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Tilt-induced vortical response and mixed anomaly in inhomogeneous Weyl matter
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We propose a nondissipative transport effect and vortical response in Weyl semimetals in the presence of
spatial inhomogeneities, namely, a spatially varying tilt of the Weyl cones. We show that when the spectrum is
anisotropic and tilted due to spatial lattice variations, one is confronted with generalized quantum anomalies due
to the effective fields stemming from the tilt structure. In particular, we demonstrate that the position-dependent
tilt parameter induces local vorticity, thus generating a chiral vortical effect even in the absence of rotation or
magnetic fields. As a consequence, it couples to the electric field and thus contributes to the anomalous Hall
effect.
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I. INTRODUCTION

Dirac materials among which graphene and Weyl semimet-
als provide a natural platform for the prolific exchange
of methods and ideas between two distinguished branches
of physics, namely, high-energy physics and low-energy
condensed-matter physics [1]. A concept that is relevant for
both branches is definitely that of gauge theories that de-
scribe the laws of physics which are invariant under local
transformations [2,3]. This provides a unifying language to
treat low-energy condensed-matter systems where the Dirac
fermions are subject to the various perturbations stemming
from the background lattice potentials in terms of effective
gauge fields [4,5].

These lattice degrees of freedom are coupled to the
fermionic degrees of freedom in Dirac systems and thus alter
the dynamics of the fermions. For instance, elastic deforma-
tions of the honeycomb lattice of graphene through strain
[6–8] yield fields that are reminiscent of magnetic fields and
therefore create effective Landau levels [9–11]. Furthermore,
they have been shown to induce an energy gap and a tran-
sition to the topologically insulating regime [12,13]. Lattice
dynamics also affect the electronic properties of the three-
dimensional (3D) counterpart of graphene, the so-called Weyl
semimetals [14,15], which host various anomalous phenom-
ena in the absence of external fields [16–20]. Applying an
external mechanical uniaxial strain to the crystal perturbs
the dispersion relation of the Weyl semimetals making it
anisotropic. Moreover, such strain can tilt the dispersion re-
lation, which thus has the form of an anisotropic (Dirac or
Weyl) cone with an eccentricity, which, upon the increase,
can trigger a transition to a type-II Weyl semimetal [21,22].
Such tilted anisotropic conical dispersions of Weyl fermions
are a specificity of condensed-matter systems as compared
to high-energy physics, where the free (elementary) particles
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are dynamically constrained by the symmetries of space-time.
Indeed, the isotropy of space precludes anisotropic cones or
tilts that require singling out a particular direction. On the
contrary, in condensed-matter physics, these Weyl fermions
emerge in lattice models, and the lattice environment naturally
breaks the continuous rotation symmetry. The eccentricity of
the Dirac cones causes the Fermi velocity to be asymmetric
and the conductivity to be highly anisotropic and direction
dependent [23,24]. Finally, its orientation with the magnetic
field distinguishes the electric from the magnetic regimes [25]
and is the source of yet another intrinsic mechanism generat-
ing the anomalous Hall effect [26].

Beyond the spectrum, the tilt of the Dirac cone affects the
transport properties of the system, namely, in the form of the
chiral anomaly, which is ubiquitous in the chiral matter and
denotes the imbalance in the electronic density of Weyl nodes
with different chirality and the resultant transport effect as-
sociated with it [27,28]. The chiral anomaly shows, however,
a slightly variant behavior in Weyl semimetals with a tilted
spectrum. The nature of the chiral modes, as the source of the
anomaly, drastically depends on the angle between the tilt and
the magnetic field [29]. Moreover, it affects the dependence
of the longitudinal magnetoconductivity and its signature on
the tilt [30], thus indicating the importance of the tilt on the
anomaly-induced transport in tilted Weyl semimetals.

Recently, Weyl semimetals with inhomogeneous tilt pa-
rameter drew much attention as it promises a suitable platform
to study emergent gravity and black-hole physics in solid-state
settings [31–35]. In this case, the parameter that controls
the tilt of the Dirac cones becomes position dependent and
thus provides a suitable knob to probe the more general
anomaly-related phenomena for which the Weyl fermions
are the culprit. This involves the detection of the gravita-
tional anomaly [36,37] as well as mixed anomaly [18,38] in
anisotropic Weyl semimetals.

In this paper, we propose yet another exotic electronic be-
havior of Weyl semimetals subjected to a spatially dependent
tilt parameter. Due to its position dependence, we show that
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the rotational of the tilt parameter induces a vorticity field that
acts as a Coriolis force on the Weyl quasiparticles and yields
additional terms to the chiral anomaly that we call vortical
anomaly for lack of a better name. Indeed, it should be rather
called contribution to the chiral anomaly due to the vorticity
of the tilt parameter. In order to test its physical relevance, we
study the transport signatures of this vortical anomaly. Indeed,
it generates a chiral vortical effect as an effective topological
response due to a tilt profile that shares similarities with global
rotations of the system [39–42]. In this sense, the generated
vorticity field is similar to a magnetic field and produces
similar anomalous effects to those associated with an external
magnetic field. However, we show that the nature of the effects
is different owing to the difference in the coupling of the
Weyl fermions to the vorticity and magnetic fields [43,44].
Moreover, as another transport signature, we find that the tilt
and its spatial profile can generate an anomalous transverse
effect and propose a setup to detect it. While our analysis is
generally valid for both type-I and type-II Weyl semimetals,
it is relevant mainly in the former case. Indeed, the delicate
transport features we investigate here may be swamped by the
overwhelming response of the large density of states at the
Fermi level in type-II Weyl semimetals.

