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Mott memristors based on field-induced carrier avalanche multiplication
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We present a theory of Mott memristors whose working principle is the nonlinear carrier avalanche multiplica-
tion in Mott insulators subject to strong electric fields. The internal state of the memristor, which determines its
resistance, is encoded in the density of doublon and hole excitations in the Mott insulator. In the current-voltage
characteristic, insulating and conducting states are separated by a negative-differential-resistance region, leading
to hysteretic behavior. Under oscillating voltage, the response of a voltage-controlled, nonpolar memristive
system is obtained, with retarded current and pinched hysteresis loop. As a first step towards neuromorphic
applications, we demonstrate self-sustained spiking oscillations in a circuit with a parallel capacitor. Being based
on electronic excitations only, this memristor is up to several orders of magnitude faster than previous proposals
relying on Joule heating or ionic drift.
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I. INTRODUCTION

In strongly correlated materials, many-body electronic
interactions cannot be treated as a weak perturbation. A spec-
tacular consequence is the breakdown of standard band theory
in Mott insulators, which display a charge gap despite having
nominally partially-filled bands. Even more interesting, from
both fundamental and applied points of view, are states of
matter obtained from a Mott insulator by applied pressure or
chemical doping [1,2], photo-doping [3–6], or applied electric
field [7,8].

A Mott insulator under a sufficiently large electric field
eventually displays a metallic response, a phenomenon known
as dielectric breakdown. Although the insulator-to-metal tran-
sition may result from Joule heating [9,10], there is growing
experimental evidence that also purely electronic transitions
can occur [11–21]; see Refs. [22–33] for theoretical investi-
gations. Particularly in narrow-gap Mott insulators [13,16] the
dielectric breakdown happens via carrier avalanche multipli-
cation, whereby the kinetic energy of accelerated carriers is
converted into excitation energy of additional carriers. While
a similar mechanism occurs also in semiconductors [34], a
distinctive feature of Mott materials is the nonlinearity of
the process. Indeed, nonlinear response to applied fields is a
fingerprint of strongly correlated insulators, which often dis-
play multivalued I–V characteristic with regions of negative
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differential resistance R ≡ dV/dI (V, I: voltage and current
across a two-terminal device) [7,8,35–38].

The resistance of Mott insulators may vary over several or-
ders of magnitude across different branches of the I–V curve.
Owing to this resistive switch, Mott materials are promising
candidates for replacing conventional semiconducting transis-
tors in the field of information processing. More specifically,
in neuromorphic applications [39] they are proposed to fabri-
cate memristors [40–43], electronic devices whose resistance
depends on the history of the input signal, which are regarded
as the building blocks of bio-inspired novel computing archi-
tectures [44–48].

From a formal point of view, a voltage-controlled mem-
ristive system is defined by its state-dependent resistance, or
memristance M(x) (x: state variable) and by the equation of
motion ẋ = f (x,V ). The instantaneous resistance depends,
therefore, on the past voltage. From a more empirical per-
spective, the fingerprint of a memristor is a pinched hysteresis
loop in the I–V plane when the device is subject to a bipolar
periodic signal [41,42].

Following semiconducting thin films with intertwined
electronic and ionic motion [43], diverse other solid-state
platforms are being investigated as physical realizations of
memristors; in particular Mott materials, using Joule heating
to locally trigger the insulating-to-metal transition [49–54].
The timescale of these devices is set by the physical mech-
anism for the resistance switch and is of the order of
milliseconds for ionic drift [43,55] and of nano- to microsec-
onds for Joule heating [50].

In this paper we present a theory of a memristor made
of a narrow-gap Mott insulator, whose state variable is the
density of doublon excitations, which are the charge carriers.
In stark contrast with previous proposals, the resistance switch
in this memristor is based on a purely electronic mechanism:
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FIG. 1. Hubbard bands and carrier multiplication. (a) Lower and
upper Hubbard bands, i. e., one-particle-excitation density of states
ρ, with gap �g smaller than bandwidth W ; doublon-hole pair ex-
citation (γ ). (b) Band bending in real space x under electric field
E and doublon-hole pair creation by thermal activation (γthe) and
quantum tunneling (γtun). [(c)–(g)] Doublon and hole dispersions in
momentum space k, with one-body [(c),(d)] and two-body [(e)-(g)]
avalanche processes.

the field-induced nonlinear carrier avalanche multiplication.
This results, in particular, in a timescale set by the doublon
decay time, which is of the order of picoseconds, namely up to
several orders of magnitude faster than in previous proposals.

In the following, we illustrate the microscopic working
principle in Sec. II, where we present a phenomenological
model for the field-induced nonlinear carrier avalanche multi-
plication. Building on this, in Sec. III we introduce our model
of Mott memristor, derive the static current-voltage curve, and
study the d.c. transitions between insulating and conducting
states. In Sec. IV we study the a.c. response, obtaining the
typical behavior of a voltage-controlled, nonpolar memris-
tive system; and derive the steady-state diagram. Finally, in
Sec. V, as a first step towards neuromorphic applications,
we study a circuit with a parallel capacitor and demonstrate
self-sustained current oscillations, reminiscent of the periodic
spiking activity of biological neurons.

II. PHENOMENOLOGICAL MODEL OF FIELD-INDUCED
CARRIER AVALANCHE MULTIPLICATION

IN MOTT INSULATORS

We start by presenting a phenomenological model of Mott
insulator as a material with variable concentration of charge
carriers. In this model, similarly to electrons and holes in
semiconductors, the carriers are doublons and holes, which
are one-particle excitations in upper and lower Hubbard
bands, respectively, see Fig. 1(a). Note that here we adopt
a simplified description and do not consider the dynamical
nature of the Mott gap, which is held fixed [56]. Further-
more, we impose the doublon-hole symmetry, such that these
excitations differ only for their charge (±e) and have the

same concentration n, which hereafter is simply referred to
as doublon density.

The density of doublon excitations n can be considered as
a state variable which determines the conductivity of the ma-
terial. In this phenomenological model, doublons have charge
e, effective mass m∗, and they accelerate in an electric field,
before scattering after a typical time τ . This is formalized in
the Drude formula for the conductivity,

σ (n) = e2(m∗)−1τn, (1)

which relates the current density j to the electric field E ,

j = σ (n)E . (2)

Similar forms to Eq. (1) also apply to weakly correlated
materials, with for example n representing the density of
conduction-band electrons. The key difference with the model
at hand is in the rate equation for n, in which the strong
correlations typical of Mott materials appear as a nonlinear
term in the doublon density,

ṅ = γ − nτ−1
d + (a1n + a2n2)E2. (3)

The source term γ = γthe + γtun describes excitations of
doublon-hole pairs induced by thermal fluctuations (γthe) or
quantum tunneling across the gap (γtun), see Fig. 1(b). In
principle, these depend on temperature and electric field; here
we hold γ fixed and concentrate on the field dependence of
the other terms [57]. The second term in Eq. (3) describes the
decay of doublon excitations with a typical time τd [58]. The
equilibrium density, namely the zero-field stationary solution,
is n = γ τd ≡ n0.

