably interact
with their semiconductor environment, which results in
carrier-phonon interactions [47–54]. Although phonons are
associated with the loss of quantum coherence in the system,
their possible impact on the resulting two-photon state and
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its degree of entanglement cannot be easily predicted. Indeed,
various scenarios and dependencies have been found for dif-
ferent QD setups. Although the interaction with phonons often
results in a reduced degree of entanglement, their detrimental
impact can depend strongly on the chosen cavity arrangement
[22]. Furthermore, in highly symmetric situations, phonons
may have no impact on entanglement at all [26]. Moreover,
even a phonon-induced enhancement of the degree of en-
tanglement has been predicted under special conditions [24].
Therefore it is not a priori clear in which manner phonons
may impact the constantly driven QD-cavity system.

In this paper, we investigate the phonon influence on emit-
ted photon pairs in this system. In our theoretical study,
we consider the configuration where the highest degrees of
�BS and �BS entanglement have been predicted in the
phonon-free analysis of a four-level quantum emitter [10].
Remarkably, the phonon impact on the entanglement is much
more severe than in studies employing an initially prepared
biexciton without constant driving. Not only does the interac-
tion with phonons in strongly confined QDs reduce the degree
of entanglement for small driving strength values already at
4 K, but it results in the absence of entanglement for higher
driving strength values and/or temperatures. The observed
change of the emitted photon states in the presence of phonon
interactions can be understood as a competition between two
relaxation processes that result in different stationary states
related to the emission of either entangled or nonentangled
photons. A qualitative change of the stationary state of a
driven dissipative system upon change of a parameter is often
referred to as a dissipative phase transition [55,56]. Here,
the encountered transition between entangled and nonentan-
gled photon emission with increasing temperature or driving
strength is akin to a phase transition, showing some features
typically associated with the latter.

II. DRIVEN QUANTUM-DOT–CAVITY SYSTEM

We consider the biexciton-exciton cascade of a strongly
confined, self-assembled GaAs semiconductor QD. The QD
is embedded inside a microcavity and is continuously driven
by an external laser, cf., Fig. 1 for a schematic sketch. Further-
more, the QD interacts with its surrounding semiconductor
environment, resulting in a coupling to lattice oscillations,
i.e., phonons. In the case of strongly confined GaAs QDs at
low temperatures, the most important interaction is due to the
deformation potential coupling to longitudinal acoustic (LA)
phonons [57].

The QD comprises the ground state |G〉, two orthogonally
polarized exciton states |XH/V〉 at energy h̄ωX that couple to
horizontally (H) and vertically (V ) polarized light, respec-
tively, and the biexciton state |B〉. In the frame co-rotating
with the external laser frequency ωL, the QD-cavity Hamil-
tonian is given by [10,21]

ĤQD-C = �0(|XH〉〈XH| + |XV〉〈XV|) + (2�0 − EB)|B〉〈B|
+

∑
�=H,V

�â†
� â� +

∑
�=H,V

g
(
â†

�σ̂� + â�σ̂
†
�

)
, (2)

where the energy of the ground state is used as the zero of the
energy scale, �0 := h̄(ωX − ωL) is the energetic detuning be-

FIG. 1. Schematic sketch of the driven QD-cavity system. The
biexciton-exciton cascade comprises the ground state |G〉, two ener-
getically degenerate exciton states |XH/V〉 that couple to horizontally
or vertically polarized light, respectively (indicated by green and
purple arrows), and the biexciton state |B〉. Curvy orange arrows
represent the external laser driving adjusted to the two-photon tran-
sition between |G〉 and |B〉. The laser is detuned from the exciton
energy by the value �0 = EB/2. The energy of the two degenerate
but orthogonally polarized cavity modes (red and blue arrows) is
described by the cavity-laser detuning �.

tween the exciton states and the laser energy, and EB denotes
the biexciton binding energy. The electronic transitions of the
QD are described by the operators

σ̂H = |G〉〈XH| + |XH〉〈B|, (3a)

σ̂V = |G〉〈XV| + |XV〉〈B| (3b)

and are coupled to two energetically degenerate, but orthogo-
nally polarized cavity modes with energy h̄ωC. The bosonic
operator â†

H/V creates a cavity photon with the respective
polarization, H or V , and the QD-cavity coupling strength
g is assumed to be equal for all transitions. The energy of
the cavity modes is described by the cavity-laser detuning
� := h̄(ωC − ωL).

An external laser with driving strength � and constant fre-
quency ωL continuously excites the QD. Following Ref. [10],
the frequency is adjusted to the two-photon transition between
ground and biexciton state, i.e., �0 = EB/2, and the polariza-
tion is chosen to be diagonal in the basis spanned by H and V .
In the rotating frame, the respective Hamiltonian is given by

ĤL = �(σ̂D + σ̂
†
D); σ̂D = (σ̂H + σ̂V)/

√
2. (4)

The coupling to LA phonons is described by

ĤPh = h̄
∑

q

ωqb̂†
qb̂q + h̄

∑
χ,q

nχ

(
γ X

q b̂†
q + γ X

q
∗
b̂q

)|χ〉〈χ |, (5)

where the bosonic operator b̂q destroys a phonon in mode
q with energy h̄ωq. γ X

q denotes the exciton-phonon cou-
pling strength and nχ = {0, 1, 1, 2} is the number of excitons
present in the QD state |χ〉 ∈ {|G〉, |XH〉, |XV〉, |B〉}.

Furthermore, important loss channels, namely cavity losses
with rate κ and radiative decay with rate γ , are incorporated
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TABLE I. Fixed system parameters used in the calculations.

Parameter Value

QD-cavity coupling strength g 0.051 meV
Biexciton binding energy EB 20g = 1.02 meV
Detuning �0 EB/2 = 0.51 meV
Cavity loss rate κ 0.1g/h̄ ≈ 7.8 ns−1

Radiative decay rate γ 0.01g/h̄ ≈ 0.78 ns−1

into the model via Lindblad operators [58]

LÔ,�ρ̂ = �

2
(2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô), (6)

where Ô is the system operator associated with a loss process
with rate �.

The dynamics of the statistical operator of the system ρ̂ is
described by the Liouville-von Neumann equation

d

dt
ρ̂ = Lρ̂ := − i

h̄
[Ĥ, ρ̂]

+
∑

�=H,V

{
Lâ�,κ + L|G〉〈X�|,γ + L|X�〉〈B|,γ

}
ρ̂, (7)

Ĥ = ĤQD-C + ĤL + ĤPh. (8)

where [·, ·] denotes the commutator. Employing a real-time
path-integral method (consult Refs. [59–63] for details) the
time evolution of the reduced density matrix of the QD-cavity
system is evaluated in a numerically exact manner. For our
numerical calculations, we assume that the phonons are ini-
tially in thermal equilibrium at temperature T and that the
QD-cavity system is initially in the ground state |G〉 without
any cavity photons.