The paper is organized as follows. In Sec. II, we present
the basic model and relate the tilt velocity of a generic
time-reversal symmetric Weyl Hamiltonian to the underlying
geometry of the parameter space. This allows us to derive the
effective Lagrangian, and the resulting equations of motion
are presented in Sec. III. Section IV then deals with the mixed
anomaly due to the position-dependent tilt, and its transport
signatures in the form of the chiral vortical effect are discussed
in Sec. V. There, we discuss how one might experimentally
use circularly polarized light to pump a specific valley with a
well-defined chirality, and we conclude the paper in Sec. VI.

II. MODEL

To determine the electronic transport properties of Weyl
fermions that are generated due to the spatial profile of the tilt
term, we consider a time-reversal (TR) symmetric model of
the Weyl semimetal. Note that when TR symmetry is present,
the two Weyl nodes at opposite positions pW and −pW in the
first Brillouin zone must have the same topological charges
(Chern number). Therefore, another pair of Weyl nodes (sit-
uated at p′

W and −p′
W ) with opposite chirality is required to

make the total topological charge of the system vanish. Then
the overall effective low-energy Hamiltonian describing two
pairs of TR symmetric Weyl nodes with different topological
charges is given by (see Appendix A)

Hχ,η = η vx pxσx + vy pxσy + ηχ vz pzσz + η vt · p, (1)

where p j are the components of the lattice momentum in the
continuum limit (with j = x, y.z) and σ = (σx, σy, σz ) is the
vector of the Pauli matrices in the band space. Such contin-
uum Hamiltonian, for instance, can be realized by introducing
space-dependent orbital manipulations in two-dimensional
(2D) systems [45].

Within this model, we consider that the Weyl cones can be
generically anisotropic with the velocity parameters v j . How-
ever, in the following discussion, we consider an isotropic

FIG. 1. Four band contact points in time-reversal symmetric
Weyl Hamiltonian. The red (blue) points are TR conjugate of each
other and carry equal topological charge χ = +1 (χ = −1).

version v j = vF , which may always be obtained by rescaling
the lattice momenta in an appropriate manner. Furthermore,
we have used the velocity parameters vt = vF ζ(r) in the last
term. They describe the tilt of the cones, and we define the
tilt parameter and its components ζ(r) = (ζx(r), ζy(r), ζz(r)).
The position dependence of the tilt can generically be ob-
tained from a locally varying strain field in the crystal. This
strain field affects the hopping parameters of the tight-binding
model underlying the effective low-energy Hamiltonian (1)
and thus the velocity parameters [21]. The resulting tilt pa-
rameter can thus be written in terms of the strain fields as
ζi(u(r)) = ζi + ui j (r)ζ j , where the strain tensor ui j = (∂iu j +
∂ jui )/2 is the symmetrized derivative of the displacement field
u [46]. Notice that, at first sight, the position dependence of
the tilt parameter renders the Hamiltonian (1) non-Hermitian,
and one would in principle need to replace its last term by the
symmetrized version [vt (r) · p + p · vt (r)]/2. This amounts
to adding the commutator [pμ, vt,μ(r]/2 = −ih̄vF ∇ · ζ(r)/2
to the Hamiltonian. Elastic modification of the tilt profile,
moreover, allows for a gauge choice ∇ · ζ = 0. As we discuss
in more detail Sec. IV, this is the case for volume-preserving
deformations, in which case the Hamiltonian (1) is therefore
Hermitian without explicit symmetrization of the last term.

Moreover, TR symmetry requires a tilt parameter in op-
posite directions for the two Weyl cones situated at opposite
momenta so that ζη = η ζ, where the two copies of a TR re-
lated pair of Weyl nodes are characterized by the index η = ±.
The modulus of the tilt parameter recognizes two limits as
ζ < 1 (mild) and ζ > 1 (overtilted) which separates the type-
I from type-II Weyl semimetal, respectively, as it has been
pointed out first in 2D organic crystals [21] and then in 3D
Weyl semimetals [22]. The four Weyl nodes are generically
situated at four points in the py = 0 plane, as shown in Fig. 1.
Notice that the quartet of Weyl nodes may arise in further
copies if certain point symmetries of the lattice are taken into
account.
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The tilt term breaks the Lorentz symmetry of the Hamil-
tonian systems hosting relativistic massless Dirac-Weyl
fermions [23]. Most saliently, the tilt term is closely related
to the underlying geometry of the parameter space (the mo-
mentum space) where the Weyl fermions move. To make this
connection, observe that the last term in the Hamiltonian (1)
(considering a single cone) can be understood as a timelike
component of a more general four-velocity tensor such that
the Hamiltonian can, in general, be cast into the form H =
vμ

a σ a pμ with the identifications vμ
a = (vμ

0 , v
μ
1 , v

μ
2 , v

μ
3 ), where

in this combined picture the latin index pertains to the spin
degree of freedom whereas the greek indices show the space-
time coordinates. Note that the nonzero elements are only
v

μ
0 = ηvF ζμ and ηv1

1 = v2
2 = ηv3

3 = vF . With this choice, the
anisotropy stems only from the tilt parameter ζμ = (1, ζ),
which breaks both rotation and Lorentz symmetries. This also
allows one to associate the tilt feature with an emergent un-
derlying metric that affects the dynamics of the Weyl fermions
[47].

In order to further analyze the relationship between the tilt
parameter and Lorentz symmetry, it is preferable to switch
from the Hamiltonian to the Lagrangian formalism. The
Lagrangian density of a tilted Weyl system is given (in a
system of units with h̄ = 1) by [48]

L = vF ψ†[iσμ∂μ + iζ(r) · ∇]ψ, (2)

where ψ is the Weyl spinor with a definite chirality and
we have adopted the relativistic notations for the space-
time xμ = (vFt, r) and the energy-momentum four-vector
pμ = ( 1

vF
ε, p). The Pauli four-matrices are defined as σ a =

(1, σ ) and, accordingly, the four-derivative is given by ∂μ =
( 1
vF

∂t ,∇). In the absence of the second (tilt) term, the La-
grangian density (2) is evidently Lorentz covariant, while the
tilt term is only given in terms of a three-vector of the spatial
components.

