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Green’s functions of fermions are described by matrix-valued Herglotz-Nevanlinna functions. Since analytic
continuation is fundamentally an ill-posed problem, the causal space described by the matrix-valued Herglotz-
Nevanlinna structure can be instrumental in improving the accuracy and in enhancing the robustness with
respect to noise. We demonstrate a three-pronged procedure for robust analytic continuation called PES: (1)
projection of data to the causal space; (2) estimation of pole locations; and (3) semidefinite relaxation within the
causal space. We compare the performance of PES with the recently developed Nevanlinna and Carathéodory
continuation methods and find that PES is more robust in the presence of noise and does not require the usage
of extended precision arithmetics. We also demonstrate that a causal projection improves the performance of the
Nevanlinna and Carathéodory methods. The PES method is generalized to bosonic response functions, for which
the Nevanlinna and Carathéodory continuation methods have not yet been developed. It is particularly useful for
studying spectra with sharp features, as they occur in the study of molecules and band structures in solids.
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I. INTRODUCTION

Green’s functions of quantum many-body systems are cen-
tral subjects in condensed matter physics, quantum chemistry,
and quantum field theory. Due to the difficulty of perform-
ing correlated finite-temperature calculations on the real axis,
numerical methods typically obtain results on the Matsubara
axis and employ analytic continuation as a postprocessing
tool to infer Green’s functions along the real axis. Analytic
continuation is fundamentally an ill-posed problem, and many
numerical methods have been developed, such as the Padé fit
[1,2], maximum entropy (MaxEnt) [3–7], stochastic analytic
continuation and its variants [8–11], sparse modeling [12,13],
and machine learning approaches [14,15]. All these meth-
ods encounter difficulties in satisfying causality, recovering
sharp features, resolving multiple features, and/or capturing
high frequency information in the spectra. Furthermore, most
methods have been developed only for diagonal entries of the
Green’s function. The analytic continuation of off-diagonal
entries of the Green’s function [16–20] is often attempted
by diagonalizing the Greenâs function at a certain Matsub-
ara frequency, conducting the analytic continuation only of
the diagonal entries with respect to the transformed basis at
other frequencies, and neglecting the remaining nondiagonal
entries.

The fermionic Green’s functions is a special type of matrix-
valued Herglotz-Nevanlinna functions. These functions have
a wide range of scientific and engineering applications, and
have been (somewhat inconsistently) named after renowned
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mathematicians including Carathéodory, Herglotz, Nevan-
linna, Pick, and Riesz. They are also sometimes called R
functions [21]. The name matrix-valued Herglotz-Nevanlinna
functions adopted in this paper follows the suggestion in
[22]. This crucial analytic structure has only been taken
into account recently by the Nevanlinna continuation method
[23] for diagonal entries of Green’s functions, and by the
Carathéodory method [24] for both diagonal and off-diagonal
entries. In the absence of noise, these methods have reached
unprecedented accuracy in analytic continuation by resolving
complicated spectral functions with multiple features. How-
ever, these methods also have notable drawbacks. (1) They
are not numerically stable, and extended precision arithmetic
operations (128 bits of precision or higher) are needed to
carry out such calculations (even in the absence of noise).
Therefore the computational cost of the analytic continuation
(especially for the Carathéodory continuation) can be large.
(2) The Nevanlinna/Carathéodory interpolants exist if and
only if Pick’s criterion [23,25,26] is satisfied by the Matsubara
data. In practice, noisy data often violates Pick’s criterion,
meaning that the computational result is not guaranteed to
be causal. (3) In their standard form, matrix-valued Herglotz-
Nevanlinna structure is only applicable to fermions, and hence
these methods are not directly applicable to bosonic systems.

The Herglotz-Nevanlinna function and its interpolation
have been thoroughly studied in areas such as the control
theory (see e.g., [27] and [28], Chapter 9.2]). The problem
of analytic continuation is also intimately related to problems
in signal processing, and in particular fitting with exponential
functions (see e.g., [29–31]). One advantage of Nevanlinna
and Carathéodory methods is that they require little prior
knowledge of the structure of Green’s functions. With further
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TABLE I. Comparison of approaches for analytic continuation. Double means double precision arithmetic operations, and extended means
extended precision arithmetic operations (requiring 128 bits or larger).

Method
Noise

robustness

Calculation
precision

requirement
Sharp

features Causality Applicability

This paper � Double � � Fermion
Boson

Nevanlinna and � if clean
✗ Extended � Fermion

Carathéodory ✗ if noisy

MaxEnt � Double ✗ � Fermion
Boson

Padé ✗ Extended � ✗
Fermion
Boson

prior knowledge of the lower and upper bound of the abso-
lute value of the pole locations, Ying recently showed that a
modified Prony’s method can be used for performing analytic
continuation with noisy data with multiple features using only
double precision arithmetic operations [32,33].

In this article, we propose a three-pronged projection-
estimation-semidefinite relaxation (PES) method to perform
analytic continuation within the causal space, while avoiding
the aforementioned drawbacks. The meaning of the three steps
are as follows: (1) projection of the noisy data into the causal
space; (2) estimation of pole locations using the adaptive
Antoulas–Anderson (AAA) algorithm [34]; (3) semidefinite
relaxation (SDR) fitting of Green’s functions (diagonal and
off-diagonal elements) using a bilevel optimization approach
[35]. Each step of the approach aims at resolving certain
aspects of the difficulties in the analytic continuation of noisy
Matsubara Green’s functions. The prior knowledge needed
for the PES method is comparable to that in Nevanlinna and
Carathéodory methods. We demonstrate that the PES method
can robustly perform analytical continuation of noisy data
using standard double precision arithmetic operations, and is
applicable to both fermionic and bosonic systems. Table I
compares the PES method with the Nevanlinna, Carathéodory,
MaxEnt, and Padé method. We emphasize that each of the
three steps of PES can also be useful in improving the robust-
ness of other analytic continuation methods. For instance, the
projection step can be employed as a data preprocessing step
that significantly improves the robustness of the Nevanlinna
and Carathéodory continuation for noisy data. The semidef-
inite relaxation can be combined with other continuation
methods as a postprocessing refinement.