Following Refs. [10,21] we choose realistic parameters
for the QD-cavity system that are summarized in Table I.
Furthermore, we consider a spherically symmetric GaAs QD
with a harmonic oscillator confinement and an electron (hole)
confinement length ae = 3 nm (ah = ae/1.15). The defor-
mation potential coupling of the QD to LA phonons enters
the path-integral calculations via the phonon spectral density
J (ω) = ∑

q |γ X
q |2 δ(ω − ωq). An explicit expression for this

quantity, assuming a linear dispersion relation, and the used
material parameters can be found in Appendix A.

III. ENTANGLEMENT DETERMINATION

A. Two-photon density matrix

In a typical experimental setup the two-photon density ma-
trix ρ2p is reconstructed using quantum state tomography [64].
This reconstruction scheme relies on polarization-resolved
two-time correlation measurements. The detected signals in
these measurements are proportional to two-time correlation
functions

G(2)
jk,�m(t, τ ′) = 〈â†

j (t )â†
k (t + τ ′)âm(t + τ ′)â�(t )〉, (9)

where { j, k, �, m} ∈ {H,V }. Here, t is the time when the first
photon is detected and τ ′ the delay time until a subsequent,
second photon is detected. Although Eq. (9) describes cavity
photons, it can also be used to model correlation functions
for photons measured in the free space outside the cavity,
when the outcoupling of light from the cavity into the free

space is assumed to be a Markovian process [7]. For details
on the evaluation of multi-time correlation functions in the
path-integral framework, we refer to Ref. [65].

In standard experiments the measurement data is typically
averaged over finite real and delay time intervals. Thus the
reconstructed two-photon density matrix is theoretically cal-
culated as [10,21]

ρ
2p
jk,�m = G

(2)
jk,�m

Tr{G(2)}
, (10a)

G
(2)
jk,�m = 1

�t τ

∫ t0+�t

t0

dt
∫ τ

0
dτ ′ G(2)

jk,�m(t, τ ′), (10b)

where t0 is the starting time of the coincidence measurement
and τ (�t) the used delay time (real time) window. The
trace Tr{·} in Eq. (10) is introduced for the purpose of nor-
malization. Note that, in principle, ρ2p depends on all three
measurement parameters: t0, �t , and τ [23].

Throughout this paper, the two-photon density matrix is
determined for the steady state ρ̂s of the system defined as
d
dt ρ̂s = Lρ̂s = 0. Thus, in the calculation scheme, the time t0
is chosen such that it occurs after the system has reached a sta-
tionary density matrix in the time evolution. Note that in this
situation G

(2)
jk,�m and therefore also ρ2p become independent

of t0 and �t . Thus the two-photon density matrix does only
depend on the delay time window τ . In general, different delay
time windows correspond to selecting different two-photon
subsets in the total emission from the QD-cavity system [22].
Although the photon yield decreases with shorter windows τ ,
the degree of entanglement typically increases in this situation
[21,22]. In our study, we thus fix the delay time window to a
short, but realistic value of τ = 50 ps, which we adopt from
Ref. [66].

Altogether, the described reconstruction and calculation
scheme gives the two-photon density matrix ρ2p in the basis
{|HH〉, |HV 〉, |V H〉, |VV 〉}. Besides the polarization degree
of freedom, the two recorded photons in these states also
differ in their emission and detection times. This means, while
in the two-photon state |HV 〉, the first detected photon is H
polarized and the subsequent second one is V polarized, this
order is exactly reversed for |V H〉. Note that, since a finite
delay time window τ is considered, the situation where both
photons are detected simultaneously (i.e., τ ′ = 0) is a subset
of measure zero and the two-photon states |HV 〉 and |V H〉 can
indeed be distinguished, for all relevant delays τ ′ 	= 0.

After the two-photon density matrix has been obtained as
described above, the type of entanglement can be determined
directly from its form. One encounters a �BS (�BS) when
the corresponding occupations of the two-photon states |HH〉
and |VV 〉 (|HV 〉 and |V H〉) dominate.

B. Concurrence

The degree of entanglement associated with a given two-
photon density matrix ρ2p is quantified by the concurrence
[67]. The concurrence C has a one-to-one correspondence to
the entanglement of formation, which in turn represents the
minimal amount of pure-state entanglement that is at least
present in a mixed state described by a given two-qubit density
matrix [23,67]. In contrast to the latter, the concurrence can
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be calculated directly from the two-photon density matrix ρ2p

according to [10,64,67]

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (11)

where λ j � λ j+1 are the (real and positive) eigenvalues of the
matrix

M = ρ2p T (ρ2p)∗ T . (12)

Here, T is an antidiagonal 4 × 4 matrix with elements
{−1, 1, 1,−1} and (ρ2p)∗ denotes the Hermitian conjugated
two-photon density matrix. Because ρ2p depends in principle
on the parameters t0, �t , and τ , the same applies to the
concurrence.

Altogether, the type and degree of entanglement is obtained
as follows. (i) The averaged two-photon correlations G

(2)
jk,�m

are calculated for the steady state employing the path-integral
method. (ii) The two-photon density matrix ρ2p is calculated
according to Eq. (10) and the type of entanglement can be
identified. (iii) The concurrence is evaluated for the obtained
density matrix ρ2p using Eq. (11).

IV. RESULT: PHONON-INDUCED TRANSITION

A. Phonon-free results

Because the parameter space of the considered system is
quite large, we restrict our study to the parameters, where the
highest degrees of entanglement are obtained in the phonon-
free case. In Ref. [10], the phonon-free case was analyzed
in detail for a general four-level quantum emitter and it was
demonstrated that the resulting type of entanglement and its
degree depend on the applied driving strength � and the used
cavity-laser detuning �.

Due to the constant laser excitation, transitions do not take
place between the bare states |G〉, |XH/V〉, and |B〉 but rather
between eigenstates of the constantly driven QD, i.e., the four
laser-dressed states which we denote as |U 〉 (“uppermost”),
|M〉 (“middle”), |N〉 (“null”), and |L〉 (“lowest”). The corre-
sponding eigenenergies are given by [10]

EU = 1

2

(
�0 +

√
�2

0 + 8�2
)
, (13a)

EM = �0, (13b)

EN = 0, (13c)

EL = 1

2

(
�0 −

√
�2

0 + 8�2
)

(13d)

and depicted in Fig. 2. Note that these energies, and in turn
the transition energies between them, depend on the driving
strength.