The one-body avalanche term (a1nE2), also known as im-
pact ionization, is present in both strongly [28] and weakly
correlated materials [34]. It describes a process in which the
kinetic energy of a carrier is converted into excitation energy
of new carriers via scattering with impurities or phonons
[Figs. 1(c) and 1(d)]. The two-body avalanche term (a2n2E2),
on the other hand, describes many-body scatterings of two
excitations kicking out new carriers [Figs. 1(e)–1(g)] and is
therefore proportional to the squared carrier density. Since
the excitation energy of doublon-hole pairs, Mott gap �g, is
provided by the kinetic energy EK � W of accelerated carri-
ers (W : width of Hubbard bands, see Fig. 1), the conditions
for one- and two-body avalanche are �g � W and �g � 2W
(each carrier has maximum energy EK = W ). We refer to a
Mott material satisfying these conditions as narrow-gap Mott
insulator.

In this paper we mostly consider homogeneous carrier den-
sity. In the inhomogeneous case, additional terms proportional
to the carrier-density and current-density gradients appear
in Eqs. (2), (3), and doublons and holes have to be treated
separately, see Appendix C.

In nonzero electric field, Eq. (3) yields two stationary
doublon densities, that is the solutions of ṅ = 0,

n̄(E ) =
n0

[
E2

0 − AE2 ±
√(

E2
0 − AE2

)2 − 4E2E2
0

]
2E2

. (4)

Here E0 ≡ (τd
√

a2γ )−1 and A ≡ a1(a2γ τd )−1 is the ratio of
the one- to the two-body avalanche term for n = n0. Imposing
the solutions (4) to be real and positive yields the condition
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FIG. 2. Stationary conductivity. (a) Stationary current density
vs electric field for varying ratio of one- to two-body avalanche.
(b) Stationary conductivity vs current density. j0 = E0 = σ0 = 1.

E < Eth, with the threshold electric field

Eth = E0

√
1 + A − 1

A
≈ E0

2
(1 − 0.25A), (5)

where the approximation is valid for small A, namely for
predominant two-body avalanche. At this threshold, the two
branches of Eq. (4) merge, the doublon density is

n̄(Eth) = n0
A√

1 + A − 1
≈ 2n0(1 + 0.25A), (6)

and the current density reads

j̄(Eth) = σ (n̄(Eth))Eth = σ0E0 ≡ j0, σ0 ≡ σ (n0). (7)

In contrast with the threshold electric field and doublon den-
sity, the threshold current density does not depend on the
one-body constant a1, but only on the two-body constant a2

(through E0) and it diverges for a2 → 0.
Since the conductivity increases with doublon density, we

can interpret the lower branch of Eq. (4) as the slightly per-
turbed equilibrium insulating state, and the upper branch as
a conducting state. The corresponding current density j̄ =
σ (n̄)E is plotted in Fig. 2(a). It should be stressed that the
two branches correspond to the same microscopic state and
differ only in the doublon density; in particular, this theory
does not cover the field-induced collapse of the Mott gap.
Equation (4) also implies that, within this model, there are
no stationary solutions for E > Eth, meaning that the material
cannot sustain such electric fields. In Fig. 2(b) we plot the
stationary conductivity as a function of the current density,

σ̄ ( j) = j[Ē ( j)]−1

=
σ0

[
j2 + j2

0 +
√(

j2 + j2
0

)2 + 4A j2 j2
0

]
2 j2

0

≈ σ0
[
1 + ( j/ j0)2 + A j2

(
j2 + j2

0

)−1]
, (8)

where Ē ( j) is the inverse function of j̄(E ) = σ (n̄(E ))E and
the approximation is valid for small A. Expressions similar to
Eq. (8) have been suggested to explain experiments on a class
of charge-transfer insulators [7,35].

The results in Fig. 2 are in qualitative agreement with
experiments in which a current is passed through a Mott
insulator and the electric field (thus the conductivity) is mea-
sured, see e. g., Refs. [37,38]. Indeed, up to this point the
treatment is suitable to describe situations in which the cur-
rent, and not the electric field, is the external parameter. To

show this from a formal point of view, we linearize Eq. (3)
around the stationary solution (4) at fixed E or at fixed
j = σ (n̄(E ))E . In the former case we get τdδṅ = ±δn[(1 −
A(E/E0)2)2 − 4(E/E0)2]1/2, which shows that only the lower
branch is stable. If we instead fix j, we get τdδṅ = −δn[1 +
A( j/ j0)2(n0/n)2], which is stable for all current densities.
Only in the latter case states with large conductivity are stable
and can therefore be observed.

Among the parameters introduced in this section, most
relevant are τd , E0, j0, which set the characteristic scales of,
respectively, time, electric field, current density. The doublon
decay time is typically τd ∼ 1–10 ps, as measured in ultrafast
pump-probe optical spectroscopy [3–6], while electric fields
of the order E0 ∼ 1–10 kVcm−1 and current densities j0 ∼
1–10 mA/ cm2 have been measured in Refs. [7,37,38]. To-
gether with the physical dimensions of the memristor, E0 and
j0 also set the characteristic scales of, respectively, voltage
and current.

III. CURRENT-VOLTAGE CHARACTERISTIC AND
INSULATING-CONDUCTING TRANSITIONS

We introduce now our model of Mott memristor as a de-
vice composed of a Mott insulator connected in series with a
conventional resistor. Adopting the description in Sec. II, the
resistance of the Mott insulator is a function of carrier density
through the conductivity σ (n) [Eq. (1)],

R(n) = LS−1[σ (n)]−1, (9)

where L and S are length and section area. Instead, the con-
ventional resistor has a fixed resistance Rs. The total resistance
of the memristor, or memristance, is therefore

M(n) = R(n) + Rs, (10)

and the doublon density n is its state variable. Attaching a
voltage generator V to the memristor, the electric field internal
to the Mott material is

E = V R(n)

L[R(n) + Rs]
= V n0

L(n0 + rsn)
, (11)

with rs = Rs/R0, R0 ≡ R(n0). Thus, the electric field does not
depend solely on the applied voltage, but also on the doublon
density. For small density the resistance of the Mott material is
large, R(n) � Rs, and the field is approximately proportional
to the voltage. On the other hand, for large density the re-
sistance of the Mott material drops, R(n) 	 Rs, and so does
the field. This mechanism is crucial for the stabilization of
the conducting state of the memristor, as we discuss in this
section.