Next, to bring the Lagrangian density (2) into a canon-
ical form, note that the effect of the metric on the Weyl
fermions corresponds to an effective metric of a gravitational
field [31,49,50] and these effective fields are described by
the vielbein (tetrad) eμ

i such that the effective metric reads
as gμν = ea

μeb
νηab, where ηab is the Minkowski metric. This

helps us to recast the dispersion into the form gμν pμ pν =
(ε − vF ζ · p)2 − v2

F |p|2 = 0 and to write the invariant dis-
placement element in the Painlevé-Gullstrand coordinate as

gμνdxμdxν = −dt2 + (vF dr − ζ dt )2, (3)

where (ζ = |ζ|) the new metric

gμν =

⎛
⎜⎜⎝

1 − ζ 2 −ζx −ζy −ζz

−ζx 1 0 0
−ζy 0 1 0
−ζz 0 0 1

⎞
⎟⎟⎠ (4)

yields the Lagrangian of Dirac equation in the curved
space-time

L = vF ψ†
(
iσ aeμ

a Dμ

)
ψ. (5)

This analogy, naturally, bids the adoption of geometrical
approaches to study the dynamics of Weyl fermions when
spatial perturbations are present in the system. This indicates

that introducing strain distortion on the system induces a
metric tensor and frame fields that intermix the space and
time components. The tensor fields eμ

a are the Lorentz frame
fields (vierbein) [51,52] that redefine the metric. They are
related to the elements of the anisotropic four-velocity matrix,
through vμ

a = vF eμ
a , and in a space-time basis they read as

eμ
a (r) =

(
1 −ζ

0 1

)
. (6)

Therefore, the tensor fields and thus the metric can be entirely
determined by the materials’ band structure. The space-time
displacement (3) and the underlying effective metric gμν

(4) are reminiscent of the metric near a gravitational source
studied in the theories of gravity [33,53–55], and they have
also been noticed in the dynamics of driven Floquet model in
Dirac systems [56].

The covariant derivative in Eq. (5) can be decomposed as

Dμ = ∂μ + 
μ − ieAμ, (7)

which consists of two main contributions. The first one is the
usual electromagnetic vector potential Aμ = (φ, A). More im-
portant for our study is the spin connection [4,57] 
μ, which
may be viewed as a gauge field generated by the local Lorentz
transformation and that naturally arises due to the spatial
perturbations present in the Hamiltonian (the tilt parameter)
and the anisotropy of the dispersion [58].

III. SEMICLASSICAL DYNAMICS

The electronic transport of the carriers, in general, is in-
terpreted as the motion of the particles under the influence of
external perturbations, which is described by the equations of
motion of the system. To obtain the classical limit of the
equations of motion for the Weyl fermions, we consider the
transition amplitude between initial |pi〉 and final state |p f , t〉.
Summing over all degrees of freedom, i.e., momentum and
spin, give the scattering rates required to model transport. For
the Hamiltonian (1), we employ a path-integral formulation
and define the propagator as a sum over all the phase-space
trajectories as

I =
∫

D[r]D[p] exp

(
i
∫ t f

ti

(p · ṙ − H )dt

)
, (8)

where the path ordering is implicitly considered. It is useful
to reduce the matrix structure of the given action by di-
agonalizing and projecting onto a single energy band. The
diagonalization of the Hamiltonian in the chiral basis then
yields

U †
χ,η H Uχ,η = (|v · p|σz + η ζ · p) = ε(p), (9)

where Uχ,η(p) is a momentum-dependent SU(2) rotation in
the pseudospin space spanned by the Pauli matrices. Note that
during the diagonalization the matrix-dependent part of the
kernel is path ordered

: e−iδt v·pn·σ e−iδt v·pn−1·σ :
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and transforms as

U †
χ,η(pn)(e−iδt v·pn·σ e−iδt v·pn−1·σ )Uχ,η(pn−1)

= e−iδt |v·pn|σz [U †
χ,η(pn)Uχ,η(pn−1)] e−iδt |v·pn−1|σz , (10)

upon diagonalization of two consecutive terms. By power
expansion of the unitary transformation around the neighbor
point pn one notes that U (pn−1) = exp (δp · ∇p)U (pn), where
the infinitesimal interval δp = pn − pn−1 is related to the time
interval via δp = ṗ δt . The middle product in the second line
in Eq. (10) thus yields

U †(pn)U (pn−1) = U †(pn)eδp·∇pU (pn) = e−iδp·A, (11)

where Aχ,η(p) = iU †
χ,η(p)∇pUχ,η(p) is nothing other than the

Berry connection. This gauge term, which naturally arises
during the course of the diagonalization, consequently sug-
gests viewing the two opposite chiral Weyl fermions as
the monopole and antimonopole of an Abelian theory with
strength b = ∇p × A = i∇pU † × ∇pU and generating Berry
field bz (Appendix A) [40]. Therefore, the resulting diagonal-
ized Lagrangian in the presence of electromagnetic potentials
reads as [40,59,60]

L = (p + A) · ṙ − (|v · p|σz + η vF ζ · p) − A · ṗ − φ. (12)

By variation of the Lagrangian, and noting Ȧ(r, t ) =
∂A/∂t + (ṙ · ∇r )A and Ȧ(p) = (ṗ · ∇p)A, one obtains the
equations of motion