The detailed analysis of the phonon-free situation in
Ref. [10] showed that the type of entanglement—�BS or
�BS—and its degree depend on the driving strength and the
cavity mode placement. Essentially, a high degree of entan-
glement is only possible if the cavity modes are close to
resonance with a direct two-photon transition between two
of the four laser-dressed states, i.e., � = (Eχ − Eχ ′ )/2 where
χ 	= χ ′ denote any pair of laser-dressed states. Thus several
possibilities for the cavity-laser detuning � were analyzed.
It was found that, while the type of entanglement remains

FIG. 2. Energies of the four laser-dressed states |U 〉, |M〉, |N〉,
and |L〉 as a function of the driving strength �. The cavity modes
are always tuned to match the two-photon resonance between |U 〉
and |L〉. For two exemplary driving strength values, the energy of the
cavity modes � (in a frame co-rotating with the laser frequency) is
indicated as green double-headed arrows.

the same for some of the two-photon resonances, it can
change with the driving strength for others. However, because
neighboring two-photon resonances can affect each other, the
highest degrees of entanglement, especially in the case of
�BS entanglement, were obtained for the two-photon reso-
nance between the uppermost and lowest laser-dressed states,
as this resonance condition is typically quite separated from
the others.

Thus, in this study, this resonance condition is chosen for
further investigation. It is selected by adjusting the cavity-
laser detuning to [10]

� = �UL

2
:= EU − EL

2
= 1

2

√
�2

0 + 8�2, (14)

which corresponds to tuning the cavity mode energy to h̄ωC =
�UL/2 − �0 + h̄ωX . Note that the cavity-laser detuning in
Eq. (14) depends on the external driving strength �. Thus, in
the following, this detuning is changed alongside � in order to
keep the desired two-photon resonance condition, cf., Fig. 2.

Figure 3(a) depicts the concurrence as a function of the
driving strength � at the two-photon transition between the
laser-dressed states |U 〉 and |L〉. The results in the phonon-free
situation (solid line) are in accordance with those presented
in Ref. [10]. A region of high �BS (�BS) entanglement,
indicated by blue (red) curve segments, is found for low (high)
driving strength values. In between the two regions of high en-
tanglement, a special point occurs at �sp = √

3/8�0 ≈ 6.12g
where the concurrence drops to zero. The corresponding two-
photon density matrix, calculated for three selected driving
strength values � j and illustrated in the upper row of Fig. 3(b),
clearly shows the transition from a state that is close to a
maximally entangled �BS (cf., �1) to an entangled �BS with
high concurrence (cf., �3).

The reason for this behavior is analyzed in detail in
Ref. [10]. With increasing driving strength the composi-
tion of the individual laser-dressed states changes, resulting
in changing optical selection rules between them. Around
the driving strength �1, the system emits predominantly
two equally polarized photons when a direct transition be-
tween the uppermost dressed state into the lowest one occurs
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FIG. 3. (a) Concurrence as a function of the driving strength � (in units of the coupling strength g) without phonons (solid line) and with
phonons at a temperature of 4 K (green dots). The phonon-free curve is color coded: blue (red) indicates �BS (�BS) entanglement. Three
driving strength values, that are associated with either a high concurrence or a vanishing degree of entanglement in the phonon-free situation,
are marked with straight vertical lines. Note that the cavity-laser detuning � = �UL/2 = √

�2
0 + 8�2/2 is changed alongside � to keep the

desired resonance condition. Black crosses depict the results obtained with a rate model according to Eq. (24) based on the rates given in Fig. 4.
(b) Corresponding two-photon density matrices (absolute values) for the three driving strengths � j indicated in panel (a). Results are shown
for calculations without phonons (upper row) and including phonons at T = 4 K (lower row). (c) Two-photon density matrix calculated from
the thermally distributed state as described in Eqs. (22) and (23).

and, consequently, one finds a �BS. With rising driving
strength the probability for the simultaneous emission of two
photons with opposite polarizations increases. At the driving
strength �sp = √

3/8�0, both type of processes have the same
probability and the degree of entanglement vanishes. When
the driving strength is increased beyond this point, the latter
becomes more and more dominant until a direct transition
between the dressed states |U 〉 and |L〉 is almost exclusively
accompanied by the emission of two photons with opposite
polarization. Thus one obtains a �BS in this regime.

B. Results including LA phonons

This well understood behavior changes drastically when
the interaction to LA phonons is included in the calculations
[green dots in Fig. 3(a)], already at a very low temperature
of T = 4 K. Besides a reduced concurrence at small driving

strength values and the fact that a maximum concurrence of
only C ≈ 0.4 is reached, the interaction with LA phonons also
alters the curve qualitatively.

Although, for small �, the concurrence follows the
phonon-free result, it starts to decrease already after reaching
a maximum around � ≈ 3g, and drops to zero well before
the special point at � ≈ �2. In stark contrast to the phonon-
free results, the concurrence remains zero for � > �2 and
no subsequent region of neither �BS nor �BS entanglement
emerges. It is important to stress that LA phonons do not
fully destroy the degree of entanglement in systems without
constant laser driving, especially when the fine-structure split-
ting between the exciton states is zero [22]. In this special
situation, theoretical calculations of the dynamics of initially
prepared biexciton states even predict a maximally entangled
two-photon state, even when phonons are taken into account
[22,26].
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In contrast, the constantly driven system demonstrates a
behavior similar to a phase transition, where an entangled
photon pair is generated only when the driving strength is
below a certain value. Above this value the degree of entangle-
ment, as measured by the concurrence, remains strictly zero.
In the following, we provide an explanation for the observed
transition between entangled and nonentangled photon emis-
sion. To this end, we first examine the two-photon density
matrix at T = 4 K and infer the resulting concurrence. In a
second step, we consider the role of LA phonons and explain
why they lead to the obtained form of the density matrix.
Finally, we turn to the impact of rising temperature, where
the behavior of the concurrence again resembles a phase tran-
sition.