This article is organized as follows. In Sec. II, we introduce
the theory of the PES method. After giving a brief discus-
sion on the setup of the analytic continuation problem in
Sec. II.1, we explain in detail each of the three steps of the PES
method: the preprocessing step using semidefinite projection
in Sec. II.2, the pole-estimation step using AAA algorithm
in Sec. II.3 and the SDR fitting step using SDR and bilevel
optimization in Sec. II.4. We summarize the PES method
in Sec. II.5. The numerical results are presented in Sec. III.
With the Hubbard dimer example, we compare the results of
our methods with the Nevanlinna, Carathéodory, and MaxEnt
methods, and show that the PES method is both noise-robust

and efficient for sharp features, and recovers both diagonal
and off-diagonal entries. We also demonstrate the necessity
of the pole estimation step using this model. In Sec. III.2,
we show that the PES method is also applicable to bosonic
response functions and has a much better performance com-
pared to MaxEnt. In Sec. III.3, in order to demonstrate the
strength of the PES method, we conduct analytic continua-
tions for the band structure of solids with hundreds of orbitals.

II. THEORY

A. Analytic structure of Green’s functions

Let ĉi, ĉ†
i be the annihilation and creation operator for

the ith orbital, i = 1, . . . , Norb, where Norb is the number of
orbitals. In the Lehmann representation, a Green’s function
can be expressed as follows (see e.g., [[36], Chap. 5.2]):

Gi j (z) = 1

Z

∑
r,s

〈�s|ĉi|�r〉〈�r |ĉ†
j |�s〉

z + Es − Er
(e−βEs ∓ e−βEr ). (1)

Here β is the inverse temperature. |�s〉 is the sth eigenfunction
of the Hamiltonian Ĥ with energy Es, i.e.,

Ĥ |�s〉 = Es|�s〉, s = 1, 2, . . . , NS,

where NS = 2Norb , Ĥ is the many-body Hamiltonian and Z =∑NS
s=1 e−βEs is the partition function. The negative sign cor-

responds to bosons, while the positive sign corresponds to
fermions.

Since Gi j (z) is defined for i, j ∈ {1, . . . Norb}, the Green’s
function G can be viewed as a Norb × Norb matrix. In other
words, we have G(z) =∑r,s

Xr,s

z−λr,s
where λr,s = Er − Es ∈ R

and Xr,s = cr,svr,sv
†
r,s is a rank-1 Norb × Norb matrix, in which

cr,s = e−βEs ∓ e−βEr

Z
, vr,s(i) = 〈�r |ĉ†

i |�s〉. (2)

Here vr,s(i) is the ith component of vr,s. Note that for
fermionic systems, cr,s is always nonnegative. For bosonic
systems, we have cr,s > 0 if Er > Es, or equivalently λr,s > 0;
while cr,s < 0 if Er < Es, or equivalently λr,s < 0.

For orthogonal orbitals, the creation and annihilation
operators satisfy the canonical relation [ĉi, ĉ†

j ]∓ = ĉiĉ
†
j ∓

ĉ†
j ĉi = δi j . As a result, the matrices Xr,s have the following
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property:∑
r,s

(Xr,s)i j

= 1

Z

∑
r,s

〈�s|ĉi|�r〉〈�r |ĉ†
j |�s〉(e−βEs ∓ e−βEr )

= 1

Z

∑
s

〈�s|ĉi

(∑
r

|�r〉〈�r |
)

ĉ†
j |�s〉e−βEs

∓ 1

Z

∑
r

〈�r |ĉ†
j

(∑
s

|�s〉〈�s|
)

ĉi|�r〉e−βEr

= 1

Z

∑
s

〈�s|ĉiĉ
†
j ∓ ĉ†

j ĉi|�s〉e−βEs = δi j . (3)

This indicates the sum rule
∑

r,s Xr,s = INorb , where INorb is the
Norb × Norb identity matrix. For the rest of this article, let us
compress the indices r, s into l , and let Np be the number of
matrices Xr,s that are nonzero, i.e., the number of poles λr,s

that actually contribute to the Green’s function. In this way,
the Green’s function G(z) can be written as

G(z) =
Np∑

l=1

Xl

z − λl
, (4)

where Xl satisfies the rank-1 semidefinite condition:

For bosons:
sign(λl ) · Xl is an Norb × Norb

rank-1 positive semidefinite matrix; (5)

For fermions:
Xl is an Norb × Norb

rank-1 positive semidefinite matrix; (6)

and the sum rule
Np∑

l=1

Xl = INorb . (7)

The function G(z) is defined on {0}⋃C\R, which ex-
cludes the real axis. The Matsubara Green’s function GM(ω)
and the retarded Green’s function GR(ω) share the same for-
mula G(z) [Eq. (1) and Eq. (4)] in the following way:

(a) When z = iωn ∈ iR is on the imaginary axis,
GM(ωn) = G(iωn) is the Matsubara (or imaginary frequency)
Green’s function, ωn is called the Matsubara frequency.
For fermionic systems, iωn ∈ i 2Z+1

β
; for bosonic systems,

iωn ∈ i 2Z
β

.
(b) Since G(z) has poles on the real axis, the real-time

(or real-frequency) Green’s function could only be evaluated
at positions infinitesimally close to the real axis. Let η be
a positive infinitesimal number. When z = ω + iη, GR(ω) =
G(ω + iη) is the retarded Green’s function.

The spectral function A(ω) is defined from GR(ω) as
follows:

A(ω) = − 1

π
Im(Tr(GR(ω))) (8)

The spectral function contains information of the excitation
spectra in quantum systems. In practice, the retarded Green’s
function and the spectral function are evaluated with η a very
small positive number.