ṙ = vp + η vt + χ ṗ × b, (13a)

ṗ = (−e E + η [p · ∇]ζ) − e ṙ × B + η p × ω. (13b)

First, note that by turning off the tilt effect (ζ = 0), we restore
the standard equations of motion [40]. Here the group velocity
is given by the sum of the conventional (isotropic) part vp =
vF p/|p|, the tilt velocity vt , and the anomalous velocity. In
the second equation for ṗ, one notices a generalized electric
field term in the parentheses: in addition to the real electric
field, there is a second term that stems again from the spatial
variation of the tilt term. Here, more precisely, the tilt-velocity
gradient ∂riζ j is the Jacobian matrix for the tilt parameter [61]
and the curl of the spatially dependent tilt term ω = ∇r × ζ

plays the role of the vorticity.
The tilt-induced vorticity [the last term of Eq. (13b)] and

its consequences are the main results of this paper, so we shall
investigate them in more depth. From dimensional analysis,
the last term in Eq. (13b), indeed, turns out to be the Coriolis
force (ε/v2

F )ṙ × ωη that is exerted on the particle due to the
inhomogeneity of the medium encoded in the tilt term. In spite
of its similarity with the second last term, which bears the
chiral anomaly and where one substitutes the magnetic field B
by the vorticity ω, the latter couples to the momentum rather
than the velocity. While the modulus of the velocity remains
energy independent, this is not the case for the momentum,
which vanishes at the crossing point. This explains the energy
dependence, and consequently its dependence on the chemical
potential of the vortical term.

In general, a particle can feel the Coriolis force, at least
in Newtonian limit, around a rotating gravitational source.
Its involvement in the dynamics of the Weyl particles in
a tilted cone, thus, draws a strong analogy between the

(pseudo)gravitational force and the vorticity ω, which orig-
inated from the tilt profile. If we furthermore interpret the
vorticity as a pseudomagnetic field, then the effect is remi-
niscent of the gravitomagnetic effect [57].

The identification of the vorticity with a pseudomagnetic
field, as a consequence, naturally leads to expect that it can
generate a chiral response and thus a chiral vortical effect,
which in previous studies is understood as a response of a
chiral system to a global rotation [40].

We compute the anomaly-related effect due to the vorticity
using the semiclassical Boltzmann equations with Eqs. (13)
as ingredients. Using the kinetic equation for the distribution
function f (r, p), the transport quantities such as the current
density can be computed for a quasiparticle of a definite
chirality χ and TR index η by including the weighted phase-
space volume in the integration measure as

J = −e
∫

dp
(2π )3

√
G ṙ f (r, p), (14)

where
√

G = 1 + e χ B · b is the renormalized volume of the
phase space due to the Berry curvature.

IV. CONVENTIONAL AND MIXED ANOMALY

The semiclassical Boltzmann equation for the distribution
function, which makes use of the equations of motion (13), is
given by

∂t f + ṙ · ∇r f + ṗ · ∇p f = −δ f

τ
. (15)

By linearization in terms of the electric field E, we find that
the small deviation from equilibrium is due to the elastic dis-
order scatterings and the electric field, δ f = f − feq ∼ τ O ·
v ∂ f /∂ε where O(E) is a first-order function of the electric
field. We assume that the scatterings around a valley relax
much faster than the intervalley scattering τinter � τ , thus,
the nonequilibrium part of the distribution function is mainly
dominated by the intravalley scatterings. By reintroducing the
Berry curvature and the dressed velocity through the momen-
tum derivative ∇p → ṙ ∂

∂ε
, then the Boltzmann equation can

be integrated to yield the continuity equation for the Weyl
fermions around a single Weyl cone (τinter → ∞) with the
characteristic indices χ and η and the chemical potential µ,
i.e.,

∂t nχ,η + ∇r · Jχ,η = χ e2

6π2
(E · B) + χη e µ

12π2v2
F

(E · ω) + nχ,η

τ
.

(16)

As it is seen on the right-hand side of Eq. (16) there are two
contributions to the quantum anomalies that we will explore in
depth in the following. As already noticed in the semiclassical
equations of motion, the rotational of the tilt parameter plays
an analogous role as the magnetic field. However, we insist on
the fact that this additional term is not directly generated by an
external (magnetic) field as in the usual chiral anomaly. It is
rather an indirect effect due to the distortion of the underlying
lattice that acts then, via the tight-binding parameters, on the
fermionic degrees of freedom. Albeit indirect, the tilt should
be seen as an intrinsic property of the fermions, a situation
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FIG. 2. Schematic illustration outlining the compendium of
anomaly-induced effects: the chiral magnetic effect (CME), the chi-
ral vortical effect (CVE), and the tilt-induced chiral vortical effect
(tCVE). (a) Illustrates the standard CME in Weyl matter in the
presence of the parallel electric E and magnetic B fields where a
net current flows in the direction and is proportional to the magnetic
field. (b) Demonstrates the proposal by Stephanov et al. to observe
the CVE in chiral matter triggered by a global rotation. In this
case, the angular momentum ωrot imitates the role of the external
magnetic field, thus inducing a net charge current along with it. In
(c), we depict the tCVE where the curl of the tilt velocity emerges
as an effective magnetic field. By tuning the system’s parameters,
the vorticity can be chosen in the same direction as the external
electric field, thus giving rise to the tCVE and a net current flow
in the direction parallel to the electric field and the vorticity.

regularly encountered in condensed-matter systems. However,
the similarity in the dynamical consequences of this term and
that proportional to the usual magnetic field is the reason why
we will hence call the resulting effect vortical anomaly.