C. Concurrence and density matrices at 4 K

The second row of Fig. 3(b) depicts the two-photon density
matrix at T = 4 K obtained for three selected driving strength
values � j . In the case of the small driving strength �1 = 4g,
the characteristics of ρ2p resemble the two-photon density
matrix in the phonon-free case. The occupations of the states
|HH〉 and |VV 〉 and their coherences (blue bars) dominate
over the remaining elements. Thus one detects a finite de-
gree of �BS entanglement. A more detailed comparison to
the phonon-free result reveals that the coherence associated
with the matrix element |HH〉〈VV | is reduced by a factor
of 2 due to the phonon interaction, and the occupations and
coherences associated with a �BS (red bars) are enhanced
at the expense of the blue bars. These two effects combined
lead to a finite, but reduced degree of entanglement. When the
driving strength is increased at T = 4 K, similar trends can
be observed if one compares the subsequent density matrices
for �1, �2, and �3. With increasing driving strength, the
coherence |HH〉〈VV | is further reduced, while the elements
linked to a �BS (red bars) increase.

Disregarding other (insignificant) coherences (purple bars),
the two-photon density matrices at T = 4 K can all be well
represented by matrices with four independent entries having
the form

ρ2p =

⎛
⎜⎜⎝

a 0 0 c
0 b d 0
0 d∗ b 0
c∗ 0 0 a

⎞
⎟⎟⎠, (15)

where the parameters fulfill the requirements for an arbitrary
density matrix

a, b ∈ R+
0 ; 2(a + b) = 1; c, d ∈ C; |c| � a; |d| � b.

(16)

For the case a > b, which we encounter here, it can be shown
that the concurrence defined in Eq. (11) reduces to

C =
{

2(|c| − b), |c| > b

0, |c| � b.
(17)

The behavior of the concurrence at T = 4 K shown in
Fig. 3(a) is thus directly linked to the difference between two
elements in the two-photon density matrix. With increasing
driving strength, the elements corresponding to c are reduced,
while the occupations b are enhanced. Thus the concurrence

decreases with rising driving strength and drops to zero
once the condition |c| = b is reached, i.e., when the coher-
ence corresponding to |HH〉〈VV | is reduced to the level of
the occupations of |HV 〉 and |V H〉. Afterward, the concur-
rence remains zero as c decreases further. This indicates the
existence of a critical driving strength, where the generated
photons transition from an entangled photon pair to a nonen-
tangled one. Note, that in the case without constant laser
excitation the situation |c| � b can never occur. Starting from
an initially prepared biexciton, the states |HV 〉 and |V H〉
cannot be reached in the undriven dynamics, i.e., b = 0 in
this case. Further note that when examining the two-photon
density matrix at �2 [cf., Fig. 3(b) lower row, middle panel],
one realizes that at T = 4 K the transition towards nonentan-
gled photon emission occurs before the special point of the
phonon-free curve, i.e., before the regime of �BS is reached.

At the critical driving strength, a transition between entan-
gled and nonentangled photon emission takes place, where
the concurrence behaves similar to the order parameter in a
phase transition: C is finite below a certain driving strength
and strictly zero above it. Because a vanishing concurrence
has a well defined physical meaning, the character of the two-
photon state, as described by the density matrix ρ2p, changes
qualitatively at the transition point. Due to the one-to-one cor-
respondence between the concurrence and the entanglement
of formation, a vanishing concurrence is linked to a distinct
physical property of the generated two-photon state.

If the concurrence vanishes, the density matrix ρ2p can be
decomposed into a statistical mixture

ρ2p =
∑

j

p j |ψ j〉〈ψ j |, (18)

where all pure two-photon states |ψ j〉 = |ψ j,1〉 ⊗ |ψ j,2〉 can
be factorized into a product of single-photon states which de-
scribe only the first and second detected photon, respectively.
p j is the probability to find the system in the corresponding
pure state. For the two-photon density matrix of the form in
Eq. (15), an explicit expression for a possible decomposition
is provided in Appendix B. Therefore, above the critical driv-
ing strength, the two-photon state can always be expressed
as a statistical mixture of factorizeable states. This property
changes when the driving is below its critical value, where
no such decomposition is possible. The practical implication
of a system being in a factorizable state is that performing
a measurement on the first photon has no implication on the
outcome of a subsequent measurement on the second photon,
in sharp contrast to what is found for an entangled state.

Note that the transition point, i.e., the critical driving
strengths, depends on the chosen delay time window τ . In
general, the critical driving strength increases with shorter τ

values. However, changing the delay time window between 1
and 100 ps did not result in a qualitatively different behav-
ior of the concurrence, and in all cases the concurrence at
T = 4 K dropped to zero before the special point at � = �2.

D. Phonon influence on the two-photon density matrix

Because the transition between entangled and nonen-
tangled photon emission as well as the behavior of the
concurrence can be traced back to the form of the two-
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photon density matrix, the remaining task is to understand
the phonon influence on the system and on ρ2p. To this
end, we consider the laser-dressed states χ ∈ {U, M, N, L}
accompanied by two-photon states with different combina-
tions for the photon polarizations, i.e., system states |χ, 2, 0〉,
|χ, 1, 1〉 and |χ, 0, 2〉. Here a state |χ, nH, nV〉 denotes a
state with nH (nV) horizontally (vertically) polarized pho-
tons inside the cavity. The numerical results for the driving
strength � = �3 show that two-photon states associated with
a fixed laser-dressed state enter the steady state of the sys-
tem with almost equal occupation probabilities but vanishing
coherences between them. This steady state results directly
in the obtained two-photon density matrix that can be well
described by

ρ2p = 1

6

⎛
⎜⎜⎝

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

⎞
⎟⎟⎠. (19)

In the following, we provide a simplified argument why
the interaction with LA phonons leads to this type of steady
state and two-photon density matrix. In the absence of further
relaxation processes, e.g., cavity losses and radiative decay,
phonons lead to a steady state which is close to a thermal
distribution over the eigenstates |ϕν〉 of the system Hamilto-
nian without the phonon contribution that can be reached from
the initial state [68–70]. Here, the Hamiltonian describing the
driven QD-cavity system without phonons is Ĥ0 := ĤQD-C +
ĤL. The analyses in Ref. [10] suggest that the interaction
with the cavity modes introduces a weak coupling between
laser-dressed states with different numbers of photons inside
the cavity. Hence the eigenstates of the full Hamiltonian Ĥ0

are best described by

|ϕν〉 =
∑

χ,nH,nV

aν (χ, nH, nV)|χ, nH, nV〉, (20)

where the mixing coefficients aν (χ, nH, nV) depend on the
cavity coupling strength g, and the energetic placement of the
cavity modes, i.e., the cavity-laser detuning �.

