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Nonlocal corrections to dynamical mean-field theory from the two-particle self-consistent method
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Theoretical methods that are accurate for both short-distance observables and long-wavelength collective
modes are still being developed for the Hubbard model. Here, we benchmark an approach that combines
dynamical mean-field theory (DMFT) observables with the two-particle self-consistent theory (TPSC). This
offers a way to include non-local correlations in DMFT while also improving TPSC. The benchmarks are
published diagrammatic quantum Monte Carlo results for the two-dimensional square lattice Hubbard model
with nearest-neighbor hopping. This method (TPSC+DMFT) is relevant for weak to intermediate interaction,
satisfies the local Pauli principle, and allows us to compute a spin susceptibility that satisfies the Mermin-Wagner
theorem. The DMFT double occupancy determines the spin and charge vertices through local spin and charge
sum rules. The TPSC self-energy is also improved by replacing its local part with the local DMFT self-energy.
With this method, we find improvements for both spin and charge fluctuations and for the self-energy. We also
find that the accuracy check developed for TPSC is a good predictor of deviations from benchmarks for this
model. TPSC+DMFT can be used in regimes where quantum Monte Carlo is inaccessible. In addition, this
method paves the way to multiband generalizations of TPSC that could be used in advanced electronic structure
codes that include DMFT.
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I. INTRODUCTION

The Hubbard model is among the simplest models that
enable the study of strong electronic correlations. Despite its
apparent simplicity, exact solutions to this model only exist in
one dimension [1] and in the limit of infinite dimensions [2].
Numerically exact methods such as quantum Monte Carlo
(QMC) and diagrammatic Monte Carlo can also provide,
within statistical uncertainty, useful results. However, such
methods are generally plagued with a sign problem, can
become too computationally expensive for large system sizes,
or are difficult to extend to multiorbital models, which are
relevant to the study of realistic systems.

Dynamical mean field theory (DMFT) is one of the most
widely used methods that gives accurate results for static
and frequency-dependent local quantities over a wide range
of interaction strengths, making possible the description of
the Mott metal-insulator transition [2–5]. However, nonlocal
spatial correlations are missing in DMFT, which approximates
the self-energy as purely local. These nonlocal correlations
are particularly crucial to the correct description of physical
phenomena encountered in the weak to intermediate coupling
regimes of low-dimensional systems. Extensions of DMFT
such as cluster methods [6–11] and diagrammatic extensions
[12–19] can be used to circumvent this limitation of DMFT.

Other approaches based on the addition of the nonlocal part
of the self-energy coming from a weak-coupling approach
to the local DMFT self-energy have also been proposed.
These methods include GW+DMFT [20–24], DMFT+FLEX
[25,26], as well as DMFT+TMA [25]. In these methods, the
local part of the GW, FLEX, or TMA self-energy is replaced

by the local DMFT self-energy. In DMFT+�k [27–29], the
DMFT self-energy is simply added. More recently, an ap-
proximation that combines the nonlocal part of a self-energy
built from the weak-coupling D�A spin susceptibility with
the local DMFT self-energy was found to be qualitatively
accurate in the weak-coupling regime of the two-dimensional
(2D) Hubbard model [30]. These approaches can be motivated
by the high accuracy of the local self-energy obtained from
DMFT, as evidenced by benchmarks in the weak coupling
regime [25,30,31]. However, benchmarks of methods mixing
DMFT and perturbative approaches (GW, FLEX, and TMA)
against diagrammatic Monte Carlo calculations have shown
that these uncontrolled schemes perform poorly in the weakly
interacting regime and can yield inaccurate results for the
nonlocal part of the self-energy [25]. It then becomes rele-
vant to investigate an approach that combines local DMFT
observables with nonlocal fluctuations contained in a nonper-
turbative method.

The two-particle self-consistent (TPSC) approach is one
such nonperturbative method that was first developed for
the one-band Hubbard model [32,33]. For reviews, see
Refs. [34–36]. It is valid in the weak to intermediate coupling
regime of the Hubbard model, respects both the Pauli principle
and the Mermin-Wagner theorem, and satisfies the local spin
and charge sum rules. It has since been extended to multi-
orbital [37,38] and multisite cases [39–44]. TPSC has been
benchmarked against DiagMC calculations [30] and finite
size Monte Carlo [32–34,36,45–47]. The TPSC approach has
the advantage of being computationally inexpensive, which
enables its application and extension to a wide array of
problems.
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For example, this method has been used to study multiple
facets of the 2D Hubbard model, such as the weak-coupling
pseudogap [34,48], the optical conductivity [49], adiabatic
cooling in cold atoms [50], the interplay of disorder and spin
fluctuations [51], the resilience of Fermi liquid quasiparticles
on cold parts of the Fermi surface [52], unconventional super-
conductivity [41,42,53–55], ferromagnetism [56], crossover
of antiferromagnetic spin fluctuations from two to three
dimensions [57], and magnetic properties of the three-
dimensional Hubbard model [58]. Moreover, TPSC has been
generalized to the extended Hubbard model [59–61], to the
attractive model [47,62], and recently to the nonequilibrium
case [63]. Its multiorbital formulation has also been used in
the context of one-shot DFT+TPSC calculations [42,43,64].
These examples illustrate the flexibility of this approach for
the Hubbard model. Though the TPSC approach fails deep
in the renormalized classical regime of the 2D Hubbard
model, its recent improvements named TPSC+ [30,65] and
TPSC+GG [30,63] seem to extend its domain of validity
down to lower temperatures.

In this work, we introduce another improvement of the
TPSC approach, namely the TPSC+DMFT approach for the
one-band Hubbard model. The spin and charge fluctuations
are influenced by DMFT results only through the DMFT
double occupancy appearing in the local spin and charge sum
rules. Inspired by previous methods we also combine the
non-local part of the TPSC self-energy with the local DMFT
self-energy [30]. This method has also been proposed in the
context of the multiorbital Kanamori model [66]. In Sec. II,
we describe the DMFT and TPSC approaches. We then in-
troduce two aspects of the proposed approach in Sec. III,
namely the replacement of the TPSC ansatz with the DMFT
double occupancy to compute spin and charge fluctuations,
and the �loc approach that combines the local part of the
DMFT self-energy with the nonlocal part of the TPSC self-
energy. We compare our results on the 2D square lattice to
benchmarks from diagrammatic Monte Carlo calculations in
Sec. IV. We show that the proposed approach, which is only
as computationally expensive as single-site DMFT, is valid in
the weak to intermediate interaction strength regime U/t � 5,
but fails to capture the Mott-Heisenberg physics in the strong
interaction regime 5 < U/t < 8. The main results are then
summarized in Sec. V, where we also discuss the domain of
validity of the proposed approaches.