Inside an isolated Weyl cone and long intervalley scat-
tering times, the terms on the right-hand side of the kinetic
equation (16) represent quantum anomalies and are due to
the anomalous velocity and the Berry fields b = p̂/2|p|2 and
clearly break the charge conservation. The first term in the
continuity equation (16) points to the fact that, in an indi-
vidual Weyl valley with the monopole charge χ , the chiral
charge in the presence of the external fields is not invariant.
This indicates the well-known chiral anomaly pertinent to the
chiral fermions with a 3D Dirac spectrum [62]. As it is evident
from Eq. (16), the nonconservation of the chiral charge can be
remedied by the intervalley scatterings, as a chiral pump back
to the opposite valley that takes place in the direction of the
magnetic field [61,63]. This charge flow in the direction of
the magnetic field can measure the magnitude of this effect
and is the hallmark of the chiral anomaly that leads to the
chiral magnetic effect (CME): the electric conduction due to
the applied magnetic field (Fig. 2).

The last term in Eq. (16) is the main finding of this paper
that describes an effect in tilted Weyl semimetals that, to the
best of our knowledge, has not been noticed in previous stud-
ies. This term, coined here vortical anomaly, introduces an
anomalous effect from the inhomogeneous external perturba-
tions and contributes to the chiral anomaly. This anomaly term

arises from the interplay between electromagnetic fields and a
geometric component such as vorticity, which drives the chiral
vortical effect. The vortical anomaly has a nontrivial origin
that is rather distinct from the conventional chiral anomaly
which presupposes an isotropic phase space [64]. While the
chiral anomaly is related to a singularity in momentum space,
i.e., the Berry monopole, the vortical anomaly is generated by
the nontrivial texture of the inhomogeneous media wherein
Weyl fermions move. These inhomogeneous media can be
characterized by a parameter space where the texture, e.g.,
the tilt profile, has a vortexlike structure [65] analogous to a
pseudomagnetic field which must naturally be formed from a
parametric source term.

Notice furthermore that a similar approach has been pro-
posed in Refs. [66,67], where a torsional anomaly has been
discussed in the framework of teleparallel gravity. In this case,
space-time is mimicked by a lattice model in which the effect
of deformations of ui j on free Dirac fields has been investi-
gated. However, the obtained torsional anomaly is different
from our tilt-induced anomaly since the authors considered
nontilted (particle-hole symmetric) fields, and no tilt has been
generated in this case by the deformations.

The vorticity is the property of the particles’ motion (in
relativistic fluid) and a well-defined quantity in the hydro-
dynamic limit [68]. The vorticity-induced current also was
discussed by Son et al. [43] in the hydrodynamic limit.
In Weyl semimetals, Stephanov et al. [40] pointed out that
the vorticity-induced current can readily be realized in the
nonequilibrium limit when the dynamics are due to the weak
external fields (Fig. 2). In this limit, the vorticity can be
reinterpreted as the angular velocity of the rotation of the local
particle with respect to the laboratory. Thus, by identifying the
Coriolis and the Lorentz forces and making the substitution
(µ/v2

F ) ω → e B, it is possible to generalize the concept of
the chiral vortical effect, at zero temperature, for the Weyl
semimetals in a rotating frame.

In deriving the continuity equation, we implemented the
source-free gauge condition ∇r · ζ = 0. As we have already
mentioned in Sec. II, this condition coincides physically with
that of volume-preserving strain fields. Indeed, the divergence
of the strain field is proportional to the divergence of the
displacement field, which is itself given by a relative volume
change ∇ · ζ ∝ ∇ · u ∝ �V/V . This is physically interpreted
as the vanishing of the symmetric part of the strain tensor
associated with the rate of the change in the sheer volume in
the continuum models [69].

Contrary to this, however, Eq. (16) suggests that the vor-
ticity can be an internal property of the chiral Weyl particles’
motion required by letting the tilt parameter be local. There-
fore, the chiral vortical effect for Weyl semimetals yields
an anomalous effect that stems from the local tilt parameter
without external rotation (Fig. 2).

V. VORTICAL RESPONSE

A. Chiral vortical effect

In this section, we consider the electronic response of a
tilted Weyl semimetal and study two transport phenomena
that the vorticity can induce, namely, the chiral vortical effect
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and the anomalous vortical Hall effect. We first solve the
equation set (13) for the velocity, which returns

√
G ṙ = vp + η vt − χ e E × b + χ e (b · vp)B

+ χη(p × ω) × b. (17)

It is evident from this equation that, except for the first two
terms, which are simply the overall band velocity, all other
terms are corrections due to the Berry curvature. Moreover,
we note that the part of the anomalous velocity, which is
just due to the vorticity, reads as vω = [ω − (ω · p̂)p̂)]/2p
and induces a dipole-moment structure in momentum space.
Next, substituting Eq. (17) into the current formula (14) for
the isotropic momentum distribution at equilibrium, we find

J = χ e2B
4π2

∫ µχ

0
dε feq + χη e ω

6π2

∫ µχ

0
ε dε feq. (18)

In the low-temperature limit, where the Fermi-Dirac distri-
bution is reduced to the step function feq = θ (µ − ε), the
nondissipative currents in response to the magnetic field and
the vorticity are

JCME = χ
e2 µχ

4π2
B, (19)

J
ω

= χη
e µ2

χ

12π2
ω. (20)

Both of these equations are nondissipative equilibrium cur-
rents and robust against disorder as their coefficients have
no dependency on the relaxation time. Equation (19) is the
standard chiral magnetic effect as the response of the Weyl
fermions to the applied external magnetic effect [40,63]. On
the other hand, Eq. (20) describes the tCVE proportional to the
vorticity ω that stems from an effective lattice modification via
an externally induced strain. Here, we shall distinguish this
result from the vortical effect caused by the global rotation
[39] or by circularly polarized photons [70]. In the latter two
situations, the angular velocity of the frame, which may be
viewed as an effective magnetic field [40], causes the chiral
current to flow along the axis of the rotation. In contrast, the
main deriving force of the chiral current in Eq. (20) is the
vorticity tensor ω� = εi j�∂iζ j , caused by the inhomogeneous
tilt and the lattice deformations.