The state-dependent resistance [Eq. (10)] and the rate equa-
tion for the state variable [Eqs. (3) and (11)] define a nonpolar
voltage-controlled memristive system [41]. In practice, the
fixed term in the resistance corresponds to either the contact
resistance, often present especially in two-probe measure-
ments (see e. g., Ref. [36]), or a resistor added to obtain a
stable conducting state [7,37,38].

A. Stationary doublon density

The stationary condition is obtained plugging Eq. (11) into
Eq. (3) and imposing ṅ = 0 (we set A = 0 hereafter). We solve
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FIG. 3. Stationary I–V characteristic. (a) Doublon density n̄
versus voltage. The arrows point up (down) where ṅ is positive
(negative) showing that the solution is unstable if dn̄/dV < 0.
(b) “S”-shaped I–V curve (solid) and trajectories upon adiabatic and
nonadiabatic sweep across [V ∗

2 ,V ∗
1 ] (dashed). (c) Stationary current

versus internal field (solid) and same trajectories as in (b) visualized
on the I–E plane (dashed). rs = 0.01; n0 = V0 = I0 = E0 = 1.

the resulting equation for V ,

V̄ (n) = V0(n0 + rsn)
√

n − n0

n
√

n0
, (12)

where V0 ≡ LE0. This is plotted in Fig. 3(a) as n versus V̄ (n),
which allows us to visualize the stationary density n̄ as a
function of voltage. This solution is stable only if dn̄/dV > 0,
namely for n̄ outside a range [n∗

1, n∗
2], where these values are

therefore obtained imposing

dV̄

dn
= V0

(
rsn2 − n0n + 2n2

0

)
2n2

√
n0(n − n0)

= 0, (13)

which yields

n∗
1,2 = n0(1 ± √

1 − 8rs)

2rs
. (14)

For small rs we can approximate n∗
1 ≈ 2n0(1 + 2rs) and n∗

2 ≈
n0r−1

s . Therefore, the two stable branches are well sepa-
rated (n∗

2/n∗
1 ≈ 0.5r−1

s ) and we can interpret them as the
insulating (n < n∗

1) and conducting (n > n∗
2) states of the

memristor. Increasing rs the two branches approach each other
as n∗

2 − n∗
1 = n0

√
1 − 8rs/rs and eventually merge for rs =

0.125. Beyond this value, we have one continuous stable state
with no clear separation between insulating and conducting
states. In the opposite limit, rs → 0, the stable conducting
branch vanishes (n∗

2 → ∞). In the remainder of this paper
we set rs = 0.01. Between V ∗

2 = V̄ (n∗
2 ) ≈ 2V0

√
rs and V ∗

1 =
V̄ (n∗

1 ) ≈ 0.5V0(1 + 2rs) insulating and conducting states co-
exist. In particular, at V ∗

1 the density is n∗
1 on the insulating

branch and n∗
3 on the conducting branch.

B. Current-voltage characteristic

In the stationary state with voltage V̄ (n) and doublon den-
sity n, the current through the memristor is

Ī (n) = V̄ (n)

R(n) + Rs
= I0

√
n − n0√

n0
, (15)

where I0 ≡ V0R−1
0 . Plotting Eq. (15) versus Eq. (12) we obtain

the current-voltage curve in Fig. 3(b). This has a distinct “S”
shape composed of three branches with alternating differen-
tial resistance R ≡ dV/dI , which is positive in the stable
insulating and conducting branches; and negative in the unsta-
ble region in between [negative-differential-resistance region
(NDR)].

A voltage sweep across the range [V ∗
2 ,V ∗

1 ] results in a
current hysteresis, see Fig. 3(b). If the voltage change is adia-
batic, meaning so slow that at each moment the memristor is
stationary, then from the insulating branch the current follows
the I−V curve up to V ∗

1 , where a jump discontinuity leads
from I∗

1 = Ī (n∗
1 ) ≈ I0(1 + 2rs) to the conducting branch in

I∗
3 = Ī (n∗

3 ). Then, upon decreasing the voltage, the current
remains large down to V ∗

2 where a second discontinuity leads
from I∗

2 = Ī (n∗
2 ) ≈ I0/

√
rs back to the insulating branch. If

the voltage change is nonadiabatic, namely, rapidly increasing
and decreasing, the current does not follow thoroughly the
I−V curve but instead traces a larger hysteresis area.

In Fig. 3(c) we plot the same quantities as in Fig. 3(b)
versus the electric field internal to the Mott insulator. Since
current and current density are proportional, I = jS, the sta-
tionary curve is a rescaled copy of Fig. 2(a) with the crucial
difference that this is now stable also for I > I∗

2 . The tra-
jectories appear different in the I–E plane with respect to
the I–V curves; since during the constant-voltage insulating-
conducting transitions both current and internal field vary.
Also in this case, a nonadiabatic voltage results in a wider
trajectory.

Note that in order to plot the stationary curves in Fig. 3
and analytically derive the thresholds V ∗

1,2, we have used the
mathematical stratagem to consider n independent variable in
Eqs. (12) and (15). If one instead consider V independent, as
done in the numerical simulations, the solution of ṅ = 0 is not
as transparent.

C. Delay time and relaxation time

To study the timescales associated with the transitions
between insulating and conducting states, we consider a
voltage V (t ) = Vi + (Vf − Vi ) f (t ) with a ramp function
f (t ) = [1 + tanh(t − 10)]/2 and we numerically integrate
Eqs. (3) and (11). From the insulating state, as the voltage
increases above V ∗

1 , the transition takes place in two steps
[Figs. 4(a) and 4(b)]: first, during a delay time tD the current
remains low; then, it rapidly increases above I∗

2 , meaning that
the memristor has become conducting. Notice that after the
transition I ∝ Vf since in the conducting state the memris-
tance is approximately constant M(n) ≈ Rs.

The delay time is plotted in Fig. 4(c) versus the voltage
and for varying initial conditions. While the insulting-to-
conducting transition naturally starts from the insulating
branch [n0, n∗

1], here we consider also initial conditions in the
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FIG. 4. Delay and relaxation time. (a) Voltage ramp from Vi = 0
to Vf > V ∗

1 and (b) corresponding current evolution. The delay time
tD is the interval between the voltage ramp and when I = I∗

2 (see
arrow for Vf = 0.55). (c) tD vs Vf for various initial conditions n(0)
(markers) and approximation Eq. (17) (solid). (d) Voltage ramp from
Vi = 0.75 to Vf < V ∗

2 and (e) corresponding current evolution. The
relaxation time tR is the interval between the voltage ramp and when
I = I∗

1 (see arrow for Vf = 0.15 in the log-scale inset). (f) tR vs Vf for
various initial conditions n(0). Voltage, current, time are in units of
V0 = 1 V (e. g., E0 = 1 kVcm−1, L = 10 µm), I0 = 1 µA (e. g., j0 =
10 mA/ cm2 , S = 100 × 100 µm2), τd = 10 ps. rs = 0.01.

unstable region [n∗
1, n∗

2], which are relevant in the case the
voltage changes while the memristor is not at equilibrium.
The delay time decreases with increasing voltage and larger
initial density. It diverges in V ∗

1 if the initial density is below
n∗

1 ≈ 2.02n0, or in V̄ (n(0)) otherwise. This difference can be
explained with the aid of the stationary curve in Fig. 3(a),
which shows that for n > n∗

1 the lower-bound voltage leading
to the conducting branch is indeed V̄ (n).