The most important two-photon states in a thermalized
distribution, which should define the character of the two-
photon density matrix ρ2p, are the energetically lowest ones.
In the considered system, these are the three two-photon states
accompanied by the laser-dressed state |L〉, i.e., |L, 2, 0〉,
|L, 1, 1〉, and |L, 0, 2〉. These three states are precisely the
ones distinct by the chosen (two-photon) resonance condition.
Using a Schrieffer-Wolff transformation [71,72], an effective
Hamiltonian describing this two-photon resonance can be
constructed. The explicit epression for this effective Hamil-
tonian, in the basis |U, 0, 0〉, |L, 1, 1〉, |L,�+〉 = (|L, 2, 0〉 +
|L, 0, 2〉)/

√
2, and |L,�−〉 = (|L, 2, 0〉 − |L, 0, 2〉)/

√
2, is

[10]

ˆ̃H (2)
UL ≈ EU14 + g2

⎛
⎜⎜⎜⎝

δUL γ UL
1 −γ UL

2 0

γ UL
1 −δUL

2 αUL 0

−γ UL
2 αUL −δUL

2 0

0 0 0 −δUL
2

⎞
⎟⎟⎟⎠ (21)

with

c = 2�√
8�2 + (

�0 +
√

�2
0 + 8�2

)2
,

c̃ =
√

1

2
− c2,

δUL = (c̃2 − c2)

(
2

�0
+ 4(c̃2 − c2)

�UL

)
,

δUL
2 = δUL + δUL

3 ,

δUL
3 = 8(c̃2 − c2)2

3�UL
+ 2c̃2

�UL + �0/2
+ 2c2

�UL − �0/2
,

γ UL
1 = 4cc̃

1

�0
− 16cc̃(c̃2 − c2)

1

�UL
,

γ UL
2 = 16cc̃(c̃2 − c2)

1

�UL
,

αUL = 1

�0
− (1 − 16c2c̃2)

1

�UL
− 1

2
δUL

3 + 2c̃2

�UL + �0/2
,

where 14 is the four-dimensional identity matrix. All
couplings associated with two-photon processes (γ ’s and α’s)
and energy shifts (δ’s) in this effective Hamiltonian are on
the order of g2/�0. Therefore the energetic splitting between
the four eigenstates |ϕUL

ν 〉 of ˆ̃H (2)
UL is on the same order. For

our realistic parameters, the energy g2/�0 = 0.1g ≈ 5 μeV
is already two orders of magnitude smaller than the thermal
energy kBT at T = 4 K. Consequently, in a thermalized
distribution all four eigenstates |ϕUL

ν 〉 should appear with the
same weights.

Note that, if no further loss mechanisms are considered,
the state |L,�−〉 is decoupled from the inital state |G, 0, 0〉
and cannot occur in a thermalized distribution [70]. But, due
to cavity losses and radiative decay, this state can be reached
during the system dynamics and, thus, should appear in our
situation. In general, the exact steady state of systems with
both type of relaxation mechanisms, LA phonon-induced
relaxation and further loss processes, is difficult to predict
and may differ qualitatively from what is expected in the
limiting cases where only one type of relexation mechanism
is considered [62].

However, under the assumption that phonon-induced re-
laxations dominate over the latter, a steady state should
emerge, where the leading two-photon contribution is
proportional to a thermal distribution over all four eigenstates
|ϕUL

ν 〉:

ρ̂UL
th = 1

Z

4∑
ν=1

exp

[
− εUL

ν

kBT

]∣∣ϕUL
ν

〉〈
ϕUL

ν

∣∣ ≈ 1

4

4∑
ν=1

∣∣ϕUL
ν

〉〈
ϕUL

ν

∣∣
=1

4
(|U, 0, 0〉〈U, 0, 0| + |L, 1, 1〉〈L, 1, 1|

+ |L, 2, 0〉〈L, 2, 0| + |L, 0, 2〉〈L, 0, 2|), (22)

where εUL
ν are the corresponding energies.
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One can calculate a first approximation for the two-photon
density matrix due to this contribution

(
ρ

2p
th

)
jk,�m ≈ NTr

{
âmâ�ρ̂

UL
th â†

j â
†
k

} = 1

6

⎛
⎜⎜⎝

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

⎞
⎟⎟⎠,

(23)

where N is a normalization constant and one assumes that the
delay time window is small, justifying the limit τ → 0 for this
estimate.

This thermal two-photon density matrix ρ
2p
th is also de-

picted in Fig. 3(c) for comparison. This density matrix is
almost identical to the one obtained for �3 at T = 4 K. Thus,
although the presented argument is only a simplified analysis,
it fits quite well to the numerical observations: (i) two-photon
states with different combinations of the polarization appear
with the same occupation probabilities and vanishing coher-
ences, cf., Eq. (22). (ii) The two-photon density matrix ρ

2p
th

associated with a phonon-induced thermalization is close to
the one encountered in the numerical simulations.

This implies that the role of phonons is a thermalization in
laser-driven eigenstates. Furthermore, the two-photon density
matrix at �2 is also close to ρ

2p
th , the main difference being

small, finite coherences. Thus, in this case, the thermalization
process is not complete. This points to a competition between
different relaxation processes that, each on their own, lead to
different steady states in the system dynamics. While the inter-
action with LA phonons on its own leads to a thermalization
and, consequently, to the thermal two-photon density matrix
ρ

2p
th , the other relaxation processes, i.e., cavity losses and

radiative decay, result in the steady state associated with the
phonon-free result given in the row above. The imprint of this
competition is even more prominent in the two-photon density
matrix for the driving strength �1 at 4 K. Here, ρ2p describes
a two-photon state roughly in between the two limiting cases,
that are given by the corresponding phonon-free result and
ρ

2p
th .

Consequently, the two-photon state at T = 4 K is a re-
sult of two competing relaxation mechanisms, that, each
on their own, would result in a different steady state in
the system dynamics, but that act on different timescales.
While the timescale of the cavity losses and radiative de-
cay is independent of the driving strength �, the timescale
of the thermalization is reduced with increasing �, and thus
the two-photon density matrix approaches its thermal limit.
The reason for this reduction lies in the phonon spectral den-
sity. As the driving strength increases, the transition energies
between the laser-dressed states increase as well. Therefore
the main contribution of the phonon spectral density J (ω)
has to be evaluated at a higher frequency. In the parame-
ter range considered in this work, this results in a higher
value of J which translates to a stronger average phonon
coupling, cf. Appendix A. Consequently the thermalization
process should become more dominant with increasing driv-
ing strength, pulling the two-photon density matrix closer to
ρ

2p
th .