II. MODEL AND THEORETICAL BASIS

After introducing the model, we recall in turn the TPSC
and DMFT methods. In the latter case, paramagnetic and
antiferromagnetic solutions are possible.

A. The Hubbard model

We study the one-band Hubbard model on a square 2D
lattice,

H = − t
∑

〈i j〉,σ
(c†

i,σ c j,σ + c†
j,σ ci,σ )

+ U
∑

i

ni,↑ni,↓ − μ
∑

i,σ

ni,σ . (1)

The nearest-neighbor hopping t is our unit of energy, U is
the Hubbard repulsion on a single site, and μ the chemi-
cal potential. The occupation number operators are ni,σ at
lattice position i for spin σ while the corresponding annihi-
lation (creation) operators are c(†)

i,σ . Calculations are done for
U = 2 at half filling (n = 1) to benchmark with Ref. [30],
and away from half filling for 0.5 < U < 8 to benchmark
with Ref. [67]. State-of-the-art versions of CDet [67,68] and
�DDMC [69,70] are used in these DiagMC calculations.

B. The two-particle self-consistent (TPSC) approach

The two-particle self-consistent approach is a non-
perturbative semianalytical method that satisfies the Pauli
principle, the Mermin-Wagner theorem, and conservation
laws for the spin and charge susceptibilities. These obey the
local spin and charge sum rules [32]

T

N

∑

q

χsp(q) = n − 2〈n↑n↓〉, (2)

T

N

∑

q

χch(q) = n + 2〈n↑n↓〉 − n2. (3)

We use the convention q ≡ (q, iqn), where qn = 2nπT is a
bosonic Matsubara frequency, q is a wave vector in the first
Brillouin zone, and n is the filling. The susceptibilities are
calculated with renormalized local and static vertices Usp and
Uch, and with the noninteracting charge susceptibility χ (1)(q):

χsp(q) ≡ χ (1)(q)

1 − 1
2Uspχ (1)(q)

, (4)

χch(q) ≡ χ (1)(q)

1 + 1
2Uchχ (1)(q)

. (5)

While the susceptibilities are identical to the noninteracting
case, the notation χ (1)(q) has a conceptual importance to
remind us that the self-energy entering the Green’s function
G (1)

σ (k) at this level is a constant that can be absorbed in the
chemical potential in such a way that the density is the desired
one [35,36].

To compute self-consistently the vertices from the sum
rules, a third equation is needed. In TPSC, the ansatz [32,71]
on the double occupancy

〈n↑n↓〉 = Usp

U
〈n↑〉〈n↓〉 (6)

is used. It can be seen as a correction to the Hartree-Fock
factorization of the double occupancy. More detailed justifi-
cation is given in Ref. [34]. In the case of electron-doping, the
particle-hole transformed ansatz with nσ → 1 − nσ in Eq. (6)
must be used.

In the spirit of the electron gas, the self-energy is computed
in a second step, using the spin and charge susceptibilities that
contain collective modes that were obtained while satisfying
conservation laws. The formula [33,34] that takes into account
crossing symmetry [36,46] is

�(2)
σ (k) =Unσ̄ + U

8

T

N

∑

q

[3Uspχsp(q) + Uchχch(q)]

× G (1)
σ (k + q), (7)
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where k = (k, ikn), ikn = (2n + 1)πT is a fermionic Matsub-
ara frequency, and σ̄ is the opposite spin. The best approxi-
mation to the Green’s function is (G (2) )−1 = (G (1) )−1 − �(2),
which contains the second-step self-energy. The chemical po-
tential must be recalculated at this level to keep the filling n
constant.

The spin susceptibility allows us to define a spin corre-
lation length. Around the maximum in the Brillouin zone,
located at Q = (π, π ) (at half filling), it can be fitted to the
Ornstein-Zernicke form

χsp(q, iqn = 0) ≈ A

(q − Q)2 + ξ−2
sp

, (8)

with a width at half maximum ξ−1
sp in q space. This corre-

sponds to the physical spin correlation length ξsp.
The accuracy of the TPSC method can be estimated by

considering the sum rule

T

N

∑

k

�(2)
σ (k)G (1)

σ (k) = U 〈n↑n↓〉, (9)

which, in TPSC, is exactly satisfied with the above definition
of the self-energy and double occupancy obtained from the
ansatz and the spin and charge sum rules. The sum rule on
�(2)G (2) does not give the above double occupancy. However,
it has been observed that the relative violation of the sum rule,

violation of sum rule = Tr(�(2)G (2) ) − U 〈n↑n↓〉
U 〈n↑n↓〉 , (10)

with 〈n↑n↓〉 obtained from the spin and charge sum rules, is
small (of the order of a few percent) in the range of parameters
where TPSC agrees with exact Monte-Carlo results [34,36].
This metric can therefore be used to assess the reliability of
the TPSC calculation [72]. Its general usefulness will become
apparent in Sec. VI B.

The numerical implementation uses fast-Fourier trans-
forms and the sparse-ir library for Matsubara sums [73–75].

C. Dynamical mean-field theory (DMFT)

DMFT yields a finite Néel temperature, hence the question
arises whether the paramagnetic (PM) or the antiferromag-
netic (AFM) versions of DMFT should be used. It has also
been noticed that better results for double occupancy could
be obtained in the low temperature regime by allowing for
long-range order [76]. Hence, in this section, we recall a
few relevant ideas from dynamical mean-field theory for both
the paramagnetic and antiferromagnetic states. The numerical
implementation of both approaches uses the CT-HYB Monte-
Carlo impurity solver [77,78] implemented in the TRIQS
library [79,80].

1. Paramagnetic DMFT

In single-site dynamical mean-field theory (DMFT) [3–5],
the fully-interacting lattice problem is mapped onto the An-
derson impurity problem, where a single impurity site (treated
exactly) is coupled to a noninteracting bath of electrons. The
coupling is through a hybridization function, which plays the
role of a frequency-dependent mean-field.

The self-consistency between the impurity problem and the
lattice problem is enforced by approximating the lattice self-
energy as local and equal to the impurity self-energy

�lat
σ (k) = �lat

σ (k, ikn) ≈ �imp
σ (ikn). (11)

This approximation becomes exact in the limit of infinite
lattice coordination [2,3]. The self-consistent self-energy,
Green’s function, and corresponding observables are com-
puted by an iterative scheme.