To get analytical insight into the delay time and its depen-
dence on voltage and initial density, we solve Eq. (3) in the
approximation E ≈ V L−1 obtaining for V > V ∗

1 ≈ 0.5V0 (see
Appendix A):

n(t ) = n̄av[1 − � cot [�(t − tD)/(2τd )]], (16)

where n̄av = 2n0(V ∗
1 /V )2 and � = [(V/V ∗

1 )2 − 1]1/2. In this
approximation the transition to the conducting state happens
where Eq. (16) diverges, giving the delay time

tD = (2τd/�) cot−1 [(n(0) − n̄av)/(n̄av�)], (17)

which we plot in Fig. 4(c) alongside the numerical result. In
the limit V → (V ∗

1 )+ we have n̄av → 2n0 ≈ n∗
1 and � → 0.

The behavior of tD depends on whether n(0) is smaller or
larger than n∗

1, in the former case it diverges as tD ≈ 2τdπ/�,
while in the latter case it stays finite and diverges at a lower
voltage V̄ (n(0)).

Also the transition from the conducting state, as the voltage
decreases below V ∗

2 , takes place in various steps [Figs. 4(d)
and 4(e)]: First, the current rapidly decreases; then, it remains
high during a relaxation time tR; finally, it decreases below
I∗
1 . The relaxation time is plotted in Fig. 4(f) versus the volt-

age and for varying initial conditions. Analogously to what
discussed for the delay time, we consider initial conditions
in the conducting branch [n1,∞] as well as in the unstable
region [n∗

1, n∗
2]. The relaxation time increases with increasing

voltage and larger initial density; and diverges in V ∗
2 if the

initial density is above n∗
2 ≈ 100 n0, or in V̄ (n(0)) otherwise.

The results in this section, in particular the current-voltage
characteristic and the delay time, qualitatively agree with var-
ious experiments on similar devices [7,8,35–38]. Moreover,
the analysis of delay and relaxation times sets the stage for the
discussion of the a.c. response, a fundamental characteristic of
a memristive system.

IV. RESPONSE TO ALTERNATING VOLTAGE

We proceed now with the study of the a.c. response of the
Mott memristor introduced in Sec. III and defined by its state-
dependent resistance and state-variable equation of motion
[Eqs. (3), (9)–(11)], including the typical memristive features
of current retardation and current-voltage pinched hysteresis
loop.

A. Time evolution of doublon density and steady-state current

In Figs. 5(a)–5(d) we plot the time evolution of doublon
density [obtained by numerical integration of Eqs. (3) and
(11)] for various amplitude and frequency of the voltage
V (t ) = Va cos(	t ) and for two different initial conditions.
We distinguish four qualitatively different steady states. In
Figs. 5(a) and 5(b) the steady state is respectively insulating
(n < n∗

1) or conducting (n > n∗
2) independently of the initial

condition. In contrast, in the case of Fig. 5(c) there are two
possible steady states depending on the initial condition. Fi-
nally, in Fig. 5(d) the steady state goes back and forth the
insulating and conducting states.

The corresponding steady-state current is plotted in
Fig. 5(e)–5(h) for the insulating initial condition and along-
side the voltage. The time axis is rescaled with the period T =
2π/	 and the current and voltage axes with their maxima,
for the purpose of comparing various choices of parameters.
The insulating steady state [Figs. 5(e) and 5(g)] shows a
clear retardation, namely the current profile is distorted with
respect to the sinusoidal voltage. Such a retardation effect is
the hallmark of memristive systems (see e. g., Ref. [43]) as
it exemplifies the inertial change of instantaneous resistance.
The effect almost vanishes in the conducting steady state
[Fig. 5(f)] because in this case the memristance is approxi-
mately constant M(n) ≈ Rs. Finally, in the steady state back
and forth insulating and conducting [Fig. 5(h)] the retardation
is very pronounced; in this case the voltage effectively acts as
an adiabatic switch, as we discuss below in more detail.

B. Current-voltage pinched hysteresis loop
and charge-flux relation

In Figs. 5(i)–5(l) we plot the steady-state current versus the
voltage. This curve traces a pinched hysteresis loop (so called
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FIG. 5. Memristive behavior in a. c. voltage. (a)-(d) Time evolution of doublon density with initial condition n(0) = n0 (solid) or n(0) =
100 n0 (dashed) for various choices of frequency and amplitude (	,Va) (cf. triangle markers in Fig. 6). The state is insulating if n < n∗

1 and
conducting if n > n∗

2. (e)-(h) Corresponding steady-state current (solid) and applied voltage (dashed). (i)-(l) Pinched hysteresis loop in the
I−V plane. (m)-(p) Integral of current (charge q) versus integral of voltage (flux φ) in the steady state. In (g), (k), (o) only the initial condition
n(0) = n0 is considered.

because it crosses the coordinate axes only in the origin),
which is considered the empirical definition of a memristive
system [41]. Also here, we have rescaled the axes for the sake
of comparing the different steady states. The curve slope is the
instantaneous inverse differential resistance R−1 = dI/dV ,
meaning that the greater the resistance change, the larger the
area encircled by the loop. Indeed, this is more evident in
the insulating state [Figs. 5(i) and 5(k)] than in the conduct-
ing state [Fig. 5(j)], which has almost constant resistance.
In the steady state back and forth insulating and conducting
[Fig. 5(l)] the loop is composed of flat, vertical, and steep
segments. These correspond to, respectively, insulating state,
insulating-to-conducting transition, conducting state, while
the conducting-to-insulating transition happens near the origin
[cf. arrows in Fig. 5(l)].

The direction of the loop, namely whether it is traced
clockwise or anticlockwise, is related to the polarity of the
memristive system. In bipolar memristors, e. g., based on ionic
drift [43], the resistance changes depending on the sign of
the input. Consequently, it is either maximum or minimum in
the origin of the I–V plane, and the loop is anticlockwise for
positive and clockwise for negative input. In contrast, in the
present case the memristor is nonpolar, meaning the resistance
change is independent of the sign of the input, cf. Eq. (3). As a
result, the loop is anticlockwise both for positive and negative
inputs [see arrows in Figs. 5(k) and 5(l)]. Moreover, this
implies that the slope in the origin, namely the zero-voltage
inverse instantaneous resistance, is the same for increasing or
decreasing voltage.