The rates leading to thermalization are estimated using
Fermi’s golden rule for the phonon-induced rates �χχ ′ be-
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FIG. 4. Phonon-induced transition rate �UL (�NL) between the
laser-dressed states |U 〉 and |L〉 (|N〉 and |L〉) as a function of the
driving strength �. Additionally, a dashed (solid) horizontal black
line indicates the value of the cavity loss rate 2κ (κ) associated with
a two-photon (one-photon) state.

tween the laser-dressed states |χ〉 and |χ ′〉 with χ, χ ′ ∈
{U, M, N, L} associated with phonon emission and absorp-
tion processes. Based on this estimate, two finite rates �UN

and �NL are extracted, cf. Appendix C, which are shown in
Fig. 4 as a function of the driving strength. As expected, in
the considered parameter range, both rates increase with �,
supporting the previous argument on the increasing role of
phonons. Interestingly, shortly after � ≈ 5g, i.e., the driving
strength where the concurrence vanishes, both rates become
larger than the cavity loss rate κ . Above this point both
phonon-related rates exceed cavity or radiate loss rates in the
system. Thus, according to this estimate, the phonon-induced
thermalization dominates the system dynamics for higher
driving strength values, leading to a vanishing entanglement.

E. Markovian rate model

So far, all results were obtained within the numerical com-
plete path-integral method. However, it is worth exploring
whether similar results can also be obtained when a Marko-
vian rate model is used to account for the influence of LA
phonons. Based on the assumption that the main impact of
phonons is indeed captured by the phonon-induced rates be-
tween the laser-dressed states extracted in Fig. 4, we replace
the exact phonon Hamiltonian ĤPh in Eq. (7) with a Lindblad-
type operator

LPhρ̂ =L|N〉〈U |,(nUN+1)�UN ρ̂ + L|U 〉〈N |,nUN�UN ρ̂

+ L|L〉〈N |,(nNL+1)�NL ρ̂ + L|N〉〈L|,nNL�NL ρ̂ (24)

that describes the relevant phonon-induced transitions. Here

nχχ ′ =
(

exp

[
Eχ − Eχ ′

kBT

]
− 1

)−1

(25)

is the expected number of phonons with the required energy
Eχ − Eχ ′ excited at temperature T according to the Bose-
Einstein statistics. Note that, besides the rates �χχ ′ , also the
dressed-state energies and compositions depend on the driving
strength �.

Although this rate model does not match the results of the
path-integral simulations exactly, the qualitative behavior of
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FIG. 5. (a) Concurrence as a function of the temperature (above 4 K) for different driving strength values � between 2.0g and 4.5g.
(b) Critical temperature Tcrit of the phonon-induced phase transition for the driving strength values in panel (a). The dashed line is a guide-to-
the-eye.

the concurrence is reproduced, cf., black crosses in Fig. 3(a).
This finding strengthens the interpretation that the main origin
of the observed transition is indeed a competition between the
phonon-induced relaxation that leads to a thermalization and
the other relaxation processes (i.e., cavity losses and radiative
decay). However, for driving strength values between 3g and
5g, the rate model underestimates the phonon influence. This
is to be expected because the Markovian rate model in Eq. (24)
does not capture non-Markovian effects related to the pure
dephasing-type coupling to LA phonons, that are typically
important in strongly confined QDs.

F. Temperature dependence at fixed driving strengths

In this section, the temperature dependence at fixed driving
strength values is investigated. As the average number of
phonons that is excited at a given temperature increases with
rising T , an increasing phonon impact is to be expected in
this situation. Thus, similar to the critical driving strength in
Fig. 3(a), also a critical temperature should exist (for a given
�), where the transition between entangled and nonentangled
photon emission takes place.

In Fig. 5(a), the concurrence is shown as a function of
the temperature T for different driving strength values be-
tween 2.0g and 4.5g. The results indeed demonstrate that a
phonon-induced transition is taking place. At a given driving
strength, the concurrence decreases monotonically with rising
temperature before vanishing at a certain critical temperature.
The concurrence remains zero when the temperature is further
increased. Furthermore, as the driving strength increases, the
drop becomes more rapid. Note that we restrict our numerical
calculations to temperatures above 4 K, i.e., the temperature of
liquid helium, because the path-integral calculations become
more demanding at lower temperatures and might not be fully
converged. However, calculations at 2 K suggest that also at
this temperature the concurrence remains zero in the �BS
regime for � > 6.12g.

Figure 5(b) depicts the critical temperatures calculated for
the six driving strength values in panel (a). It is evident that the
critical temperature decreases with rising driving strength �.
As shown in the previous sections, a higher driving strength
leads to larger phonon-induced rates and faster thermalization.
Thus the critical transition temperature is the lower the higher

the applied driving strength. The results imply that even
moderate degrees of entanglement in the constantly driven
system can be achieved only at temperatures below 30 K.
Furthermore at temperatures of 4 K and above the generation
of a �BS seems to be no longer possible. We find that, for
realistic parameters, phonon interactions lead to a vanishing
concurrence for driving strengths far below the value needed
to switch from �BS to �BS. Therefore we observe no �BS
in simulations accounting for phonons for all parameters con-
sidered here.

The average number of phonons in the thermal equilibrium
and, thus, the phonon influence increases with rising tempera-
ture. As a result, the competition between loss processes, i.e.,
cavity losses and radiative decay, on one hand and the thermal-
ization due to phonons on the other hand, is more and more
dominated by the latter. Therefore the degree of entanglement
decreases with rising temperature as the two-photon density
matrix is again pulled towards the thermal one. At a certain,
critical temperature Tcrit the transition takes place and the
degree of entanglement, i.e., the concurrence, drops to zero.
At this critical temperature, the coherence between |HH〉 and
|VV 〉 is reduced to the level of the occupations |HV 〉 and
|V H〉, i.e., the two-photon density matrix can be expressed
as a statistical sum of factorizable two-photon states. Because
the phonon influence only increases at larger temperatures, the
concurrence remains zero.

Because the observed transition between entangled and
nonentangled photon emission, displays features typically
associated with a phase transition, we also investigate the
concurrence as a function of the reduced temperature Tred =
(T − Tcrit )/Tcrit. In the case of an actual phase transition, the
behavior of the order parameter when approaching the critical
temperature should be given by a power law described by a
critical exponent, independent of other system parameters like
the driving strength. Quite remarkably, we indeed find that the
concurrence obeys a power law

C ∝
(

T

Tcrit
− 1

)k

, (26)

where the exponent k = 1 is the same for all driving strength
values considered in Fig. 5. Thus, also in this aspect, the con-
currence resembles the order parameter of a phase transition.