2. Antiferromagnetic DMFT

As discussed in Ref. [5], DMFT can be extended to de-
scribe an antiferromagnetically ordered state (for n = 1), by
considering two sublattices A, B on the square lattice. For
each sublattice, one impurity is isolated. At each iteration,
the impurity problem is solved twice, and self-consistency
is imposed on both Green’s functions. The self-consistency
equation couples both sublattices together.

To accelerate the convergence to paramagnetic or antifer-
romagnetic solutions, the self-energy is partially symmetrized
at each iteration with

�α,σ (ikn) = 1
2 [�α,σ (ikn) + �ᾱ,σ̄ (ikn)]. (12)

Here, α stands for the sublattice and a bar over an index
represents the opposite value of the index.

An alternative way of allowing an antiferromagnetically
ordered solution to stabilize in DMFT is to solve a single
impurity problem that we set to be located on sublattice A.
Then, the self-energy for the impurity on sublattice B is set to

�B,σ (ikn) = �A,σ̄ (ikn). (13)

This is equivalent to the case where we solve two impurity
problems if the number of Monte Carlo measurements in
the CT-HYB impurity solver is doubled (to obtain the same
overall statistics).

III. PROPOSED APPROACH: TPSC + DMFT

As proposed earlier [34,53], when local quantities such as
the double occupancy are available from reliable methods,
it is possible to avoid using the TPSC ansatz Eq. (6) that
can be problematic deep in the renormalized classical regime.
DMFT offers this possibility. This is discussed in Sec. III A. In
addition, the local self-energy obtained from DMFT is quite
accurate, leading to the possibility of combining it with the
TPSC self-energy in the way discussed in Sec. III B.

The widespread availability of DMFT in electronic struc-
ture codes also opens the possibility of generalizing TPSC to
multiband problems where generalized ansatz have not been
benchmarked.

A. Replacing the TPSC ansatz

The first step of a TPSC+DMFT calculation is to insert
the DMFT double occupancy in the sum rules Eqs. (2) and (3)
to determine the values of the renormalized vertices. We will
refer to this method in the next sections as TPSC+DMFT.
Since the sum rules for the spin and charge susceptibilities are
still satisfied exactly, the Mermin-Wagner theorem for χsp and
the Pauli principle are still respected by that hybrid method.
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In all the DMFT calculations performed in this work,
the electronic density is converged within ±0.003 of the
displayed density. The chemical potential in the TPSC cal-
culation is then chosen to get the same density, to ten
significant digits. As a result, the TPSC+DMFT results shown
in Sec. IV have slightly different electronic densities (±0.006)
from each other, which results in effective error bars on the
TPSC+DMFT results.

B. Correcting the local self-energy

In the second step, the local self-energy obtained from
the TPSC calculation is replaced by the DMFT value [81].
As shown in Ref. [30], the DMFT local self-energy is more
accurate than the corresponding TPSC value. This is done
following a widely used method [25],

�TPSC(k, ikn) → [
�TPSC(k, ikn) − �TPSC

loc (ikn)
]

+ �DMFT(ikn). (14)

The local TPSC self-energy is, by definition

�TPSC
loc (ikn) = 1

N

∑

k

�TPSC(k, ikn), (15)

with N the total number of k-points in the wave vector grid for
the TPSC calculation. The result should capture both the local
effects of interactions from DMFT and the nonlocal effects
from TPSC. The TPSC self-energy is obtained on a fine wave-
vector mesh.

This approximation is easily combined with the previous
modification to the method since the local DMFT self-energy
and double occupancy are obtained from the same calculation.
Both those steps make up the TPSC+DMFT method. It is
important to note that this self-energy correction has no effect
on the spin and charge susceptibilities, which are computed
before the self-energy. In ansatz TPSC (and TPSC+DMFT),
the dressed Green’s function G (2) is not used to compute
new susceptibilities. This is in contrast with the TPSC+
and TPSC+GG methods, where the process of calculating
susceptibilities and self-energy is iterated until convergence
[30,63,65].

As a word of caution, we note that when the local TPSC
self-energy is larger than the local DMFT self-energy, the
subtraction in Eq. (14) could lead to noncausal effects. We
have not encountered this case, but we cannot exclude this
possibility. Heuristically, the TPSC self-energy arises from
long-wavelength collective modes, so it takes into account
mostly nonlocal correlations rather than local ones. Its local
component should generally be smaller than the local DMFT
self-energy.

IV. RESULTS

Here we compare benchmarks with TPSC and
TPSC+DMFT. We start in Sec. IV A with the double
occupancy that, in the first step of TPSC, determines the
spin and charge susceptibilities. We then compare in turn our
results with DiagMC benchmarks for the spin susceptibility
in Sec. IV B, the corresponding magnetic correlation length

0 5 10 15 20 25 30 35

1/T

0.1850

0.1875

0.1900

0.1925

0.1950

0.1975

0.2000

0.2025

〈n
↑n

↓〉

U = 2

n = 1

PM-DMFT

AFM-DMFT

DiagMC

TPSC

FIG. 1. Double occupancy as a function of inverse temperature
at half filling for TPSC, for the reference exact DiagMC [68] results
Ref. [30] and for the paramagnetic and antiferromagnetic versions
of DMFT. Error bars on DMFT results are smaller than the markers.
The DiagMC results fall generally between TPSC and DMFT. Math-
ematically, the decrease in TPSC double occupancy at half filling is
a consequence of the fact that the susceptibility χ (1)(T ) diverges as
T decreases so that Usp in the interacting susceptibility Eq. (4) must
vanish. The ansatz Eq. (6) then automatically implies that double
occupancy must vanish at T = 0.

in Sec. IV C, and the charge susceptibility in Sec. IV D. We
end with the self-energy in Sec. IV E.

A. Double occupancy

The double occupancy at half filling and small interac-
tion strength U = 2 for both TPSC and DMFT is shown on
Fig. 1, as a function of inverse temperature. Both PM-DMFT
and AFM-DMFT overestimate the double occupancy when
compared with the DiagMC results for T < 1, while TPSC
underestimates the double occupancy over the whole range
of temperatures. For all methods, the discrepancies over the
available range of data with DiagMC are of order 5%, rel-
atively small, but they can have important consequences on
susceptibilities.