B. Anomalous vortical Hall effect

Let us now solve the Boltzmann equation (15) by lineariz-
ing the distribution function in terms of the electric field (see
Appendix B). Particularly, for a stationary and homogeneous
system, the nonequilibrium part gives

δ f =
eτ

[
E + τ

(
ωc

B
|B| + η ω

) × E
] · v

(
∂ f
∂ε

)
1 + τ 2ω2

c

, (21)

where ωc = ev2B/ε is the cyclotron frequency. One im-
mediately notices the resemblance between the cyclotron
frequency ωc and the vorticity ω in the second and third terms,
respectively. This implies the emergence of a pseudomag-
netic field proportional to B5 = η(εF /ev2

F ) ω, thus suggesting
an unusual transverse effect in the absence of the external
magnetic field B. The response is in agreement with the

gravitomagnetic interpretation [57] of the tilt-induced force,
similar to the response triggered when quasiparticles move in
a (pseudogravitationally) inhomogeneous medium.

If we now incorporate this nonequilibrium distribution into
the current formula (14) and consider the weak magnetic
regime ωcτ 
 1, the anomalous transverse current and con-
ductivity induced by the vorticity ω can be computed as

Jω = η eτ 2 n

h̄

µχ

k2
F

ω × E, (22)

σi j

σ0
= η εi j� ω�τ, (23)

where n = ∫
dp/(2π )3 is the charge density. Furthermore,

we identify µ ≈ εF in the low-temperature regime, and σ0 =
e2τn

h̄
µ

k2
F

is the Drude conductivity. This effect involves the
mixing between the vorticity and the electric field and in-
dicates the contribution to the anomalous Hall effect due to
the tilt, i.e., σi j ∝ (∂iζ j − ∂ jζi )τ . A similar effect due to the
response of Weyl semimetals to lattice dislocations has also
been discussed in other studies [71,72]. Unlike the chiral mag-
netic and vortical effects, which are equilibrium currents, the
anomalous vortical Hall effect in Eq. (21) is a nonequilibrium
property and sensitive to the nature of the impurities, and,
therefore, relatively smaller than the intrinsic anomalous Hall
effect.

Equation (23) suggests that in the presence of pairs of TR
symmetric nodes, the vortical Hall effect vanishes simply due
to the cancellation of the opposite contributions from the sym-
metric cones, once one takes the sum over η = ±. Therefore,
breaking time-reversal symmetry and selective pumping of
a specific Weyl node is critical for observing the transverse
vortical effect. We elucidate this point in the following.

C. Optical polarization driven net vortical Hall effect

Circularly polarized light pulses provide suitable tools for
controlling the electronic dynamics in topological materials.
This is mainly due to the helicity of the polarized light pulses
that, as an internal degree of freedom, can interact with and
couple to the degrees of freedom of the Dirac fermion and thus
unveil its topological nature. This is the primary mechanism
behind the application of the polarized pulses in the selective
pumping of a distinct valley in multivalley topological mate-
rials. As such, the orbital angular momentum carried by the
circularly polarized photons can couple to the vorticity, as it
is given in Eq. (22), producing a net dynamical vortical effect
(see Fig. 3).

In order to analyze the light-matter interaction, we con-
sider the general form of the Hamiltonian in the 4-vector
notation of Sec. II as H = ∑3

a=0 vaσ
a · p, and then apply a

strong external magnetic field (along the z direction) to the
system where the spectrum can be constructed by minimal
substitution p → p + eA. To analyze this further within the
semiclassical picture, we decompose the total vector potential
into the static and oscillatory parts A = Adc + Aac, where
the ac part is given by a circularly polarized electromag-
netic radiation generated by the time-dependent potential with
components Aac(t ) = E0

ω0
eiω0t (1, eiφ, 0). Here ω0 is the photon

energy, E0 is the field intensity, and φ gives the angle of
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FIG. 3. Tilt-induced vortical Hall effect can be realized in Weyl
semimetal perturbed by the circularly polarized optical fields. An
incident light pulse with polarization in the ŷ direction and frequency
ω0 arrives, almost, normal to the sample. Due to the coupling of the
electric field to the vorticity pseudovector ω, a transverse current Jω

is generated.

polarization with φ = ±π/2, with its sign indicating right and
left polarization, respectively. Consequently, the light-matter
Hamiltonian gives

Hac = evF (σ̄ · Aac + η σ0ζ · Aac)

= Hφ + δHtilt, (24)

where σ̄ = (η σx, σy, χη σz ), and the free and the tilted
Hamiltonians are given, respectively, as

Hφ = evF
E0

ω0
σφe−iω0t , (25)

δHtilt = evF
E0

ω0
ηζφσ0e−iω0t , (26)

where σφ = η σx + eiφσy and ζφ = ζx + eiφζy. One notices
from T Hφ

η (t )T −1 = H−φ
−η (−t ) that the Hamiltonian is odd

under time-reversal symmetric transformation T . However,
the overall Hamiltonian becomes periodic H (t ) = H (t + T)
with the periodicity T = 2π/ω0, in which the system has
discrete time-reversal symmetry. Moreover, the ground state
of the tilt-free Hamiltonian Hφ is completely polarized for the
right φ = +π/2 and the left φ = −π/2 polarizations. This is
evident from the form of the Hamiltonian where for the right
and the left polarization we have H�/� ∝ (σx ± iσy), respec-
tively, indicating that by applying a circular light polarization
one can populate selectively a Weyl node with a particular
chirality. The ground state of such a system describes the Weyl
fermions with a distinct chirality, therefore pumping a specific
valley [25,73,74]. The tilt effect can be implemented through
δHtilt, and since the amplitude of the matrix elements, on
average, scales as |ζ|2 
 1 therefore, the internode transitions
due to the tilt can be ignored entirely.