075301-9



T. SEIDELMANN et al. PHYSICAL REVIEW B 107, 075301 (2023)

0

0.1

0.2

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

co
nc

ur
re

nc
e

C
(T

re
d
)

reduced temperature Tred = T−Tcrit
Tcrit

Ω = 4.0 g
Ω = 2.5 g

AΩ(−Tred)1 + BΩ(−Tred)9/4

AΩ(−Tred)1
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to power laws containing only the exponent k = 1 (doted lines) and
one additional term (dashed lines) are shown with the same color.

To illustrate this, Fig. 6 depicts the concurrence as a function
of the reduced temperature for two selected driving strength
values. In both cases, when the temperature approaches the
corresponding critical value, the concurrence is described by
a power law with the exponent k = 1 and fitted amplitudes
A�.

We also observe an interesting side aspect: when the tem-
perature is decreased further, the concurrence evaluated for
the two driving strengths still exhibits the same behavior. Both
curves can be well described by a power law extended by an
additional term with a fitted exponent 9/4 and amplitudes B�.
This feature holds for all driving strength values considered in
Fig. 5 (not shown).

Note that, although the discussed transition resembles a
phase transition in some aspects, other characteristics typi-
cally associated with a phase transition could not be observed.
In particular, neither a discontinuity in some other quantity
besides the derivative of the concurrence nor a critical slowing
down could be found.

V. CONCLUSION

In conclusion, we have investigated the influence of
phonons on entangled photon pairs generated from a con-
stantly driven QD-cavity system. We find a strong reduction
and a severe qualitative impact on the degree of entanglement,
as measured by the concurrence, already at temperatures as
low as 4 K. Unlike in the phonon-free situation, the influence
of phonons suppresses the generation of �BS entanglement
in the studied parameter range, even at low temperatures.
The concurrence decreases with increasing temperature and
driving strength until a critical parameter value is reached
where it drops to zero and remains so at larger values.

Note that, although we have limited the discussion to the
two-photon resonance condition between the uppermost and
lowest laser-dressed state where the highest degrees of en-
tanglement had been obtained in the phonon-free situation,
we checked that the qualitative behavior of the concurrence at
other possible two-photon resonances is the same: at a certain
driving strength or temperature the degree of entanglement
drops to zero and remains so afterward. Furthermore, also
choosing the negative sign in Eq. (14) does not alter the results
qualitatively.

The observed transition between entangled and nonentan-
gled photon emission is akin to a phase transition where the
concurrence resembles the order parameter. We encounter
a phonon-induced transition, which cannot take place in a
situation without constant laser excitation. The reason be-
hind this phenomenon is a competition between two different
mechanisms, a thermalization due to phonons and other loss
processes, i.e., radiative decay and cavity losses, that deter-
mines the steady state of the system. A higher temperature
or driving strength gives rise to a stronger phonon impact.
Eventually, the thermalization dominates, driving the two-
photon state towards a thermal state with vanishing degree of
entanglement. Thus the emitted photon pair transforms from
an entangled towards a nonentangled state.

Because the transition can be traced back to a thermal-
ization due to phonon-induced transitions, entanglement at
higher driving strengths and/or temperature, in particular
a �BS, might be observable in situations where the pure
dephasing-type coupling to LA phonons is not so effective.
This is the case in larger, weakly confined QDs, since the
effective phonon coupling, as described by the phonon spec-
tral density, decreases with rising QD dimensions. However,
to decide whether or not this decrease is enough to make
the �BS observable, requires an extended investigation that
accounts for possible influences of higher energy states, since
the energetic spacing between adjacent QD states is smaller in
the weak-confinement limit. Apart from this, even in strongly
confined QDs the �BS might reappear for much larger driv-
ing strength values (which cannot be investigated within
current implementations of the path-integral formalism due
to time-discretization issues) when the energy differences be-
tween the laser-dressed states exceeds the range of the phonon
spectral density, resulting in a decoupling of the LA phonons.
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APPENDIX A: GaAs PARAMETERS AND PHONON
SPECTRAL DENSITY

In this paper, a spherically symmetric self-assembled GaAs
QD with a harmonic oscillator confinement and an elec-
tron (hole) confinement length ae = 3 nm (ah = ae/1.15) is
considered. Furthermore a linear dispersion relation is as-
sumed for the LA phonons. In this situation, the explicit
expression for the phonon spectral density J (ω) is [62,69]

J (ω) = ω3

4π2h̄ρDc5
S

[
De e−ω2a2

e/(4c2
S ) − Dh e−ω2a2

h/(4c2
S )
]2

. (A1)

The necessary material parameters are taken from literature
[73] and listed in Table II. For these parameters, the resulting
spectral density is shown in Fig. 7. Note that using a spherical
QD model provides for the calculation of the reduced density
matrix as considered here no loss of generality as shown in
Ref. [74].
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TABLE II. GaAs material parameters taken from Ref. [73].

Parameter Value

Mass density (kg/m3) ρD 5370
Sound velocity (m/s) cS 5110
Electron deformation potential (eV) De 7.0
Hole deformation potential (eV) Dh −3.5

APPENDIX B: DECOMPOSITION IN
FACTORIZABLE STATES

Due to the interaction with LA phonons, we encounter two-
photon density matrices that can, in good approximation, be
described as

ρ2p =

⎛
⎜⎜⎝

a 0 0 c
0 b d 0
0 d∗ b 0
c∗ 0 0 a

⎞
⎟⎟⎠, (B1)

in the basis {|H1H2〉, |H1V2〉, |V1H2〉, |V1V2〉}, where the index
refers to the first or second detected photon. The parameters
fulfill the requirements for an arbitrary density matrix

a, b ∈ R+
0 ; 2(a + b) = 1; c, d ∈ C; |c| � a; |d| � b.

(B2)

In the case a > b, the corresponding concurrence is given by

C =
{

2(|c| − b), |c| > b

0, |c| � b
. (B3)

Because the concurrence has a one-to-one correspondence to
the entanglement of formation, obtaining a vanishing concur-
rence has a well-defined physical meaning: in this situation,
there exists at least one decomposition of the density matrix

ρ2p =
∑

j

p j |ψ j〉〈ψ j |, (B4)

where all pure (two-photon) states |ψ j〉 factorize into quantum
states that describe only the first or second detected photon. pj

is the probability to encounter this pure state in the mixed state
described by ρ2p. Since the concurrence vanishes for |c| � b,
such a decomposition must exist in this situation. Here, we
give an explicit expression for a possible decomposition.
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FIG. 7. Phonon spectral density for the considered GaAs QD
with electron (hole) confinement length ae = 3 nm (ah = ae/1.15)
and material parameters listed in Table II.