At temperatures lower than T ≈ 1/12, the double occu-
pancy calculated from AFM-DMFT deviates from PM-DMFT
because this is the DMFT Néel temperature, below which
AFM-DMFT predicts long-range antiferromagnetic order.
This ordering leads to a more accurate double occupancy,
reproducing a similar downturn at T < T N

DMFT to DiagMC.
Long-range ordering at finite temperature is forbidden in
two-dimensional systems by the Mermin-Wagner theorem,
but long-wavelength spin fluctuations play a similar role
in lowering the double occupancy at low temperatures.
This type of long-range fluctuations is not possible by de-
sign in single-site DMFT, which is why the PM-DMFT
double occupancy saturates at low temperature without
downturn.

A more complete comparison between the TPSC and
TPSC+DMFT double occupancy at half filling is shown in

075158-4



NONLOCAL CORRECTIONS TO DYNAMICAL MEAN-FIELD … PHYSICAL REVIEW B 107, 075158 (2023)

0.1 0.2

T

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

〈n
↑n

↓〉

TPSC

0.1 0.2

T

PM-DMFT

n = 1

U = 0.5

U = 1.0

U = 1.5

U = 2.0

U = 2.5

U = 3.0

U = 3.5

U = 4.0

U = 4.5

U = 5.0

FIG. 2. Double occupancy for TPSC and for PM-DMFT at half
filling, as a function of the temperature of the model for differ-
ent values of interaction U . The low-temperature fall signals the
regime where the antiferromagnetic spin correlation length increases,
leading to a characteristic spin fluctuation frequency smaller than
temperature, the so-called renormalized classical regime. Uncer-
tainty in the CT-HYB evaluation of double occupancy in DMFT
leads to error bars on PM-DMFT results smaller than the markers.

Fig. 2. In the case of TPSC+DMFT, the double occupancy
is in fact that of PM-DMFT. It can be seen clearly in the
figure that, for U � 1.5, the TPSC double occupancy sharply
decreases at low enough temperature, whereas the PM-DMFT
double occupancy saturates to a finite value. Since spin corre-
lations increase at low temperature, the local moment 〈(Sz )2〉
must increase so that, from the local moment sum rule Eq. (2),
the double occupancy must decrease. The decrease signals
the beginning of the renormalized classical regime. This de-
crease is also seen in the DiagMC results in Fig. 1, but
at lower temperature than in TPSC. By contrast, DMFT is
oblivious to this physics, so the double occupancy saturates.
The underestimation of the double occupancy by TPSC and
overestimation by DMFT can lead to compensations that are
to our advantage, as we will see later. As will be discussed
in Sec. IV B on the spin susceptibility, the feedback between
double occupancy and spin fluctuations occurs differently in
TPSC and TPSC+DMFT.

Figure 3 shows the comparisons away from half filling at
n = 0.875. TPSC still slightly underestimates the double oc-
cupancy while PM-DMFT overestimates it. In general, TPSC
gives a slightly better agreement with the benchmark DiagMC
results up to U = 4. This regime is sufficiently far from the
renormalized classical regime that the TPSC and benchmark
double occupancies do not decrease significantly at low tem-
perature.

Again far from the renormalized classical regime at
temperature T = 0.2, the dependence on U of the double oc-
cupancy for various densities is shown on Fig. 4. Here again,
one notices the general trend that TPSC underestimates and
PM-DMFT overestimates the benchmark, with TPSC agree-
ing overall better with the benchmarks.
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T
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0.08
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〈n
↑n

↓〉

TPSCn = 0.875

0.10 0.15 0.20 0.25

T

PM-DMFT

U = 2 U = 3 U = 4 U = 5

FIG. 3. Double occupancy at n = 0.875, as a function of the
temperature for different values of the interaction U . The bench-
mark DiagMC results are reproduced from [67] with error bars and
dotted lines. TPSC generally underestimates the benchmark while
PM-DMFT overestimates the benchmark. TPSC agrees better with
the benchmark for U < 5. Uncertainty in the CT-HYB evaluation
of the density and double occupancy in DMFT leads to error bars on
PM-DMFT results, smaller than 0.002. A few are shown, for example
at U = 4, T = 0.2.

B. Spin susceptibility

From the double occupancy, we can now evaluate the
spin fluctuations. As a proxy for the accuracy of the spin
susceptibility at vanishing Matsubara frequency, Fig. 5 dis-
plays on a semilogarithmic plot the maximum of the spin
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U

-5
0
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15
20

Δ
(%

)

1 2 3 4 5

U

FIG. 4. Top row: Double occupancy at T = 0.2 as a function
of the interaction strength for various fillings. Benchmark DiagMC
results are reproduced from Ref. [67] with error bars and dotted
lines. TPSC generally underestimates the benchmark while PM-
DMFT overestimates the benchmark. TPSC agrees better with the
benchmark for U < 5. Uncertainty in the CT-HYB evaluation of the
density and double occupancy in PM-DMFT leads to typical errors
between 1% and 5%. A few are indicated, for example at n = 0.95,
U = 4. Bottom row: Relative deviation of the results from the exact
DiagMC values.

075158-5



MARTIN, GAUVIN-NDIAYE, AND TREMBLAY PHYSICAL REVIEW B 107, 075158 (2023)

100

101

χ
sp

(q
m

ax
)

TPSC TPSC+DMFT

T = 0.2

n = 1.000

n = 0.975

n = 0.950

n = 0.925

n = 0.900

n = 0.875

n = 0.850

n = 0.825

n = 0.800

1 2 3 4

U

-50

0

50

100

Δ
(%

)

1 2 3 4

U

0 2 4 6 8

101

103

FIG. 5. Top row: Semilogarithmic plot of the dependence on interaction strength of the maximum of the spin susceptibility at T = 0.2
for various densities for both TPSC and TPSC+DMFT. Benchmark DiagMC results from Ref. [67] are displayed with error bars and dotted
lines. TPSC+DMFT generally agrees better with DiagMC because TPSC enters the renormalized classical regime at too high temperature.
Uncertainty in the CT-HYB evaluation of the density and double occupancy in DMFT leads to typical errors from 1% away from half filling
and low U up to 6% at n = 0.975 and U = 5. Inset: Typical DiagMC and TPSC results extended to U = 8 to show that both TPSC methods
miss Heisenberg-Mott physics. Bottom row: Relative deviation of the results from the exact DiagMC values.