Other characteristics of a memristive system are more con-
veniently discussed in terms of the relation between charge q

and flux φ, namely the integrals of, respectively, current and
voltage. Indeed, originally the memristance was introduced
as the quantity relating flux to charge [dφ = M(q) dq] sim-
ilarly to how the resistance relates voltage to current [dV =
R(I ) dI] [40]. The steady-state charge-flux relation is plotted
in Figs. 5(m)–5(p). The multivaluedness of this relation is
the empirical evidence that the memristive system belongs
to the class of nonideal memristors [41]. For ideal memristors,
the state-variable equation of motion depends on the input
only [ẋ = f (V )] giving a unique relation between charge and
flux [40,43]. Instead, in the broader class of nonideal memris-
tors, the equation of motion depends also on the state variable
itself [ẋ = f (x,V )], which yields a multivalued charge-flux
relation, as in this case. On a practical level, an ideal memris-
tor is nonvolatile, meaning its state does not change on zero
input [ f (0) = 0], while the state of a nonideal memristor typi-
cally relaxes [ f (x, 0) �= 0], which makes it a volatile memory.

C. Steady-state diagram

In Fig. 6 we plot the steady-state diagram as a function of
voltage frequency and amplitude. This contains four regions,
delimited by the frequency-dependent amplitude thresholds
V ∗

1,2(	), corresponding to each of the steady states discussed
above:

(1) For amplitude smaller than V ∗
1,2(	) (blue region in

Fig. 6) the steady state is insulating, as in Fig. 5(a).
(2) For amplitude larger than V ∗

1,2(	) (red region) the
steady state is conducting, as in Fig. 5(b).

(3) For frequency not too low and amplitude within the
range [V ∗

2 (	),V ∗
1 (	)] (purple region) the steady state is
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FIG. 6. Steady-state diagram. As a function of frequency and
amplitude of a.c. voltage: insulating (blue), conducting (red), going
back and forth insulating and conducting (green) and insulating or
conducting depending on initial condition (purple). Markers indicate
the four choices of parameters in Fig. 5. V ∗

1,2(	) are the a.c. threshold
voltages for insulating-conducting transitions. Axes are in units of
τ−1

d = 0.1 THz and V0 = 1 V (e. g., E0 = 1 kVcm−1, L = 10 µm).

insulating or conducting depending on the initial condition,
as in Fig. 5(c).

(4) For low frequency and amplitude within the range
[V ∗

1 (	),V ∗
2 (	)] (green region) the steady state goes back and

forth insulating and conducting, as in Fig. 5(d).
The a.c. thresholds V ∗

1,2(	) are closely related to the
d.c. thresholds V ∗

1,2 of Sec. III. If we apply a voltage with
small amplitude, such that the memristor is insulating, and
then gradually increase it, V ∗

1 (	) is the minimum value at
which the memristor becomes conducting. Notice the anal-
ogy with V ∗

1 , which is the minimum voltage to trigger the
d.c. insulating-to-conducting transition. However, in the a.c.
case two scenarios are possible: the memristor either stays
conducting indefinitely, or it goes back to insulating at a later
point of the voltage period. The two regions above V ∗

1 (	)
(respectively red and green in Fig. 6) correspond to these two
cases. Analogously, applying a voltage with large amplitude,
such that the memristor is conducting, and then gradually
decreasing it, V ∗

2 (	) is the amplitude at which the memristor
becomes insulating.

To discuss the frequency dependence of V ∗
1,2(	), it is

convenient to separately consider the regimes of low, inter-
mediate, and high frequency.

1. Low frequency

At low frequency, the a.c. response to a voltage V (t ) =
Va cos(	t ) is in a sense singular. On the one hand, at zero
frequency the voltage reduces to constant. On the other hand,
at nonzero albeit low frequency, it successively assumes all
values in [−Va,Va]. In other words, in the low-frequency limit
the a.c. voltage is equivalent to an adiabatic sweep, such as
considered in Sec. III. Thus, the steady state is insulating if
Va < V ∗

1 and back and forth insulating and conducting if Va >

V ∗
1 , as for repeated sweeps, cf. Fig. 3(b). Note the absence

of conducting steady states in this limit, since no matter how
large the amplitude, the memristor invariably turns insulating

during the long interval in which the voltage assumes low
values. This is reflected in the divergence of V ∗

2 (	), while
V ∗

1 (	) is continuous and tends to the d. c. threshold V ∗
1 .

2. Intermediate frequency

The intermediate-frequency regime can be understood in
terms of a competition of timescales: the half-period τ	 =
π/	; and the delay (τD) and relaxation (τR) times, namely
the timescales for, respectively, the insulating-to-conducting
and the conducting-to-insulating transitions. While these were
precisely defined in Sec. III for the d.c. transitions, here the
discussion is more qualitative and depends only on τD,R be-
ing, respectively, decreasing and increasing as a function of
voltage amplitude.

Since within the range [V ∗
1 (	),V ∗

2 (	)] (green region
in Fig. 6) there are one insulating-to-conducting and one
conducting-to-insulating transition during each half a period
[cf. Figs. 5(d) and 5(h)], this region is characterized by
the relation τD, τR < τ	. Indeed, if either timescale were
longer than τ	, the corresponding transition could not take
place. This suggests the interpretation of V ∗

1,2(	) as the
curves where, respectively, τ	 = tD and τ	 = tR. Crossing
for example V ∗

1 (	), the region with insulating steady states is
characterized by tR < τ	 < tD, that is by the inhibition of the
insulating-to-conducting transition. Within this perspective,
V ∗

1 (	) increases with frequency because—as τ	 decreases—a
larger voltage amplitude is needed to match the condition
τ	 = tD.

Where V ∗
1,2(	) intersect each other, the timescales are

all equal: τ	 = tD = tR. Crossing this point at constant
voltage amplitude, τ	 becomes at the same time shorter than
both τD,R, meaning that both the insulting-to-conducting and
the conducting-to-insulating transitions are inhibited, and the
memristor remains in the same state as the initial condition
(purple region in Fig. 6).

3. High frequency

The behavior at high frequency is better illustrated in terms
of the infinite-frequency limit, in which the voltage is equiva-
lent to a d.c. Va/

√
2. Indeed, the voltage enters the equation of

motion [Eqs. (3) and (11)] through the square [Va cos(	t )]2,
which at high frequency is equivalent to its average V 2

a /2. The
steady state is therefore insulating if Va <

√
2V ∗

1 and conduct-
ing if Va >

√
2V ∗

2 . Similarly to the d.c. coexistence region,
in the range [

√
2V ∗

2 ,
√

2V ∗
1 ] the steady state is insulating or

conducting depending on the initial condition. Note that in the
high-frequency limit V ∗

1,2(	) tend to constant. To reconcile
this with the previous discussion in terms of timescales, we
have to consider that at high frequency the transitions can
happen across multiple voltage periods.