Green’s functions of fermionic systems are closely related
to the matrix-valued Herglotz-Nevanlinna functions (see e.g.,
[22]). A matrix-valued function N(z) is said to be Herglotz-
Nevanlinna if N : C+ → CNorb×Norb is analytic and Im (N(z))
is a positive semidefinite matrix for z ∈ C+. Here C+ is the
open complex upper half-plane, CNorb×Norb is the set of Norb ×
Norb matrices with entries in C, and Im (N(z)) is the imag-
inary part of N(z). The matrix-valued Herglotz-Nevanlinna
functions admit the following integral representation (see e.g.,
[[37], Theorem 5.4] for proof):

N(z) = Mz + B +
∫
R

(
1

t − z
− t

1 + t2

)
d	(t ), z ∈ C+,

(9)

where M, B ∈ CNorb×Norb , M is positive semidefinite, B is Her-
mitian, and 	(t ) is a nondecreasing matrix-valued function
on R such that

∫
R

u†(d	(t ))u
1+t2 < ∞ for any vector u ∈ CNorb .

This condition on 	(t ) ensures that the above integration in
Eq. (9) is well defined. For the detailed mathematical theory
of Herglotz-Nevanlinna functions, we refer the readers to
[[38], Chap. 2] and [[39], Chap. 3].

From Eq. (9), we may set

d	(t ) =
Np∑

l=1

Xlδ(t − λl ), M = 0, B =
∫
R

t

1 + t2
d	(t ),

(10)

then

N(z) =
∫
R

d	(t )

t − z
=

Np∑
l=1

Xl

λl − z
= −G(z), z ∈ C+. (11)

In other words, −G(z) is a matrix-valued Herglotz-
Nevanlinna function. This is the mathematical foundation of
Nevanlinna [23] and Carathéodory continuation [24] methods.

The causal space for Green’s functions of fermionic sys-
tems is a subset of the Herglotz-Nevanlinna function class
denoted by SF,

SF =

⎧⎪⎪⎨
⎪⎪⎩G
∣∣∣∣∣∣∣∣
G(z) =∑Np

l=1
Xl

z−λl
, for some Np ∈ Z,

for some λl ∈ R, and for Xl satisfying
fermionic rank-1 semidefinite conditions

Eq. (6) and the sum rule Eq. (7).

⎫⎪⎪⎬
⎪⎪⎭.

(12)

Similarly, the causal space of Green’s functions of bosonic
systems is

SB =

⎧⎪⎪⎨
⎪⎪⎩G
∣∣∣∣∣∣∣∣
G(z) =∑Np

l=1
Xl

z−λl
, for some Np ∈ Z,

for some λl ∈ R, and for Xl satisfying
fermionic rank-1 semidefinite conditions

Eq. (5) and the sum rule Eq. (7).

⎫⎪⎪⎬
⎪⎪⎭.

(13)

In the definition of S±, the rank-1 condition in Xl can be
dropped, because any semidefinite matrix can be represented
as the sum of several rank-1 semidefinite matrices. Degenerate
excitations can be treated similarly by allowing the values of
some λl ’s to be the same. This is the mathematical foundation
of the semidefinite relaxation fitting [35].
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Now we are ready to introduce the setup for analytic con-
tinuation problems of Matsubara data. Given several (possibly
noisy) Matsubara data Gn ≈ G(iωn) for n = 1, 2, · · · , Nw,
our goal is to obtain the fitting of these data into the follow-

ing analytic form G(z) =∑Np

l=1
Xl

z−λl
, where λl ∈ R and Xl

is a Norb × Norb rank-1 semidefinite matrix, and the matrices
{Xl}Np

l=1 satisfies the sum rule
∑

l Xl = INorb . For fermionic
systems, Xl is positive semidefinite, while for bosonic cases,
sign(λl ) · Xl is positive semidefinite.

In summary, we would like to obtain the poles λl , the
semidefinite matrices Xl , and the number of poles Np, which
we may not have a priori knowledge. From such information
we can infer the spectral function, as well as other diagonal
and off-diagonal entries of the Green’s function.

Finally, we would like to remark that the Green’s functions
are only one type of response functions. Other response func-
tions commonly considered, such as the charge, magnetic, or
superconducting susceptibilities (see e.g., [[36], Chap. 5.5])
admit the same formula Eq. (4), in which Xl also satisfies the
bosonic/fermionic semidefinite conditions [see Eqs. (5) and
(6)]. The only difference is that Xl may satisfy a different set
of sum rules. In other words, the analytic structure of Green’s
function and other response functions are similar, therefore
the same methodology of analytic continuation applies.

B. Step 1: Projection of the noisy data to the causal space

The Matsubara data often contains unphysical noise, i.e.,
GM(iωn) cannot be expressed as a matrix-value function in the
set SF/B. Therefore the first step of our algorithm is to project
the noisy data into the causal space. This can be achieved
efficiently using semidefinite programming. For simplicity, let
us choose a fine uniform grid on the real axis,

xm = −
x + mhx, hx = 2C

M
, m = 0, . . . , M, (14)

where 
x is the real-axis cutoff, and hx is the grid size. Our
goal is to fit the Matsubara data Gn via the following form:

Gn ≈
M∑

m=0

Pm

iωn − xm
, n = 1, . . . Nw, (15)

where {Pm} are semidefinite matrices. The objective function
Eproj({Pm}M

m=0) is defined as

Eproj
({Pm}M

m=0

) =
⎛
⎝ Nw∑

n=1

∥∥∥∥∥Gn −
M∑

m=0

Pm

iωn − xm

∥∥∥∥∥
2

F

⎞
⎠

1/2

. (16)

Here ‖ · ‖F is the Frobenius norm. The solutions of the pro-
jection P proj

m is obtained by solving the following optimization
problem:

{P proj
m } = arg min{Pm} Eproj

({Pm}M
m=1

)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i) semidefinite constraint:{
Pm 
 0 (Fermions),

sign(xm) · Pm 
 0 (Bosons case);

ii) sum rules:∑
m Pm = INorb .