susceptibility at temperature T = 0.2. In the small interaction
strength regime 0 < U < 2, the results agree quite well with
the benchmark DiagMC results [67] for both methods [82].
In the intermediate regime 2 < U < 4, TPSC+DMFT gives
quantitatively better results, especially close to half filling.
There, standard TPSC is at its worse because, as seen in Fig. 1,
it enters the renormalized classical regime at too high temper-
ature. This also affects the charge fluctuations, as we discuss
later. A similar behavior at the fixed density n = 0.875 for
various temperatures is seen in the semilogarithmic plot of
the maximum spin susceptibility as a function of interaction
U in Fig. 6. The low-interaction maximum spin susceptibility
agrees with benchmark DiagMC results for both methods,
with TPSC+DMFT in slightly better quantitative agreement
with DiagMC for 2 < U < 4. This is especially true for low
temperatures, where TPSC overestimates the spin susceptibil-
ity a lot more than TPSC+DMFT, again because it enters the
renormalized classical regime at too high temperature. The
system being relatively far from half filling, the improvement
brought by TPSC+DMFT is less than that at n close to half
filling. This is consistent with the fact that the TPSC ansatz,
being a generalized Hartree-Fock approximation, is better
away from half filling in the dilute limit.

In the inset of both Figs. 6 and 5, we show that the U > 5
regime is not well approximated by either TPSC method.
The DiagMC spin susceptibility starts to decrease with in-
creasing U since the system enters the Heisenberg regime
where local moments and Mott physics are prevalent. In this
regime, the large interaction strength leads to a saturation of
the local magnetic moments 〈S2

z 〉, and the Hubbard model
is well approximated by a t-J model, with a superexchange

100

101

102

χ
sp

(q
m

ax
)

TPSC TPSC+DMFT

n = 0.875T = 0.067

T = 0.100

T = 0.150

T = 0.200

T = 0.250

1 2 3 4 5

U

0

100

200

Δ
(%

)

1 2 3 4 5

U

0 2 4 6

101

103

FIG. 6. Top row: Semilogarithmic plot of the dependence on
interaction strength of the maximum of the spin susceptibility
at filling n = 0.875 for various temperatures for both TPSC and
TPSC+DMFT. Benchmark DiagMC results from Ref. [67] are dis-
played with error bars and dotted lines. TPSC+DMFT generally
agrees better with DiagMC because TPSC enters the renormalized
classical regime at too high temperature. At low temperature, even
TPSC+DMFT starts to deviate substantially from benchmark results
for U larger than 3. Uncertainty in the CT-HYB evaluation of the
density and double occupancy in DMFT leads to typical errors from
2%–4% at high temperature and low U up to 20% at T = 0.1
and U = 5. A few are indicated. Inset: Typical DiagMC and TPSC
results extended to U = 8 to show that both TPSC methods miss
Heisenberg-Mott physics. Bottom row: Relative deviation of the
results from the exact DiagMC values.
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FIG. 7. Wave-vector dependence of the spin susceptibility at
U = 5, T = 0.1, and n = 0.8 along the zone diagonal (left panel) and
boundary (right panel). Monte Carlo results are reproduced from [67]
with error bars and dotted lines. For these parameters, we are beyond
the limit of validity of both TPSC methods. The spin fluctuations
in TPSC are larger than the benchmark because in weak interaction
methods these fluctuations increase indefinitely with U instead of
entering the regime where superexchange becomes important.

parameter J = 4t2/U . In this regime, increasing U decreases
superexchange and suppresses spin fluctuations. It is also in
this strong-interaction regime that a Mott gap opens, which is
why we refer to this phenomenon as Heisenberg-Mott physics.
This is completely missed by both TPSC methods, which
predict an ever-increasing spin susceptibility with interaction
strength.

The wave-vector dependence of the spin susceptibility is
pictured along the Brillouin zone diagonal and edge in Fig. 7
for n = 0.8 when U is 5 and T is 0.1. This is at the beginning
of the renormalized classical regime where the spin fluctua-
tions start to grow for all methods. The inset of Fig. 5 shows
that for U = 5 the system is in a regime where we expect
both TPSC methods to start breaking down. This is partly
the case, with TPSC and TPSC+DMFT overestimating the
spin susceptibility. TPSC is closer to the DiagMC results for
this set of parameters. Nevertheless, the qualitative behavior
is correct because U = 5 is at the border of where both TPSC
methods fail. Note that, in the long correlation length limit,
the double incommensurate peaks should appear only along
the zone edge, not along the diagonal. The weight along the
diagonal occurs because the correlation length is still small so
that it influences a large almost circular region around (π, π ),
as can clearly be seen from the color plot on the left of Fig. 2
of Ref. [67].

The difference in the spin susceptibilities of the two
TPSC methods originates from the different renormalized ir-
reducible spin vertices Usp. It is thus instructive to plot Usp for
the two methods. Away from half filling, at n = 0.875, we see
in Fig. 8 that the value of the spin vertex is somewhat smaller
in TPSC+DMFT than in TPSC. This is consistent with the
slightly larger double occupancy from DMFT seen in Fig. 3
for most values of U .

0.1 0.2

T

0.5

1.0

1.5

2.0

2.5

U
sp

TPSC

0.1 0.2

T

TPSC+DMFT

n = 0.875
U = 5.0

U = 4.5

U = 4.0

U = 3.5

U = 3.0

U = 2.5

U = 2.0

U = 1.5

U = 1.0

U = 0.5

FIG. 8. Spin vertex obtained by both TPSC methods at n =
0.875, as a function of the bare interaction strength U and temper-
ature. The dotted black line represents the critical value Ucrit (T ) of
the spin vertex, for which χsp diverges. Error bars on TPSC+DMFT
data coming from the CT-HYB evaluation of the density in DMFT
are smaller than the markers and are not shown.

In general, to satisfy the Mermin-Wagner theorem,
Uspχ

(1)(q)/2 must not equal unity. We thus define a critical
Usp by Ucrit (T ) = 2/χ (1)

max(q). At half filling, the divergence of
χ (1)(q) at Q = (π, π ) forces Usp to vanish at T → 0. This
is where the difference between the two methods is more
pronounced. Since χ (1) diverges in the same way for low tem-
perature in both methods, the critical value of Usp is identical
in both methods. In Figs. 8 and 9, Ucrit (T ) corresponds to the
dotted black line. The temperature at which the spin vertex
starts to decrease can be identified with the temperature where
Ucrit (T ) is approximately equal to the high-temperature value
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FIG. 9. Spin vertex obtained from TPSC and TPSC+DMFT at
half filling (n = 1), as a function of the bare interaction strength U
and temperature. The dotted black line represents the critical value
Ucrit (T ) of the spin vertex, for which χsp diverges. At half filling, the
uncertainty on the density is negligible, which leads to no significant
error bars on TPSC+DMFT results.
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FIG. 10. Magnetic correlation length of the model at half filling
for various techniques, as a function of inverse temperature. DiagMC
and DMFT results are reproduced from Ref. [30]. TPSC+DMFT in
the paramagnetic state gives the best agreement with DiagMC.