By pumping a single Weyl node through the circular po-
larization, the effect of the tilt on the dynamics around that
node can be explored by applying the semiclassical Boltz-
mann theory for a system perturbed by the time-dependent
low-bias fields. To evaluate the transport coefficient in the
presence of the external time-dependent electric field, we take
into account the time-dependent modulation of the Boltzmann
distribution (fermionic distribution) and express it in terms of
the Fourier components as [75]

f = f0 + f1 eiω0t + f2 e2iω0t + · · · . (27)

Next, solving the Boltzmann equation recursively for
different Fourier components (see Appendix B) the first
harmonic gives the nonequilibrium solution as δ f =
f1(ω0; ω, E, B) eiω0t ( ∂ f

∂ε
) such that [76]

f1 = τe[(1 − iτω0) E + τ E × (η ω + ωc B̂)] · v

(1 − iω0τ )2 + τ 2(η ω + ωc B̂)2
. (28)

By rescaling and rotating the momenta and transforming the
Hamiltonian, it is always possible to project the tilt veloc-
ity onto a certain direction [23,25]. Let us use a tilt profile
that is reminiscent of the Landau gauge with the position-
dependent components as ζx(y) and ζy(x). Previous studies
[18,45] assumed inhomogeneous tilt parameters with steplike
profile as ζi(x j ) ∝ θ (x j ) where θ is the step function. Here,
however, we opt for a smooth profile by using instead a hy-
perbolic function ζi(x j ) = ω tanh(xi ), that can be linearized
as ζi(x j ) ≈ ω x j + O(x2

j ) to give constant vorticity vector in a
preferred direction as ωη = ηω ẑ and ω is the modulus of the
vorticity vector. Using the solution (28) the total tilt-induced
complex Hall conductivity then gives

Re σxy

σ0
=

(
1 − ω2

0τ
2
)

cos φ + 2ω0τ sin φ(
1 + ω2

0τ
2
)2 ω, (29)

Im σxy

σ0
= 2ω0τ cos φ − (

1 − ω2
0τ

2
)

sin φ(
1 + ω2

0τ
2
)2 ω, (30)

in the limit of low magnetic fields ωc 
 ω0. First note that
in the static limit ω0 ≈ 0 and |ω| 
 ωc, we identically restore
the semiclassical result (22) and (23), where the real and imag-
inary parts of σxy/σ0ω are simply given by cos φ and sin φ,
respectively. The net transverse conductivity is thus maximal
for the circular polarization when φ = ±π/2, while the am-
plitude is zero for the linear and planar polarization φ = 0, π .
More interesting is the behavior of the complex conductiv-
ity under light polarization. Considering a linear polarization
where φ = 0, the real part of the Hall conductivity Re σxy

shows Drude-type behavior, and the peak decreases mono-
tonically by increasing the frequency, which is also observed
in the strain modulated Weyl semimetals (WSMs) [19]. The
imaginary part of the conductivity, which is proportional to
the dielectric constant, also shows behavior in full agreement
with the Drude model [77] (Fig. 4 upper panel).

For the circular polarization, however, the conductivity
obeys a Lorentz-like pattern rather than a Drude behavior.
This means that for ω0τ 
 1 the real part of the conductivity
exhibits a linear behavior and vanishes at ω0 = 0 while it
shows a Lorentz peak at the resonance point ω0τ ≈ 1 (Fig. 4
bottom panel).

This non-Drude behavior (see Fig. 5) is evident from the
form of the equations for the complex conductivity. One as-
sumes in general the conductivity to behave according to the
Drude approximation using Eq. (28), i.e.,

σDrude = 1

3
e2 v3

F

∫ εF

0
dε ρ(ε)

τ

1 − iω0τ

(
∂ f0

∂ε

)
, (31)

where ρ(ε) is the density of states. However, in a tilted sys-
tem, in addition to the Lorentz force, one must consider the
effect of the pseudomagnetic field [see Appendix B, Eq. (B2)],
stemming from the spatial variation of the tilt, in the dynamics
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FIG. 4. (Top panel) The transverse vortical conductivity due to
the tilt as a function of the frequency ω0. For the plane or linear
polarization (top panel) with angle φ = 0, π , the real part of the
total conductivity shows Drude behavior starting from a maximum
and vanishes at around the resonant frequency. (Bottom panel) The
same transverse conductivity as a function of the ω0τ for the circular
polarization φ = π/2 showing a Lorentzian behavior and reaches a
maximum as the resonant frequency.

of the Weyl fermions. Next, by solving the Boltzmann equa-
tion perturbatively in terms of the electric field we capture the
conductivity that is proportional to eiφ/(1 − iω0τ )2, as it is
clear from Eqs. (29) and (30), such that in the low-frequency
limit, one has limω0→0 Reσ (ω0) ≈ ω0τ .

FIG. 5. The non-Drude behavior of the real part of the optical
conductivity for circular polarization in logarithmic scale.