(17)

This is a convex optimization problem, and can be solved
efficiently using software packages such as CVX [40]. If
we are performing analytic continuation of other correlation
functions, {Pm}M

m=1 may be subject to a different sum rule.
For scalar-valued fermionic Green’s function, the posi-

tive semidefinite condition Pm 
 0 becomes the nonnegativity
condition Pm � 0. Therefore the sum rule

∑
m Pm = 1 can

also be written as
∑

m |Pm| = 1, i.e., an �1-norm constraint
on the vector (P1, . . . ,Pm). The least squares problem with
a �1-norm constraint is similar to the well-known least abso-
lute selection and shrinkage operator (LASSO) problem [41],
which favors solutions with a sparse structure (see also [42]).
This agrees with our numerical observation that the solution
Pm often has relatively few nonzero entries. For matrix-
valued Green’s function, there is a similar mechanism that
induces the sparsity of solution. The natural generalization
of the �1 norm is the nuclear norm ‖ · ‖∗, defined as ‖A‖∗ =√

Tr(A†A) =∑k σk (A), where σk (A) is the kth largest singu-
lar value for A. Note that each Pm is a positive semidefinite
matrix, therefore the kth largest singular value σk (Pm)
is equal to the kth largest eigenvalue λk (Pm). Therefore,
we have

∑
m ‖Pm‖∗ =∑m

∑
k σk (Pm) =∑m

∑
k λk (Pm) =∑

m Tr(Pm) = Tr(
∑

m Pm). Combined with the sum rule∑
m Pm = INorb , we can see that the matrices {Pm}’s are en-

forced to satisfy the nuclear norm constraint
∑

m ‖Pm‖∗ =
Norb. The nuclear norm is also a sparsity-inducing property
(see e.g., [43]).

After obtaining P proj
m , we can construct the projected Mat-

subara data Gproj
n ,

Gproj
n =

M∑
m=0

P proj
m

iωn − xm
, n = 1, . . . Nw, (18)

This projection step can be used to improve the robustness
of other analytic continuation methods, and therefore is of
independent interest. For instance, the Nevanlinna analytic
continuation method requires the Pick matrix to be positive
semidefinite (see [23] for details). Numerical results indicate
that this criterion can be violated when very small perturba-
tions are applied to the Matsubara data. Given that noise is
inevitable in many Green’s function solvers (notably, quantum
Monte Carlo solvers), the application range of the Nevanlinna
analytic continuation is thus significantly limited by the nature
of the noise. Our numerical results suggest that when the
Nevanlinna method is applied to the projected noisy Mat-
subara data (for diagonal entries), the quality of the analytic
continuation is significantly improved. (See Sec. III.1 and
Sec. III.3 for details.) Similar improvements are observed
on both diagonal and off-diagonal entries of the Green’s
functions while applying Carathéodory continuations on the
projected data (also see Sec. III.1 for details).

C. Step 2: Estimation of pole locations using the AAA algorithm

While the projection step can be viewed as an analytic con-
tinuation algorithm by itself, the quality of the continuation is
constrained by the resolution of the grid on the real axis. In
practice, the number of grid points (i.e., M) in the uniform grid
is often too small to accurately resolve the pole locations, but
is too large to be directly used in the subsequent semidefinite
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relaxation (SDR) step to be detailed in Sec. II.4. Furthermore,
the loss function in the SDR step is highly nonconvex, and
the optimization with respect to this loss function requires a
proper initial guess. These considerations lead to the second
step of the algorithm for estimating the locations of a rela-
tively small number of poles.

We use the adaptive Antoulas–Anderson (AAA) algorithm
[34] for the pole estimation, which is available as a subroutine
in the Chebfun package [44]. The AAA algorithm is able to
obtain the poles of a scalar complex-valued function g(z). In
the context of analytic continuation, the scalar function g(z)
could either be each diagonal entry Gii(z)(i = 1, . . . , Norb)
of the Green’s function, or the trace Tr(G(z)). In practice,
we find that performing the pole estimation on each diagonal
entry separately often gives better results.

The AAA algorithm performs a rational approximation to
a scalar function g(z) using barycentric representations [45],

g(z) ≈ n(z)

d (z)
=
∑n

j=1
w j g j

z−z j∑n
j=1

w j

z−z j

. (19)

Here n(z) =∑n
j=1

w j g j

z−z j
and d (z) =∑n

j=1
w j

z−z j
are the numer-

ator and denominator part of the barycentric representation,
respectively. Note that the above formulation Eq. (19) auto-
matically satisfies that n(z j )

d (z j )
= g j .

We briefly describe the AAA algorithm below, and refer
readers to Ref. [34] for more details. Assume that we are given
the values of g(z) on a set Z ⊂ C of N points (in analytic
continuation, Z = {iωn, n = 1, . . . , Nw}), the AAA algorithm
aims at finding a set of support points {z j}n

i=1, which allows us
to solve for the weights {w j}n

j=1 in Eq. (19). Here g j = g(z j )
( j = 1, . . . , n). Starting from n = 1, the AAA algorithm grad-
ually expands the set {z j}n

i=1 following a greedy algorithm.
At the (n − 1)th step (n = 1, 2, . . .), if the residual

res(z) = g(z) − n(z)
d (z) is sufficiently small for all z ∈ Z , then

the algorithm terminates. Otherwise, we pick the next
support point zn, by choosing z ∈ Z\{z1, . . . , zn−1} where
the residual res(z) takes its maximum absolute value.
Let us write Z\{z1, . . . , zn} as a column vector Z(n) :=
(Z (n)

1 , . . . , Z (n)
N−n)T and define g(n) = (g(n)

1 , · · · , g(n)
N−n)T :=

(g(Z (n)
1 ), . . . , g(Z (n)

N−n))T . Since g(z) is supposed to be approx-
imated by g(z) ≈ n(z)/d (z), i.e., g(z)d (z) ≈ n(z), we choose
the normalized weight w = (w1, . . . ,wn) by solving the least
square problem,

min
‖w‖2=1

N−n∑
i=1

∣∣g(n)
i d
(
Z (n)

i

)− n
(
Z (n)

i

)∣∣2

=
N−n∑
i=1

∣∣∣∣∣∣
n∑

j=1

w j
(
g(n)

i − g j
)

Z (n)
i − z j

∣∣∣∣∣∣
2

. (20)

The minimization problem of Eq. (20) could be viewed as the
following linear algebra problem:

min
‖w‖2=1

‖A(n)w‖2, (21)

where A(n) is

A(n) =

⎛
⎜⎜⎜⎝

g(n)
1 −g1

Z (n)
1 −z1

· · · g(n)
1 −gn

Z (n)
1 −zn

...
. . .