V. SELF-SUSTAINED OSCILLATIONS
AND SPIKING BEHAVIOR

We study now a first use case of the Mott memristor in
electric circuits. In the circuit in Fig. 7(a) the memristor
is connected in parallel with a capacitor C and is attached
to a voltage generator V� through a load resistor R�. This
setup allows us to study self-sustained current oscillations as
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FIG. 7. Spiking circuit and its properties. (a) Circuit with load
voltage V�, load resistor R� and capacitor C in parallel with the mem-
ristor [Rs + R(n)]. (b) Fixed points at the intersection of memristor
I–V curve (black) with load lines I = (V� − V )R−1

� . (c) Fixed-point
doublon density vs load voltage. (d) Boundaries ñ1,2 of the region
with limit cycles (brown) as a function of fixed-point doublon density
and τc/τd ; and NDR region (gray). The same regions are highlighted
in (b) and (c) for τc/τd = 10. Markers in (b)–(d) correspond to fixed
points in Fig. 8; the dashed line in (d) to fixed points in Fig. 9.
n0 = V0 = I0 = 1.

observed, e. g., in Refs. [36–38]; a phenomenon at the basis
of spiking-based computational schemes.

A. Nullclines and fixed point

The equation for the voltage V across the memristor is
obtained applying Kirchhoff’s law of current conservation at
the nodes of the circuit in Fig. 7(a),

CV̇ + V (Rs + R(n))−1 + (V − V�)R−1
� = 0, (18)

which are the currents through, respectively, capacitor, mem-
ristor, and voltage generator. Equation (18) has to be solved
together with the rate equation for the doublon density
[Eqs. (3) and (11)]. Defining r� = R�/R0, rt = rs + r� and the
timescale τc = R�C we rewrite these equations as a dynamical
system

τcV̇ = V� − V (rt n + n0)(rsn + n0)−1, (19a)

τd ṅ = n0 − n + n0n2(V/V0)2(rsn + n0)−2. (19b)

The fixed point of this system is at the intersection of the so-
called nullclines, namely the curves along which V̇ = 0 and
ṅ = 0, which read respectively

V = V�(rsn + n0)(rt n + n0)−1, (20a)

V = V0(rsn + n0)
√

n − n0(n
√

n0)−1. (20b)

We subtract now the nullclines and, similarly to Sec. III,
we solve the resulting equation for V�, thereby expressing the
fixed-point doublon density as the inverse function of

V̄�(n) = V0(rt n + n0)
√

n − n0

n
√

n0
. (21)

This can also be obtained imposing the intersection of the so-
called load line I = (V� − V )R−1

� with the I–V curve of the
Mott memristor [Eqs. (12) and (15)], see Fig. 7(b), since at the
fixed point the same current flows through voltage generator
and memristor [cf. Eq. (18) with CV̇ = 0].

Because the current through the capacitor is zero at the
fixed point, the resistances Rs and R� are in series and
the circuit reduces to the situation considered in Sec. III with
the substitutions V → V� and Rs → Rs + R�, which indeed
make Eq. (21) identical to Eq. (12). Therefore, the same
analysis applies here: if rt > 0.125 the solution is unique,
while if rt < 0.125 there is a region with three solutions, see
Fig. 7(c). Together with rs = 0.01, we set hereafter r� = 0.1,
which gives rt = 0.11.

Depending on load voltage and load resistor, the fixed
point can be in the NDR region of the Mott memristor, see
Figs. 7(b)–7(d), which is necessary for having limit-cycle
self-sustained oscillations, as we discuss in the following.

B. Limit-cycle oscillations

Self-sustained oscillations are periodic solutions of a dy-
namical system, such as Eqs. (19), in absence of any periodic
input. In the system configuration space (here the n–V plane)
the corresponding trajectories are limit cycles, namely iso-
lated closed trajectories, which either attract or repel nearby
ones [59]. Simply stated, the conditions for a limit cycle are
the nonlinearity of the system and the instability of its fixed
point. In this case, the former is provided by the nonlinear
rate equation for the doublon density. The latter is satisfied
if the fixed-point doublon density is between the values (see
Appendix B)

ñ1,2 = n0[τc − τd ±
√

(τc − τd )2 − 8τc(rsτc + rtτd )]

rsτc + rtτd
. (22)

Once the load voltage—thus the fixed-point doublon
density—is chosen, Eq. (22) gives an implicit expression for
the critical τ ∗

c , which varies with the fixed-point doublon
density and whose minimum is obtained setting to zero the
argument of the square root in Eq. (22),

min τ ∗
c = τd [(1 + 4r�) +

√
(1 + 4r�)2 − (1 − 8rs)]

1 − 8rs
. (23)

The region [ñ1, ñ2] is included in the NDR region of the
memristor, coinciding with it in the limit of large τc. As
depicted in Fig. 7(d), to enter this region one can either tune
the load voltage (thus the doublon density) or the capacitor
(thus the characteristic time τc). At this point, a supercritical
Hopf bifurcation takes place [59], namely the fixed point loses
stability and a limit cycle arises.

1. Tuning the load voltage

At fixed τc we consider three load voltages such that the
fixed-point doublon density is below, inside, or above the
unstable region [ñ1, ñ2], see Figs. 7(b)–7(d). For each load
voltage we numerically integrate Eqs. (19) with varying ini-
tial conditions and plot the trajectories in the n–V plane in
Figs. 8(a)–8(c). Outside the unstable region (V� = 0.60, 0.90)
all trajectories tend to the fixed point. Notice that this
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FIG. 8. Bifurcation tuning the load voltage. [(a)–(c)] Trajectories
(solid) and nullclines (dashed) in n–V plane for three load voltages
and τc = 10 [see markers in Figs. 7(b)–7(d)]. The trajectories con-
verge to the fixed point in (a) and (c); or to a limit cycle around the
fixed point in (b). [(d)–(f)] Current profile for the same parameters
and initial condition (n0, 0) with spiking behavior corresponding to
the limit cycle (e). r� = 0.1; n0 = V0 = I0 = 1.

implies the absence of closed trajectories. In stark contrast,
inside the unstable region (V� = 0.75) there is an isolated
closed trajectory (i. e., a limit cycle), which attracts all other
trajectories. Notice that the limit cycle is around the unstable
fixed point. In this case there is no stationary stable solution
and, despite the constant load voltage, density and voltage
oscillate indefinitely. In other words, the system undergoes
limit-cycle self-sustained (or autonomous) oscillations.

The current profile is markedly different in the three cases.
Let us consider [see Figs. 8(d)–8(f)] the trajectories with
initial condition (n0, 0). For V� = 0.60 the current increases
monotonically to the stable fixed point, which is on the in-
sulating branch, see Fig. 8(d). In contrast, for V� = 0.90 the
stable fixed point is near the conducting branch and is reached
only after a transient, which in the n–V plane takes the form
of a spiral around the fixed point [Fig. 8(c)], and the current
profile has a single spike followed by damped oscillations, see
Fig. 8(f).