U HT
sp of Usp. As seen in Fig. 9, for a given U , the spin vertex

starts to decrease with T at a higher temperature for TPSC
than for TPSC+DMFT, consistent with the lower value of
U HT

sp in TPSC+DMFT.

C. Magnetic correlation length

The magnetic correlation length obtained from a fit,
Eq. (8), of the spin susceptibility at half filling is shown in
Fig. 10. For the TPSC+DMFT results, both paramagnetic
and antiferromagnetic DMFT were tested. While the TPSC
correlation length starts to deviate from the Monte Carlo
result at the relatively high temperature of T = 1/5, the val-
ues obtained by both TPSC+DMFT methods closely match
the exact results above T ≈ 1/12. The double occupancy
from paramagnetic DMFT gives a better magnetic correlation
length than the AFM-DMFT double occupancy, tracking the
DiagMC value qualitatively to the lowest temperature avail-
able.

The magnetic correlation length extracted directly from
DMFT (calculated in [30]) is also shown on that figure. It
is closer to the exact result than TPSC, but farther than both
TPSC+DMFT methods. It therefore seems that the combina-
tion of both local effects from the DMFT double occupancy
and nonlocal effects from TPSC gives the best representation
of the physics in that case.

D. Charge susceptibility

In both TPSC methods, the Pauli principle controls the
relative values of spin and charge susceptibilities. In other
words, the sum of the local spin sum rule (2) and of the local
charge sum rule (3) is independent of interaction strength U .
It depends only on the filling n because of the Pauli principle.
Hence, when interactions increase spin fluctuations, charge
fluctuations must decrease. This is important for understand-
ing how the results of this section are related to results on the
spin susceptibility.
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FIG. 11. Top row: Maximum of the charge susceptibility ob-
tained from TPSC and TPSC+DMFT, as a function of the bare
interaction strength U for various temperatures, at n = 0.875 (solid
lines). Corresponding benchmark DiagMC results from Ref. [67]
are displayed with error bars and dotted lines. Uncertainty on the
evaluation of the CT-HYB density and double occupancy leads to
error bars on TPSC+DMFT results smaller than 0.7% and of the
size of the markers. Bottom row: Relative deviation of the results
from the exact DiagMC values.

As a proxy for the accuracy of the charge susceptibility at
vanishing Matsubara frequency, Fig. 11 displays on a semilog-
arithmic plot the maximum of the charge susceptibility for
various temperatures as a function of interaction strength at
filling n = 0.875. In the small interaction strength regime
0 < U < 2 the results agree quite well with the benchmark
DiagMC results [67] for both methods, with TPSC+DMFT
showing slightly better agreement. In the intermediate regime
2 < U < 4, TPSC+DMFT gives quantitatively better results.
Both TPSC methods underestimates the charge susceptibility,
as expected from the Pauli principle and the overestimation of
the spin fluctuations in Fig. 11. The temperature dependence
of χch(qmax) for U � 4 has a behavior opposite to that of the
DiagMC result, while the TPSC+DMFT temperature depen-
dence stays consistent.

The wave-vector dependence of the charge susceptibility
along the zone diagonal and zone edge is shown in Fig. 12 for
n = 0.8, U = 5, and T = 0.1. As mentioned for spin fluctu-
ations, the system is in a regime where we expect TPSC to
start breaking down. Since both TPSC methods overestimate
spin fluctuations, as seen in Fig. 7, the Pauli principle forces
the charge fluctuations to be underestimated compared to Di-
agMC, as was also the case in Fig. 11. Similarly, the better
agreement of TPSC with DiagMC spin fluctuations leads to
better agreement of TPSC with DiagMC charge fluctuations
through the Pauli principle.

The difference in the charge susceptibilities of the two
TPSC methods originates from the different renormalized ir-
reducible charge vertices Uch. We thus plot Uch as a function
of temperature for the two methods in Figs. 13 and 14 for
n = 0.875 and n = 1 respectively. Away from half filling and
for U � 4, the temperature dependence of Uch computed in
TPSC deviates from the TPSC+DMFT charge vertex. This
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FIG. 12. Wave-vector dependence of the charge susceptibility at
U = 5, T = 0.1, and n = 0.8. DiagMC results are reproduced from
[67]. The better agreement of TPSC with DiagMC is consistent
through the Pauli principle with the better agreement found for the
spin fluctuations in Fig. 7.

reflects the change in the temperature dependence of the dou-
ble occupancy shown on Fig. 3. The half filling case shown in
Fig. 14 is an even more extreme example of the difference
in charge vertex calculated by both methods. This occurs
because in TPSC the ansatz forces the double occupancy to
vanish at low temperature with Usp. Since the right-hand side
of the local charge sum rule in Eq. (3) is proportional to
double occupancy when n = 1, the charge fluctuations must
be completely suppressed by Uch in this situation.

E. Self-energy

In both TPSC methods, the self-energy is computed after
the spin and charge susceptibilities with Eq. (7). In Matsubara
frequencies, it is the imaginary part of the self-energy that
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FIG. 13. Charge vertex obtained by TPSC and TPSC+DMFT
at n = 0.875, as a function of the bare interaction strength U and
temperature. Error bars caused by the uncertainty on the density are
smaller than the markers.
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FIG. 14. Charge vertex obtained by TPSC and TPSC+DMFT at
half filling, as a function of the bare interaction strength U and tem-
perature. At low temperature, the downturn of the double occupancy
in TPSC coming from the ansatz suppresses the charges fluctuations,
in contrast with TPSC+DMFT, where they stay similar no matter the
temperature.

is most revealing of the Fermi liquid vs non-Fermi liquid
properties. It is shown for U = 2 and three temperatures at
half filling in Fig. 15. The antinodal k = (π, 0) point is in
the top row and the nodal k = ( π

2 , π
2 ) point in the bottom

row. In that figure, the red dotted line is for TPSC, while
TPSC+DMFT methods are shown in dotted blue lines when
double occupancy is obtained from PM-DMFT and in dotted
green lines when double occupancy is obtained from AFM-
DMFT. The corresponding solid lines correspond to the �loc

approximation of Sec. III where the local part of the TPSC
self-energy is replaced by the local part of the DMFT self-
energy. The DiagMC results from Ref. [30] are in black.