...
g(n)

N−n−g1

Z (n)
N−n−z1

· · · g(n)
N−n−gn

Z (n)
N−n−zn

⎞
⎟⎟⎟⎠. (22)

This optimization problem Eq. (21) could be solved by per-
forming a singular value decomposition (SVD) on the matrix
A(n) = U	V †, where U is a (N − n) × r orthogonal matrix,
V is a n × r orthogonal matrix, 	 = diag(σ1, . . . , σr ) is a
diagonal matrix (σ1 � · · · � σr), and r � min(N − n, n) is
the rank of A(n). The solution w of Eq. (21) should be taken as
the last column of V .

After the iteration terminates at the K th step, we have
{z1, . . . , zK} and its associated weights {w1, . . . ,wK}. We can
calculate the zeros of d (z), which serve as the estimated poles
of g(z) that we want to obtain, using the following generalized
eigenvalue problem [34]:⎛
⎜⎜⎜⎜⎝

0 w1 w2 · · · wK

1 z1

1 z2
...

. . .

1 zK

⎞
⎟⎟⎟⎟⎠ = ξ

⎛
⎜⎜⎜⎜⎝

0
1

1
. . .

1

⎞
⎟⎟⎟⎟⎠.

(23)

At least two of the eigenvalues in this problem are infinite, and
the remaining (K − 1) eigenvalues {ξa}K−1

a=1 are the zeros of d ,
i.e., the complex-valued poles of g.

Since all poles of the Green’s function in Eq. (4) are real-
valued, after obtaining {ξa}K−1

a=1 , we discard the poles far away
from the real axis. In other words, we only keep poles with
|Imξa| � εp for some εp > 0, and define {λin

l }Np

l=1 to be real
parts of the remaining poles. These Np poles will be used as
the initial guess of the poles in the semidefinite relaxation step
below.

D. Step 3: Semidefinite relaxation

In the final step, we use numerical optimization to obtain
an effective fitting of the Matsubara data in the form of Eq. (4).
The fitting error is defined as

Err
({λl}Np

l=1, {Xl}Np

l=1

)

=
(

N∑
n=1

∥∥Gn − G
(
iωn; {λl ,Xl}Np

l=1

)∥∥2

F

)1/2

=

⎛
⎜⎝ N∑

n=1

∥∥∥∥∥∥Gn −
Np∑

l=1

Xl

iωn − λl

∥∥∥∥∥∥
2

F

⎞
⎟⎠

1/2

. (24)

The fitting error expressed in Eq. (24) is a highly nonconvex
function, and the minimization of this function can frequently
be trapped in local minima, which strongly depend on the
choice of the initial guess.

Recall that in Eq. (4) {Xl} are required to be rank-1
semidefinite matrix. The semidefinite relaxation drops this
rank-1 constraint. In other words, {Xl} (or sign(λl ) · Xl ) are
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only required to be positive semidefinite matrices for the ana-
lytic continuation of fermionic (bosonic) Green’s function.

For simplicity, the following discussion focuses on
fermionic Green’s functions, while the same numerical
treatment is applicable to bosonic Green’s functions. The min-
imization of Err({λl}Np

l=1, {Xl 
 0}Np

l=1) can be formulated as a
bilevel optimization problem,

min
λl ,Xl 
0

Err
({λl}Np

l=1, {Xl}Np

l=1

)
= min

λl ∈R
min
Xl 
0

Err
({λl}Np

l=1, {Xl}Np

l=1

)
= min

λl ∈R
E
({λl}Np

l=1

)
, (25)

where

E
({λl}Np

l=1

) = min
Xl 
0

Err
({λl}Np

l=1, {Xl 
 0}Np

l=1

)
. (26)

When the poles {λl}Np

l=1 are fixed, the optimization with
respect to semidefinite matrices {Xl 
 0} is a convex op-
timization problem, and could be efficiently solved using
software packages such as CVX [40]. The optimization of
Err({λl}Np

l=1, {Xl 
 0}Np

l=1) is transformed into the optimization

of E ({λl}Np

l=1), but note that such an optimization over the pole
positions is still a nonconvex problem.

Therefore, we have the following SDR fitting procedure
through the bi-level optimization framework: Starting from an
initial value for poles {λin

l }Np

l=1 obtained by the previous pole
estimation step, we use numerical optimization technique to
minimize E ({λl}Np

l=1), where

(a) The value of E ({λl}Np

l=1) and the corresponding optimal

{Xopt
l 
 0} for fixed poles {λl}Np

l=1 are found by a convex opti-
mization solver.

(b) Since E ({λl}Np

l=1) = Err({λl}Np

l=1, {Xopt
l }Np

l=1) and the op-
timal matrices {Xopt

l } should be regarded as functions of the

poles {λl}, the partial derivative of E ({λl}Np

l=1) could be written
as

∂mE = ∂

∂λm
Err +

Np∑
l=1

Norb∑
i, j=1

∂ Err

∂ (Xl )i j

∣∣∣∣∣
Xopt

l

·
∂
(
Xopt

l

)
i j

∂λm
. (27)

The first-order optimality condition for solving Eq. (26) im-
plies ∂ Err

∂ (Xl )i j
|Xopt

l
= 0. Such an evaluation of the derivative

quantities is similar to the treatment in the Hellmann-
Feynman’s theorem [46]. Therefore we have

∂mE
({λl}Np

l=1

)
= ∂

∂λm
Err
({λl}Np

l=1, {Xl}Np

l=1

)∣∣
Xl =Xopt

l

= −
∑N

n=1

∑Norb
i, j=1 Re

((
(Gn)i j −

∑
l

(Xopt
l )i j

iωn−λl

)
(Xopt

m )∗i j

(iωn+λm )2

)
√
E
({λl}Np

l=1

) . (28)

Therefore, both the function value and gradient of E
can be efficiently evaluated. The optimization of E ({λl}Np

l=1)
could be conducted with standard gradient-based optimiza-
tion solvers, such as the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method (see e.g., [47]).