After introducing the phase ϕ and θ for the parameter c =
|c|eiϕ and d = |d|eiθ , respectively, we rewrite the two-photon
density matrix. In the situation a � b � |c|, our decomposi-
tion depends on the relation between |c| and |d|.

In the case |d| � |c|, we obtain the following possible
decomposition:

ρ2p = 2(a − |d|)ρ2p
1 + 2(b − |d|)ρ2p

2 + 4|c|ρ2p
3

+ 2(|d| − |c|)(ρ2p
4 + ρ

2p
5

)
, (B5)

where all contributions ρ
2p
j to the density matrix can be ex-

pressed as a mixed state

ρ
2p
j = 1

2

(∣∣ψ (α)
j

〉〈
ψ

(α)
j

∣∣ + ∣∣ψ (β )
j

〉〈
ψ

(β )
j

∣∣) (B6)

containing two factorizable pure states |ψ (α/β )
j 〉. The explicit

expressions for these quantities are

ρ
2p
1 = 1

2

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠, (B7a)

∣∣ψ (α)
1

〉 = |H1〉|H2〉;
∣∣ψ (β )

1

〉 = |V1〉|V2〉, (B7b)

ρ
2p
2 = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠, (B7c)

∣∣ψ (α)
2

〉 = |H1〉|V2〉;
∣∣ψ (β )

2

〉 = |V1〉|H2〉, (B7d)

ρ
2p
3 = 1

4

⎛
⎜⎜⎝

1 0 0 eiϕ

0 1 eiθ 0
0 e−iθ 1 0

e−iϕ 0 0 1

⎞
⎟⎟⎠, (B7e)

∣∣ψ (α/β )
3

〉 = 1√
2

(|H1〉 ± e−i(ϕ+θ )/2|V1〉)

× 1√
2

(|H2〉 ± e−i(ϕ−θ )/2|V2〉), (B7f)

ρ
2p
4/5 = 1

4

⎛
⎜⎜⎝

1 0 0 ±1
0 1 eiθ 0
0 e−iθ 1 0

±1 0 0 1

⎞
⎟⎟⎠. (B7g)

The contribution ρ
2p
4 (ρ2p

5 ), exhibiting the positive (nega-
tive) coherence |H1H2〉〈V1V2|, is a special case of ρ

2p
3 with

ϕ = 0 (ϕ = π ). Thus the corresponding pure states |ψ (α/β )
4/5 〉

are given as special cases of Eq. (B7f).
In the case |d| < |c|, a possible decomposition can be

constructed in a slightly different form

ρ2p = 2(a − |c|)ρ2p
1 + 2(b − |c|)ρ2p

2 + 4|d|ρ2p
3

+ 2(|c| − |d|)(ρ2p
6 + ρ

2p
7

)
. (B8)

Again the contributions

ρ
2p
6/7 = 1

4

⎛
⎜⎜⎝

1 0 0 eiϕ

0 1 ±1 0
0 ±1 1 0

e−iϕ 0 0 1

⎞
⎟⎟⎠ (B9)
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are special cases of ρ
2p
3 with θ = 0 and θ = π , respectively.

Thus they, can be decomposed into a sum over two factoriz-
able pure states |ψ (α/β )

6/7 〉 which are special cases of |ψ (α/β )
3 〉.

Altogether, in the situation a � b � |c|, the two-photon
density matrix in Eq. (B1) can be always expressed as a sum
over 10 or less factorizable pure (two-photon) states

ρ2p =
∑

j

p j
1

2

(∣∣ψ (α)
j

〉〈
ψ

(α)
j

∣∣ + ∣∣ψ (β )
j

〉〈
ψ

(β )
j

∣∣), (B10)

where the probabilities p j are the corresponding (real and pos-
itive) prefactors in the expansion (B5) or (B8), respectively.
Because at least one decomposition into factorizable pure
states exists, the corresponding entanglement of formation is
zero and, in turn, the concurrence vanishes.

APPENDIX C: PHONON-INDUCED TRANSITION RATES
BETWEEN LASER-DRESSED STATES

In this section, we estimate the phonon-induced rates that
lead to a thermalization of the system. To this end, we consider
the four laser-dressed states [10]

|U 〉 = c(|G〉 + |B〉) + c̃(|XH〉 + |XV〉), (C1a)

|M〉 = 1√
2

(|XH〉 − |XV〉), (C1b)

|N〉 = 1√
2

(|G〉 − |B〉), (C1c)

|L〉 = c̃(|G〉 + |B〉) − c(|XH〉 + |XV〉), (C1d)

c = 2�√
8�2 + (

�0 +
√

�2
0 + 8�2

)2
; c̃ =

√
1

2
− c2,

(C1e)

where � is the driving strength and �0 the energetic detuning
between exciton states and laser. The corresponding energies
Eχ are given in Eq. (13).

According to Fermi’s golden rule, the phonon-induced
rates �i→ f between an initial laser-dressed state with zero
phonons |i〉 and a final dressed state at lower energy with one
phonon | f 〉 can be estimated as

�i→ f = 2π

h̄
|〈 f |ĤPh|i〉|2g(E f ), (C2)

where g(E f ) is the density of states at the energy of the
final state. In our situation, using the phonon spectral density,
Eq. (C2) can be reformulated as

�χχ ′ = 2π |〈χ |V̂Ph|χ ′〉|2 J (|Eχ − Eχ ′ |/h̄), (C3)

where χ, χ ′ ∈ {U, M, N, L} and the operator V̂Ph takes the
form

V̂Ph =

⎛
⎜⎜⎝

1 0
√

2c 0
0 1 0 0√
2c 0 1

√
2c̃

0 0
√

2c̃ 1

⎞
⎟⎟⎠ (C4)

in the basis {|U 〉, |M〉, |N〉, |L〉}.
Using this estimate, we obtain two finite rates

�UN = 4πc2J ([EU − EN]/h̄), (C5a)

�NL = 4π c̃2J ([EN − EL]/h̄) (C5b)

that are associated with transitions between laser-dressed
states |U 〉 ↔ |N〉 and |N〉 ↔ |L〉 due to phonon emission or
absorption processes. These rates depend on the dressed-state
energies and the coefficients c, c̃ given by Eq. (C1e) and thus,
in particular, on the driving strength �.
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