Finally, corresponding to the limit cycle, for V� = 0.75
the current has periodic spiking, see Fig. 8(e). Each spike
consists of a sudden increase and a similarly rapid, but slower,
decrease. These are due to repeated transitions between the
memristor insulating and conducting states, Note that this is
consistent with the spiking behavior of biological neurons,
in which the neural-cell membrane also transitions between
insulating and conducting in the course of an oscillation [60].

2. Tuning the capacitor

In Fig. 9 we plot the trajectories obtained by numerical
solution of Eqs. (19) with initial condition (n0, 0), fixed load
voltage and varying τc. With its location unaltered, the fixed
point loses stability across a critical τ ∗

c ≈ 6.06 τd (for V� =

FIG. 9. Bifurcation tuning the capacitor. Trajectories (solid) and
nullclines (dashed) in n–V plane for V� = 0.75 and varying τc [see
dashed line in Fig. 7(d)] with initial condition (n0, 0). The fixed
point is stable in (a) and (b); and unstable in (c) and (d) where it
is encircled by a limit cycle whose area and size change with τc. For
very large τc (d) the limit cycle tend to an adiabatic hysteresis loop
[cf. Figs. 3(a) and 3(b)]. r� = 0.1; n0 = V0 = 1.

0.75), see Fig. 7(d). It is stable for τc < τ ∗
c and reached after

a number of oscillations, which become more dense as τ ∗
c

is approached. As soon as τc > τ ∗
c , the fixed point becomes

unstable and a small limit cycle appears. Increasing τc further,
the limit cycle grows and tends to a loop with segments at
constant voltage connecting lower and upper branches of the
ṅ = 0 nullcline, see Fig. 9(d). Since this nullcline is nothing
but the stationary doublon density n̄ versus the voltage [cf.
Fig. 3(a)] this limit cycle is equivalent to the hysteresis loop
in adiabatic voltage considered in Sec. III. In other words, in
this limit the circuit behaves like a relaxation oscillator [59].

The limit-cycle current spikes can be characterized by
height (difference between maximum and minimum) and pe-
riod, see Fig. 10. Evidently, these quantities are only defined
for τc � τ ∗

c . At τ ∗
c we have the typical behavior for a super-

critical Hopf bifurcation [59]: the height grows from zero (the
limit cycle has vanishing amplitude) while the period is finite

FIG. 10. Characterization of periodic spiking. (a) Height and
(b) period of current spikes along the limit cycle [see inset in (a)]
as a function of τc at fixed V� = 0.75 and r� = 0.1. Current, time are
in units of I0 = 1 µA (e. g., j0 = 10 mA/ cm2 , S = 100 × 100 µm2),
τd = 10 ps.
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and equal to 2π [det(J )]−1/2 ≈ 12 τd , with J the Jacobian of
the dynamical system (19) at the fixed point (see Appendix B).
Increasing τc, the height first rapidly increases, then it slowly
saturates to a value close to I∗

3 , which is, together with I∗
1 , the

stationary current at the threshold voltage V ∗
1 , cf. Fig. 3(b). At

the same time, already at τc ≈ 7 τd , the period is linear in τc,
showing a decoupling of timescales for doublon density and
voltage, as expected for a relaxation oscillator.

VI. CONCLUSIONS

We have proposed the narrow-gap Mott insulator as a
compact realization of a type of memristor based on the
field-induced carrier avalanche multiplication. Due to this
purely electronic mechanism for the resistive switch, this Mott
memristor has a characteristic timescale set by the doublon-
excitation decay time τd ∼ 1–10 ps, which is up to several
orders of magnitude faster than in devices based on Joule
heating or ionic drift.

As a first step we have put forward a phenomenolog-
ical description of the field-induced carrier avalanche in
Mott insulators, in which the conductivity depends on the
carrier density, whose rate equation contains the nonlinear
scattering terms induced by strong correlations. The model
describes a resistive switch due to a large increase in car-
rier concentration, which we regard as most important in
certain Mott materials, for instance organic one-dimensional
charge-transfer crystals [7,35] and one-dimensional cuprates
Sr2CuO3 and SrCuO2 [8], whose experimental curves have
a good qualitative agreement with our results. Effects such
as gap suppression and filament formation have not a major
role in this description and for simplicity are not included
in the theory. For instance, experiments on the Mott insula-
tor Ca2RuO4 have ruled out, for these specific material and
experimental conditions, gap closing [14,15] and filament for-
mation [21].

Building on the phenomenological model, we have intro-
duced the Mott memristor as a device made of a Mott material
in series with a conventional resistor; and we have derived
its current-voltage curve, as well as the transitions between
conducting and insulating states. While the very definition
qualifies the model as a nonpolar, voltage-controlled mem-
ristive system, we have analyzed in detail its a.c. response,
including current retardation, pinched hysteresis loop, steady-
state diagram. Finally, we have considered a circuit with a
capacitor in parallel with the memristor and demonstrated
self-sustained current oscillations and periodic spiking behav-
ior, consistent with the periodic activity of biological neurons.

Particularly compelling for the future further characteriza-
tion of the Mott memristor, are the steady states that we found
in a.c. voltage, that alternate between insulating and con-
ducting. There, the carrier avalanche multiplication leads to
periodic rapid current increases, which, in appropriate experi-
mental setups, would yield a strong high harmonic generation,
whose spectrum would bear the distinct signature of the car-
rier avalanche multiplication, namely those of an electronic
excitation, much faster than other mechanisms such as ionic
drift and lattice distortions. Moreover, the resulting synchro-
nization of the high harmonics with the driving voltage would

allow for refined control over the emission process, much
alike currently possible in isolated atoms [61,62].

While similar devices have been subject of intensive ex-
perimental study [7,8,35–38], here they are proposed as
memristors. Moreover, our paper provides a comprehensive
theory of the key features of those prior studies: threshold
electric field, negative differential resistance (NDR), multi-
valued current-voltage characteristic, delay time, and current
oscillations. At the same time, our proposal consists of a
tractable set of equations; which stands in contrast with previ-
ous more complicated models, see e. g., Ref. [50], and results
in two valuable features. First, we are able to derive analytical
expressions, such as the boundaries of the NDR region and the
conditions for limit-cycle oscillations. Second, and perhaps
more importantly, it makes promising to include the model
into the description of circuits of growing complexity, in the
quest for bio-inspired novel computing architectures.
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APPENDIX A: DERIVATION OF EQS. (16) AND (17)

In this Appendix we derive Eqs. (16) and (17) of Sec. III
for doublon density and delay time of the d. c. insulating-to-
conducting transition. To simplify the exposition, we set τd =
n0 = E0 = 1, A = 0. Then Eq. (3) is rewritten as

ṅ = 1 − n + n2E2. (A1)