Note that the SDR fitting step enforces that the Green’s
functions must be in the causal space, and is thus robust to
unphysical noises. Since the projection step may introduce bi-
ases especially when the uniform mesh in Eq. (14) is relatively
coarse, we find that the performance of SDR fitting is often
better when applied to the original noisy data, instead of the
data obtained after the projection.

E. Summary of the PES method

We summarize the PES method in Algorithm 1 below.

Algorithm 1. Projection-Estimation-Semidefinite relaxation (PES) method.

1: Parameters: real axis cutoff 
x and mesh size hx in the projection step; imaginary axis cutoff εp in the pole estimation step.
2: Input: Matsubara data {Gn}Nw

n=1, where Gn is an Norb × Norb matrix.
3: Output: Poles {λl}Np

l=1, weights {Xl}Np
l=1.

4: Projection of the noisy data {Gn}Nw

n=1: form a uniform mesh in Eq. (14), minimize Eproj({Pm}M
m=1) in Eq. (17), and then obtain.

the projected data {Gproj
n }Nw

n=1 using Eq. (18).
5: Estimation of the pole locations using the projected data {Gproj

n }Nw

n=1 via the AAA algorithm. The output is {λin
l }Np

l=1.
6: Semidefinite relaxation fitting through bilevel optimization: with the initial poles {λin

l }Np
l=1, we can conduct SDR fitting by

minimizing E ({λl}Np
l=1) in Eq. (26) to obtain the final poles {λl}Np

l=1 and weights {Xl}Np
l=1.

Computational cost. Both the projection and the semidef-
inite relaxation steps require the solution of convex opti-
mization problems that can be reformulated into semidefinite
programming (SDP) problems. The cost for solving the
convex optimization problems can depend on the SDP refor-
mulation, and the choice of algorithms. The default solver in
the CVX software package is SDTP3 [48], which implements
the interior point method with a primal-dual path-following
strategy [49] to solve SDP problems. In the primal-dual
interior point method, the cost is dominated by solving the

Newton equation to obtain the primal-dual search direction.
The unknown variables are Nv positive semidefinite matrices
each of size Nd × Nd , and the total number of variables is
NvN2

d . Therefore the cost of solving Newton’s equation can
be as large as O(N3

v N6
d ), and there is an additional cost in

forming the matrices in Newton’s equation (see e.g., [50]).
While the cost of solving Newton’s equation may be reduced
using preconditioned and iterative solvers in certain cases
[51], in general, the solution the SDP problem can become
expensive when both Nv and Nd are large.

075151-6



ROBUST ANALYTIC CONTINUATION OF GREEN’S … PHYSICAL REVIEW B 107, 075151 (2023)

In the projection step, Nv = M is usually large. Note that
the pole estimation step only uses the diagonal entries of the
Green’s function, and it is sufficient to only conduct projection
of these diagonal entries. If M is very large, we may further
reduce the cost by performing projection for each diagonal
entry of the Green’s functions separately. The semidefinite
relaxation fitting requires the solution of Nv = Np matrices
each of size Nd = Norb. Therefore it is important for the pole
estimation step to obtain a relatively small number of poles.
Furthermore, if the nondiagonal information of the Green’s
function is not needed (for example, if the goal is to calculate
the spectral function), the cost can be significantly reduced by
conducting the semidefinite relaxation step for the diagonal
entries only. Compared to solving the SDP problems, the
cost of the AAA algorithm for the pole estimation is usually
negligible.

Noiseless data. If the data is noiseless or if the Green’s
functions are causal by construction (e.g., Green’s functions
are approximated via causal diagrammatic methods), we can
skip the projection step, and conduct estimation and SDR
fitting directly. Furthermore, since the projection is only per-
formed on a finite grid along the real axis, the preprocessing
step may become detrimental to the accuracy when the grid
size is relatively small.

Parameters in AAA. Numerical results suggest that the
final result is often insensitive to the choice of the parameter
εp. For noisy data, the Lawson refinement step [52] (also
implemented in Chebfun), which is based on an iteratively
reweighted least-squares (IRLS) iteration can also be used
to improve the fitting result. Also, the AAA algorithm in
Chebfun [44] could be implemented with or without spec-
ifying the number of poles. Prior knowledge on the on the
number of peaks in the physical system can be used to
control the maximal number of poles obtained by the AAA
algorithm, and to enhance the robustness with respect to
noise.

III. RESULTS

In order to demonstrate the strengths of the PES method
and give a fair comparison with other methods, we present
various results using the Hubbard dimer system and the band
structure calculation of different materials. When testing the
performances of analytic continuation methods in the pres-
ence of noise, we will manually add multiplicative Gaussian
noise to the clean Matsubara data,

Gnoisy = Gexact · (1 + σNC (0, 1)).

Here NC (0, 1) is the complex-valued normal Gaussian noise
and σ is referred to as the (multiplicative) noise level of the
data. We also provide an implementation of the PES method
and its application to various examples, see Supplemental
Material [53].