VI. CONCLUSION

In summary, we have studied the effect of a spatially vary-
ing tilt in Weyl semimetals. In the case of a nonzero rotational
of the tilt field ∇ × vt (r) �= 0, we find a quantum anomaly
different from the usual chiral one. We have shown that for
a specific profile of the tilt parameter with nonzero curl, the
particles around the anisotropic cone experience a Coriolis
force proportional to the vorticity of the tilt field. Hence, the
vortical anomaly, as the coupling between the electromagnetic
field and the vorticity, is to great extent reminiscent of the chi-
ral anomaly where the vorticity of the tilt field ω = ∇ × ζ(r)
plays the role of an effective magnetic field. This anomaly
naturally gives rise to global transport effects, just as the chiral
anomaly gives rise to the chiral magnetic effect.

Using the semiclassical equations of motion, we demon-
strated that the vorticity indeed gives rise to the chiral vortical
effect: a current flows in the direction of the vorticity field,
analogous to the chiral magnetic effect. Although the pro-
posed vortical effect shares similarities with the chiral vortical
effect in the hydrodynamic limit, it is distinct from the
rotation-induced axial charge flow in Weyl semimetals [40].
The chiral vortical effect is well defined in the hydrodynamic
limit for the relativistic fluid having vortex currents where
they exert a global rotation on segments of the systems. We
furthermore disclose a transverse effect due to the tilt, which
arises from the vorticity of the tilt field and yields a current in a
direction perpendicular to the electric field, just as the anoma-
lous Hall effect. These two transport phenomena, namely, the
chiral vortical effect and vortical Hall effect, are the main
results of this paper, and they are specific to Weyl semimetals
with spatially varying tilt.

As there are an even number of contact points in the Weyl
semimetal, the experimental observation of this form of Hall
effect due to the tilt would require a mechanism to avoid
the cancellation of the effect by opposite currents arising
from the opposite nodes. One, therefore, needs to break TR
symmetry and occupy preferentially Weyl nodes with the
same chirality. We demonstrated that using the optical field
with circular polarization the transverse vortical conductivity
reaches a maximum at a frequency comparable with the ef-
fective cyclotron frequency of the vortical field. Furthermore,
this condition indicates the cyclotron resonance in the pseudo-
Landau levels due to the vorticity as the effective magnetic
field.

Note added. Recently, we came across two related works
[78,79] that compute similar transverse deflection in the
trajectories of the Weyl particles affected by the position-
dependent tilt parameter.
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APPENDIX A: TIME-REVERSAL INVARIANT WSM

Let us first start with the Hamiltonian for two Weyl nodes
with opposite chirality, in the absence of time-reversal sym-
metry

H = v p‖ · σ +
(

� − k2
z

2m

)
σz (A1)

giving two Weyl nodes at (0, 0,±p0
z ) with p0

z = √
2m�). The

momentum in the z direction is now defined with respect
to those points, kz = p0

z + pz and p‖ = (px, py). Expanding
the Hamiltonian around the Weyl nodes gives the low-energy
approximation as

Hlow = v p‖ · σ + χ vz pzσz, (A2)

with the velocity vz = √
2�/m and χ = ± is the chirality

index. Note that the Berry curvature for this system comes
with two chiralities

bχ
z = χ pzv

2vz

2
(
v2 p2

‖ + v2
z p2

z

)3/2 . (A3)

It is clear that the Hamiltonian (A1) does not respect
time-reversal symmetry, through the condition T H (p)T −1 =
H∗(−p), and to do so, there must be a second pair of Weyl
nodes with opposite chirality, e.g., in the xz plane. To keep
track of this second pair of Weyl nodes, we introduce another
index η, so that the final low-energy Hamiltonian reads as

Hχ,η = v(η pxσx + pyσy) + η χ vz pzσz, (A4)

giving rise to four contact points (η p0
x, 0, χη p0

z ) identified
via the chirality index χ = ±1 and the TR index η = ±. The
Berry curvature for this system gives

bχ
z = η2 χ pzv

2vz

2
(
v2 p2

‖ + v2
z p2

z

)3/2 (A5)

and is thus independent of the index η. Therefore, with our
choice py = 0 for the zero-energy plane, the Weyl points
η(p0

x, 0, p0
z ) carry topological charge χ = +1 whereas the

nodes η(p0
x, 0,−p0

z ) are associated with the charge χ = −1.
We then perturb the Weyl cone and induce tilt, where it has
opposite signs in the two time-reversal symmetric nodes given
by

Htilt = η vt · p. (A6)

APPENDIX B: CIRCULAR POLARIZATION
AND THE FIRST HARMONICS

We suppose that the electric field is time dependent and
given by E(t) = Eχ eiω0t . The solution of the Boltzmann
equation can be perturbatively expressed in terms of the har-
monics as

f = f0 + f1 eiω0t + f2 e2iω0t + · · · , (B1)

but in this work, our focus is only up to the first harmonic. The
force term in Eq. (13b) reads as

√
Gṗ = (−e E + η[p · ∇]ζ ) − e v

× B − e2ηχ (E · B)b + η p × ω. (B2)

Next, the Boltzmann equation expanded in linear terms in the
electric field gives

(1/τ − iω0) f1 +
√

G(−e E − e2 ηχ (E · B)b) · v
(

∂ f0

∂ε

)

+
√

G(η[p · ∇]ζ − e v × B + η p × ω) · ∇p f1 = 0.

(B3)

We furthermore assume that the nonequilibrium part can be
expressed as f1 = O · v( ∂ f0

∂ε
) so that ∇p f1 = v2

ε
O ( ∂ f0

∂ε
). This

consequently simplifies the Boltzmann equation

(1/τ − iω0)O − v2

ε

(
e B + η ε

v2
ω

)
× O

= −e Eχ − η e2 (Eχ · B)b, (B4)

which is solved up to the first order in the electric field

O = τe[(1 − iτω0) Eχ + τ Eχ × (η ω + ωc B̂)]

(1 − iω0τ )2 + τ 2(η ω + ωc B̂)2
. (B5)
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