For T = 0.063 and T = 0.1, on the left and middle panels
respectively, the TPSC+DMFT self-energies are much closer
to the DiagMC results than TPSC. Taking the positive slope of
the self-energy between the first two Matsubara frequencies as
a proxy to the beginning of the pseudogap, it is apparent that
TPSC enters this regime at a higher temperature than DiagMC
and TPSC+DMFT.

The �loc approximation in conjunction with
TPSC+DMFT gives the best self-energies (solid green and
blue lines) especially at low temperature, as we now show.
The high-frequency behavior of the self-energy is almost
identical to the DiagMC self-energy if we use PM-DMFT.
Below the DMFT Néel temperature, the paramagnetic
or antiferromagnetic solutions both give results similar
to DiagMC, but the entry in the pseudogap regime of
AFM-DMFT is in better agreement with DiagMC for
both nodal and antinodal self-energies. The entry in the
pseudogap in the nodal direction of all other methods
differs from the DiagMC result, as can be seen on the
lower left panel where the green and blue symbols differ.
However, while AFM-DMFT gives a better qualitative
agreement with DiagMC at the nodal point, PM-DMFT gives
a better quantitative agreement overall, that is, for the whole
frequency range.
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FIG. 15. Imaginary part of the self-energy as a function of Matsubara frequency kn at the antinode k = (π, 0) in the top row and at the
node k = ( π

2 , π

2 ) in the bottom row. The lowest temperatures are to the left. All calculations were done at interaction strength U = 2 and half
filling n = 1. Error bars on DiagMC and �loc methods are displayed but usually smaller than the markers. For clarity, the curves for which the
substitution of the local part of the self-energy was done are explicitly indicated (in solid lines). There is a difference between PM-DMFT and
AFM-DMFT methods only below the Néel temperature, namely in the leftmost panels. The combination of paramagnetic TPSC+DMFT with
the corresponding �loc gives the best overall agreement with DiagMC data taken from [30].

The self-energy obtained when only doing the local self-
energy substitution on an ansatz TPSC calculation is also
plotted (solid red line). It is clearly not sufficient to get an
accurate total self-energy, since the low frequency part of the
self-energy is not changed appreciably by this substitution.
The use of both the DMFT double occupancy and self-energy
is important to get accurate results for this model.

V. SUMMARY OF THE MAIN RESULTS

As was seen in detail in Sec. IV, the TPSC and
TPSC+DMFT methods give qualitatively similar results for
the model studied here, namely the 2D Hubbard model on a
square lattice. The method that better reproduces benchmark
DiagMC quantities depends on the observable of interest.
We present here a short summary of those results and the
differences between the methods.

The double occupancy is generally underestimated in
TPSC and overestimated in TPSC+DMFT, as seen in
Figs. 1–4 of Sec. IV A. The best qualitative agreement with
benchmark DiagMC is from TPSC, which is often also quan-
titatively better than TPSC+DMFT.

The spin susceptibility from both methods, shown in
Figs. 6 and 7 of Sec. IV B, is close to benchmarks in the
regime U � 5, with TPSC+DMFT having a better quanti-
tative agreement with DiagMC close to half filling and low
temperature. Neither TPSC method can reproduce the de-

crease in spin susceptibility caused by the Heisenberg-Mott
physics for stronger interaction strength.

The spin correlation length extracted at half filling is closer
to benchmarks for TPSC+DMFT, as shown in Fig. 10 of
Sec. IV C. Constraining the DMFT calculation to a param-
agnetic solution leads to a better magnetic correlation length
than allowing it to stabilize an antiferromagnetic long-range
order.

The charge susceptibility from both TPSC methods is in
good qualitative agreement with benchmarks for U � 5, as
seen in Figs. 11 and 12 of Sec. IV D. TPSC+DMFT gives
slightly more accurate results for 2 < U < 5. In particular, the
temperature dependence of the charge susceptibility changes
sign at U ≈ 4 in TPSC, which is not the case in DiagMC or
TPSC+DMFT.

In Fig. 15 of Sec. IV E, we show that at half flling,
the momentum-resolved self-energy is more accurate in
TPSC+DMFT, when using both the double occupancy and
local part of the self-energy from DMFT. The use of antifer-
romagnetic or paramagnetic DMFT below the DMFT Néel
temperature leads to a qualitatively different self-energy. The
antiferromagnetic DMFT solution below the Néel temperature
is in better qualitative agreement for the small Matsubara
frequencies that reflect pseudogap physics. At higher Mat-
subara frequencies, the paramagnetic DMFT performs better.
Both the double occupancy and local part of the self-energy
from DMFT are important in order to get an accurate total
self-energy.
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FIG. 16. Magnetic correlation length of the model at half fill-
ing, as already displayed in Fig. 10. The results obtained if we
use for double occupancy the exact result from DiagMC instead of
DMFT are also displayed in orange. The result is then less accurate.
TPSC+DMFT in the paramagnetic state gives the best agreement
with DiagMC for the antiferromagnetic correlation length.

VI. DISCUSSION

When are TPSC+DMFT results in better agreement with
benchmarks than TPSC and is there a way to estimate the
accuracy of the results when no benchmarks are available?
We propose answers to these questions here.

A. Why TPSC+DMFT?

We have seen that combining TPSC with DMFT gives
better quantitative agreement with benchmark DiagMC results
for the spin susceptibility and the magnetic correlation length.
This can be understood as a consequence of cancellation of
errors. Indeed, as shown in Figs. 1–3 of Sec. IV A, TPSC
tends to underestimate double occupancy, while PM-DMFT
and AFM-DMFT tend to overestimate it. Since TPSC over-
estimates spin fluctuations, using the larger DMFT double
occupancy in the local-spin sum rule decreases Usp, hence giv-
ing better quantitative agreement with exact results, as shown
in Figs. 5 and 10. The improvement is also seen, to a lesser
extent, with the charge fluctuations shown on Fig. 11. In some
sense, there is a cancellation of errors between both methods
when used together. We have checked in a few cases that using
the exact DiagMC result for double occupancy instead of that
from DMFT gives less accurate results for the spin fluctu-
ations at half filling, as seen in Fig. 16. Indeed, the double
occupancy from DiagMC gives a more accurate spin correla-
tion length (yellow pentagons) compared to TPSC alone (red
triangles), but it is still too large. The double occupancy from
PM-DMFT, which is larger than the DiagMC value, gives a
more accurate spin correlation length (blue circles).