A. Hubbard dimer

1. Setup of the Hubbard Dimer

The Hubbard dimer example used in [24] is a simple
but nontrivial test case, since it has multiple sharp fea-
tures while the true value of the Green’s function could be

obtained by the exact diagonalization. It is also a prototypi-
cal system for studying the excitation spectra of molecules.
There are only four orbitals in the Hubbard dimer, namely
|0↑〉, |0↓〉, |1↑〉, |1↓〉. The Hamiltonian is

Ĥ = Ĥ0 + Ĥ1, (29)

where

Ĥ0 = −
∑

σ∈{↑,↓}
t (ĉ†

0σ ĉ1σ + ĉ†
1σ ĉ0σ )

−μ(n̂0,↑ + n̂0,↓ + n̂1,↑ + n̂1,↓), (30)

Ĥ1 = (U + Ua)n̂0,↑n̂0,↓ + (U − Ua)n̂1,↑n̂1,↓

− U

2
(n̂0,↑ + n̂0,↓ + n̂1,↑ + n̂1,↓)

+ h(n̂0↑ − n̂0↓ + n̂1↑ − n̂1↓)

+μa(n̂0↑ + n̂0↓ − n̂1↑ − n̂1↓)

+ ha(n̂0↑ − n̂0↓ − n̂1↑ + n̂1↓), (31)

and

n̂iσ = ĉ†
iσ ĉiσ , i = 0, 1, σ = ↑,↓. (32)

The parameters are chosen the same as in [24], namely
t = 1, μ = 0.7, h = 0.3, Ua = 0.5, μa = 0.2, ha = 0.03,

β = 31.1, and U = 5.

2. Fitting results, with comparison to other methods

Let us first demonstrate the efficiency of the PES method.
We conduct analytic continuation for four sets of Matsub-
ara data with different noise levels: σ = 0, σ = 4×10−6, σ =
2.56×10−4, σ = 1.6384×10−2. In Fig. 1, we plot the spec-
tral function (evaluated at R + iη, η = 0.01) obtained from
analytic continuation with comparison to its true values. The
methods that we are comparing with PES are Nevanlinna [23],
Carathéodory [24] and MaxEnt [5]. We use a fine grid with
M = 200 in the projection step. We also implement the ES
method, in which we skip the projection step and conduct
the estimation and the SDR fitting directly. To make it a fair
comparison, we also perform Nevanlinna and Carathéodory
continuations on the projected data. Since the amplitude of
MaxEnt spectral functions are very small compared to the
delta peaks in the true spectral functions, we rescale the Max-
Ent results for comparison with true values and results from
other methods.

Our observation is summarized as follows:
(a) When the Matsubara data is clean (noise-level σ = 0),

all methods except the MaxEnt continuation could retrieve all
the peaks perfectly. The MaxEnt method can not deal with
sharp features. In all cases, MaxEnt can only result in two
(and up to three) significantly broadened peaks.

(b) Both the PES method and the ES method are robust
to noise. It can retrieve almost all features of the Green’s
function when the noise level is small (σ = 4×10−6 and
2.56×10−4), and can retrieve quite a few features when the
noise level is relatively large (σ = 1.6384×10−2). Particu-
larly, the band gap could be accurately resolved even in the
large noise scenario.
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FIG. 1. Spectral functions of the Hubbard dimer system obtained from PES, ES, Nevanlinna, Projection+Nevanlinna, Carathéodory,
Projection+Carathéodory, and MaxEnt methods. Blue line: true value. Red line: Calculation results from analytic continuation.

(c) For noisy data, PES behaves better than ES (see noise
level σ = 4×10−6 and 2.56×10−4), which implies that the
projection of noisy data is indeed helpful. For noiseless data
(σ = 0), ES behaves better than PES.

(d) Even when the data is only slightly noisy (noise level
σ = 4×10−6), the Nevanlinna and Carathéodory continuation
breaks down. This is due to the violation of the Pick crite-

rion [23]. The spectral function is no longer nonnegative and
multiple features are missing.

(e) If combined with the projection of data into the
causal space, the results of the Nevanlinna and Carathéodory
continuation are greatly improved. However, the quality of
Projection+Nevanlinna and Caratheodory is still not as good
as PES. This could be seen in all noisy levels. What is
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FIG. 2. The real part of nondiagonal element G13 obtained by different analytic continuation methods. Blue line: true value. Red line:
calculation results from analytic continuation.

more, the calculation results are still not guaranteed to be
causal, as shown in the results of Projection+Carathéodory
methods for relatively large noise (i.e., σ = 2.56×10−4 and
σ = 1.6384×10−2).

Since both PES method and Carathéodory continuation are
able to obtain nondiagonal entries of the Green’s functions,
let us show the calculation result of the real part of G13

(also evaluated at R + iη, η = 0.01) in Fig. 2, in which we
compare the performances of PES, ES, Carathéodory and
Projection+Carathéodory.

Similar to what we have learned from the results of spectral
functions, we have the following observations:

(a) The Projection+Carathéodory does not perform as
good as the PES and ES method. This could be seen at all
noise levels. The two high peaks are perfectly retrieved by the
PES and ES method but not by Projection+Carathéodory.

(b) At noise level σ = 1.6384×10−2, the noise is too large
and no method could recover all peaks perfectly.

With these observations, we conclude that the PES method
has the most robust performance, especially for analytic con-
tinuation of the matrix-valued noisy Matsubara data. The
causal projection could help cure the noise-sensitivity issue
of Nevanlinna and Carathéodory continuation, but does not

always guarantee a causal result, and not necessarily perform
as well as the PES method.

3. Importance of the pole estimation

Now we would like to demonstrate the importance of the
pole estimation step. In [35], the SDR step is implemented in
the context of hybridization fitting without the pole estima-
tion. A random initialization of poles could fail to converge
towards the global minimum of the loss function (see [[35],
Fig. 2]). In the context of analytic continuation, we also find
that a random selection of initial poles will not converge to its
true positions. Particularly, the high frequency features, i.e.,
the poles away from zero may not be identified accurately.

To illustrate the difficulty in the SDR step, we fix the
poles to be its true values except for λ1. The true value
of λ1 is −4.6361. We choose its initial value to be λin

1 =
−5.25,−5.00,−4.75,−4.50,−4.25,−4.00, and then con-
duct the SDR fitting step. The corresponding result of the
spectral function at the interval [−5,−4] is shown in Fig. 3
(top panel). We see that even such a small deviation from
the true value of λ1 can result in large errors in analytic
continuation.
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FIG. 3. Top panel: Calculation results of spectral functions
(red-dashed lines) with comparison to the true value (blue lines)
on the interval [−5, −4]. The initial value of λ1 are chosen
as λin

1 = −5.25, −5.00, −4.75, −4.50, −4.25, and −4.00. Bottom
panel: Landscape of E ({λl}Np

l=1) with respect to λ1 on the interval
[−6, −4]. Other poles are kept fixed at their true positions: −5.2479,
−4.5143, −3.1957, −2.6075, −2.4857, 0.8619, 0.9837, 1.6181,
3.4599, 3.3381, and 4.0255.