The two stationary solutions are n̄ = n̄av(1 ± i�) where n̄av =
1/(2E2) and � = √

4E2 − 1 [cf. Eq. (4)] and are real only
if E < Eth = 0.5 [cf. Eq. (5)]. Since during the delay time
the doublon density does not change much, we approximate
the field in the Mott insulator as constant, E ≈ V L, which is
equivalent to approximating rs ≈ 0, yielding V ∗

1 ≈ 0.5V0 and
n∗

1 ≈ 0.5n0. Equation (A1) can then be solved with a variable
change,

n = −ẋ/(xE2), (A2)

ẍ + ẋ + E2x = 0. (A3)

The general solution of the transformed equation (A3) is x =
α1es1t + α2es2t where s1,2 = (−1 ± i�)/2. Substituting this
back into (A2) yields the solution of Eq. (A1),

n = n̄av

(
1 − i�

α1ei�t/2 − α2e−i�t/2

α1ei�t/2 + α2e−i�t/2

)
. (A4)

Notice that the solution of (A3) depends on both α1,2

while Eq. (A4) depends only on their ratio. To proceed, we
parametrize α1,2 = ± exp(∓i�tD/2) and obtain

n = n̄av[1 − � cot[(�/2)(t − tD)]], (A5)

tD = (2/�) cot−1[(n(0) − n̄av)/(�n̄av)], (A6)

which coincide with Eqs. (16) and (17).
Up to now we have considered the electric field above

threshold E > Eth, which is equivalent to V > V ∗
1 and makes
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� and Eqs. (A5) and (A6) real. In the limit V → V ∗
1 we have

� → 0, n̄av → 2n0 ≈ n∗
1 and the behavior of the delay time

Eq. (A6) depends on the initial condition,

tD ≈
{

2π/�, if n(0) < n∗
1,

2n∗
1/(n(0) − n∗

1 ), if n(0) > n∗
1.

(A7)

Indeed with a large initial density the transition happens even
below threshold. In this case we have to choose α1,2 differ-
ently or, alternatively, we can analytically continue Eqs. (A5)
and (A6) with �̃ = i�, which yields

n = n̄av[1 − �̃ coth[(�̃/2)(t − tD)]], (A8)

tD = (2/�̃) coth−1[(n(0) − n̄av)/(�̃n̄av)]. (A9)

In this case the delay time diverges for n(0) = �̃(nav + 1),
namely for V = V̄ (n(0)), as shown in Fig. 4(c).

APPENDIX B: DERIVATION OF EQ. (22)

In this Appendix we derive Eq. (22) for the region with
limit cycle in Sec. V. A limit cycle is guaranteed to ex-
ist by the Poincaré–Bendixson theorem when the system is
confined in a region with no stable fixed point therein [59].
Such a trapping region is (with V�rt r−1

s > V ∗
1 ) {(n,V ) ∈

[0, n̄(V�rt r−1
s )] × [0,V�rt r−1

s ]}. The fixed point turns from
stable to unstable (Hopf bifurcation) when, with positive de-
terminant, the trace of the Jacobian becomes positive. For the
system (19) the Jacobian reads

J (n,V ) =
⎛
⎝− rt n+n0

τc (rsn+n0 ) − V rl n0
τc (rsn+n0 )2

2n2n0VV −2
0

τd (rsn+n0 )2 − 1
τd

+ 2nn2
0 (V/V0 )2

τd (rsn+n0 )3

⎞
⎠. (B1)

Plugging Eq. (20b) for the ṅ = 0 nullcline into Eq. (B1), we
obtain the Jacobian as a function of the fixed-point doublon
density,

J (n) =
⎛
⎝ − rt n+n0

τc (rsn+n0 ) −V0rl [n0(n−n0 )]1/2

τcn(rsn+n0 )

2n[n0(n−n0 )]1/2

τdV0(rsn+n0 )
−rsn2+nn0−2n2

0
τd n(rsn+n0 )

⎞
⎠, (B2)

whose determinant and trace read

det(J ) = rt n2 − n0n + 2n2
0

τdτc(rsn + n0)n
, (B3)

tr(J ) = τc
(−rsn2 + n0n − 2n2

0

) − τd
(
rt n2 + n0n

)
τdτc(rsn + n0)n

. (B4)

The sign of the determinant does not depend on τc and is
positive for n outside the range [n̂1, n̂2] with n̂1,2 = n0(1 ±√

1 − 8rt )(2rt )−1. The sign of the trace depends on τc. No-
tice that a necessary condition for the trace to vanish is
(−rsn2 + n0n − 2n2

0) > 0, which is the same condition for the
NDR region of the memristor, cf. Eq. (13), demonstrating
that the region with limit-cycle oscillations is a subset of the
NDR region, as depicted in Figs. 7(b)–7(d). Imposing the
trace to be positive we get the condition that n should be
outside the range [ñ1, ñ2] with ñ1,2 given in Eq. (22).

APPENDIX C: INHOMOGENEOUS CASE

In this Appendix we derive the additional terms to the
model of Secs. II and III in order to deal with inhomogeneous
carrier and current densities. Here we separetely consider
holes and doublons, with charge ±e, density n±, current
density j±. Moreover, we define n = (n+ + n−)/2 such that
for homogeneous and equal densities n+ = n− = n the equa-
tions of Secs. II and III are retrieved.

In presence of a carrier-density gradient, the current den-
sity acquires a diffusion term (D: diffusion constant),

j± = σ (n±)E ∓ eD∇n±. (C1)

Note that the sign of charge enters only the second term in
Eq. (C1) since the conductivity σ (n±) depends on the squared
charge [cf. Eq. (1)]. For the continuity condition, the rate
equation for the carrier density acquires a term proportional
to the current-density gradient,

ṅ± = γ − n±τ−1
d + (a1n + a2n2)E2 ∓ e−1∇ j±. (C2)

Plugging Eq. (C1) into Eq. (C2) yields two additional terms,
as compared to Eq. (3): ∓e−1∇[σ (n±)E ] resolves into con-
tributions proportional to carrier-density and field gradients;
D∇n± is the carrier diffusion. Note that the field-induced
carrier-avalanche term (a1n + a2n2)E2 is the same for holes
and doublons.

The electric field in Eqs. (C1) and (C2) has two terms, E =
Eext + Eint. The external field is given, as in Sec. III, by the
voltage drop across the Mott material,

Eext = V R

L[R + Rs]
, R = 2

S

∫ L

0

dx

σ (n+) + σ (n−)
(C3)

where the resistance of the material depends on the total
carrier density and, for simplicity, we take the carrier density
varying only along its length. The internal field is given by
Poisson’s equation (ε: dielectric constant),

∇Eint = e(n+ − n−)ε−1. (C4)

Solving Eqs. (C2), (C3), (C4) yields the time evolution of the
inhomogeneous hole and doublon densities.
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