What about the self energy? At high temperatures, we have
verified that using either local self-energy from DMFT or
DiagMC is a reasonable choice (not shown), as expected since
the effect of the nonlocal fluctuations is small in this regime.
At T = 0.065 (below the DMFT Néel temperature), the
inclusion of the local observables from PM-DMFT, namely
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FIG. 17. Imaginary part of the self-energy as a function of Mat-
subara frequency kn at the antinode (left panel) and at the node (right
panel). All the calculations were done at a temperature of T = 0.065,
except for TPSC-MC+�loc which was done at T = 0.067. The local
paramagnetic DMFT self-energy is also displayed in purple. Error
bars on all methods but DiagMC are smaller than the markers and
not shown. All DiagMC self-energy and double occupancy data are
taken from [30].

double occupancy and the local self-energy, gives the best
quantitative agreement with exact results when combined with
the nonlocal part of the self-energy from TPSC. This is shown
in Fig. 17 by the blue diamonds. The local DMFT self-energy
alone is not sufficient at this temperature, as can be seen from
the purple solid line. It is more reasonable at high temperature
[30], where the local effects dominate. We have shown in
Fig. 15 that, for this model, the use of only the local part
the the self-energy from DMFT is not enough. The effect of
the DMFT double occupancy on the susceptibilities is also
crucial to get an accurate total self-energy. For a more accurate
indication of the entrance in the pseudogap regime (indicated
by the positive slope at the lowest frequencies), using the exact
double occupancy and local part of the self-energy from Di-
agMC (yellow pentagons on Fig. 17) or AFM-DMFT (green
squares on Fig. 15) is preferable.

B. Internal accuracy check

It is important to know if there is a way to estimate the
accuracy of TPSC+DMFT in the absence of benchmarks.
Such a method was proposed for TPSC in Ref. [34] and
explained in Eq. (10). For T = 0.2 and various fillings, Fig. 18
shows as a function of U the violation of the accuracy check
corresponding to the susceptibility presented in Fig. 5. Note
that the sum rule is computed before the local part of the
self-energy from TPSC+DMFT is replaced by the PM-DMFT
self-energy. The general behavior is the same for TPSC and
TPSC+DMFT. For U � 5, the violation of the sum rule is
below 10%, and grows with U . This is consistent with what
we observe for the spin susceptibility Fig. 5. Indeed, this
interaction strength U corresponds to the point where the
agreement with DiagMC results deteriorates. In addition, the
violation of the sum rule is larger close to half filling, which

075158-11



MARTIN, GAUVIN-NDIAYE, AND TREMBLAY PHYSICAL REVIEW B 107, 075158 (2023)

2 4 6 8

U

−30

−25

−20

−15

−10

−5

0

vi
ol

at
io

n
of

su
m

ru
le

on
Σ

(2
) G

(2
)
(%

) TPSC

2 4 6 8

U

TPSC+DMFT

T = 0.2

n = 1.000

n = 0.975

n = 0.950

n = 0.925

n = 0.900

n = 0.875

n = 0.850

n = 0.825

n = 0.800

FIG. 18. Relative violation of the accuracy check Eq. (10) for
both TPSC methods, corresponding to the data displayed in Fig. 5, at
T = 0.2.

is consistent with the spin susceptibility of both methods.
We also see that violation of the sum rule is larger close to
half filling for TPSC than for TPSC+DMFT, which is also
consistent with the spin susceptibility.

For n = 0.875, and various temperatures, Fig. 19 shows
as a function of U the violation of the accuracy check cor-
responding to the spin and charge susceptibilities presented
in Figs. 6 and 11. The temperature dependence of this dis-
crepancy is negligible for the interaction strengths for which
TPSC is applicable, which is consistent with the correspond-
ing susceptibility results. For large interaction strength U � 5,
the violation of the sum rule by TPSC+DMFT is larger than
for TPSC. Neither method is reliable for large interaction
strengths.

We therefore learn that the internal accuracy check devel-
oped for TPSC is also applicable for TPSC+DMFT for the
model and regimes of parameters studied in this work, and is
consistent with what the benchmarks suggest.
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FIG. 19. Relative violation of the accuracy check (10) for both
TPSC methods, corresponding to the data displayed in Figs. 6 and
11, at n = 0.875.

VII. CONCLUSION

Our main results have been summarized in Sec. V. (Data
for the figures are available as Supplemental Material [83].)
TPSC is a method that treats nonlocal correlations in a
way that satisfies sum rules, conservation laws and the
Mermin-Wagner theorem. Single-site DMFT, on the other
hand, emphasizes the role of local quantum fluctuations.
We have shown that combining TPSC with the DMFT dou-
ble occupancy and local self-energy leads to a method,
TPSC+DMFT, that can improve the agreement with bench-
mark DiagMC results in the weak to intermediate interaction
range, U � 5. Even for U ≈ 5, spin and charge fluctuations
away from half filling can be qualitatively correct (Figs. 7
and 12). TPSC+DMFT has a slightly widened regime of
applicability near half filling and low temperature compared
to TPSC. In agreement with previous benchmarking efforts
[30,32–34,36,45–47], our current work shows that the TPSC
approach is quantitatively accurate far from the renormalized
classical regime and is qualitatively correct in general, overes-
timating, however, the temperature at which the renormalized
classical regime begins.

The internal accuracy check devised for the original TPSC
also works for TPSC+DMFT. The violation of the internal
accuracy check remains correlated with the deviation from the
exact DiagMC results for the model and parameter regimes
studied. This suggests that this accuracy check might be useful
to assess reliability of the results in regimes where no exact
result is available.

In addition to providing a method that gives quantitatively
accurate results in many regimes, the most important contri-
bution of our work is to open the road to systematic multiband
generalizations of TPSC that do not need the new ansatz
introduced in Refs. [37,38,41,43]. Steps in that direction have
been taken [66]. Multiband generalizations would be useful in
realistic electronic-structure calculations. Most contemporary
codes include DMFT modules. Adding the TPSC+DMFT
option could be done at negligible computational cost and
would allow inclusion of spin fluctuations to achieve even
more realistic electronic structure calculations.
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