The reason behind this is as follows. Let us keep other
poles fixed at their true values and let λ1 vary from −6
to −4, and plot the landscape of the loss function E ({λl})
in Fig. 3 (bottom panel). We can see that the loss func-
tion is highly nonconvex. When λin

1 is outside the interval
[−5.25,−4.5], the loss function is essentially flat. In fact, if
λin

1 /∈ [−5.25,−4.5], the optimized semidefinite matrix Xopt
1

is a zero matrix. This will result in a vanishing gradient for λin
1

[see Eq. (28)], and therefore the optimization could not con-
tinue. In such an adversarial scenario, a random initialization
of poles cannot recover the true pole locations.

B. Bosonic response functions

In order to demonstrate that the PES method is also ap-
plicable to bosonic response functions, let us consider the
quantity b(τ ) = 〈n̂0↑(τ )n̂0↑(0)〉 of the Hubbard dimer model,
which indicates the same-spin susceptibility for the 0th site
of the system. This function is also used in [2] to test the
performance of analytic continuation methods for bosonic
functions. We use the Hubbard dimer example with the same
parameters as in Sec. III.1 other than taking U = 0.9.

Let us use b(ω) to denote the time-response function in the
frequency domain. We are trying to fit the Matsubara data of
b(τ ) into the following form:

b(ω) =
Np∑

l=1

xl

ω − λl
, (33)

where the quantities xl satisfies the semidefinite constraints
Eq. (5) and the constraint∑

l

xl = 1

Z

∑
r,s

|〈�s|n̂0↑|�r〉|2(e−βEs − e−βEr ) = 0. (34)

Here Norb = 1 since we are only considering the time response
function with respect to the 0th site. Note that b(ω) is a
response function. In the current physical system, its spectral
function Ab(ω) has four peaks, with two on the positive half

1.5 2.5
0

2

4

1.5 2.5 1.5 2.5 1.5 2.5

noise
level 0 1e-6 1e-4 1e-2

Ab(ω) v.s. ω

FIG. 4. Analytic continuation of bosonic response functions.

axis, and two on the negative half axis. In fact, b(ω) is an
odd function. Since the susceptibility is mirrored for negative
frequencies, we only choose to plot the positive half axis. Note
that since the Nevanlinna and Carathéodory continuation
are not applicable to bosonic functions, we can only compare
the PES method to the MaxEnt continuation method, for Mat-
subara data with different noise levels σ = 0, 10−6, 10−4 and
10−2. The result is shown in Fig. 4.

The MaxEnt method could not resolve the peaks of the
bosonic response function under any noise level. We can
see that when the noise level is small (σ = 0, 10−6, 10−4),
the PES method could recover both peaks on the positive
half axis. When the noise level is large (σ = 10−2), the PES
method could only recover one peak. This means that the
noise robustness of PES method for bosonic functions are
comparable to that for fermionic functions.

C. Band structure

We now applied the PES method to ab initio band structure
calculations of solids. We use two data sets obtained from
GW calculations: The matrix-valued Green’s functions for
crystalline Si in the equilibrium geometry, previously ana-
lyzed in Ref. [24], and for AgI obtained with a relativistic
exact two-component formulation in the one-electron approx-
imation (x2c1e) [54]. The data have been obtained by fully
self-consistent GW formulated in Gaussian Bloch orbitals, as
described in detail in Ref. [55]. Both AgI and Si employ the
gth-dzvp-molopt-sr basis [56] with gth-pbe pseudopotential
[57], using integrals generated by the PySCF package [58] and
a code based on ALPS [59]. Calculations are performed on a
6×6×6 grid [60] and interpolated using a Wannier interpo-
lation of Matsubara data [55] on 52 positive IR frequencies
[61,62] on a grid with 200 momentum points along a high-
symmetry path. The broadening parameter of η = 0.01 Ha ≈
3157 K is larger than the temperature of T = 0.001
Ha ≈ 316 K and correlation effects.

The analytic continuation is conducted as follows. Since
the number of orbitals is much larger than that in the Hub-
bard dimer example (Norb ≈ 70 for silicon and Norb ≈ 230 for
AgI), the computational cost will be too high if we conduct
the analytic continuation for the entire matrix. Therefore we
only implement the analytic continuation for the diagonal
elements. The projection step is conducted on each diagonal
entry separately with a fine grid of M = 12000 points. After
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FIG. 5. Band structure of Silicon and AgI, revealed by the analytic continuation. Data from Ref. [55]. White entries correspond to negative
(noncausal) spectral functions.

the projection step, we estimate the poles of each diagonal
entry using AAA algorithm, and then conduct the SDR fitting
of each diagonal entry separately.

We conduct analytic continuation for Matsubara data with
different noise levels σ = 0, 10−6, 10−4, and 10−2. The re-
sults of the spectral functions along a high symmetry path
reveal the band structure, and are plotted in Fig. 5. We place a

white marker in the plot if the corresponding component of the
spectral function becomes negative to indicate that the result
is unphysical.

Once again, we can see that Nevanlinna continuations
could result in negative spectral functions even for the clean
data. This is likely due to the numerical error in generat-
ing the Matsubara Green’s function using the GW method.
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However, Nevanlinna continuations combined with the causal
projection could largely resolve the issue of noise sensitivity.
PES method, ES method, and the Nevanlinna continuation
on projected data routine are all noise robust. Even at a rela-
tively large noise level σ = 10−2, the structure of the valence
and conduction bands can be recovered. This means that our
noise-robust analytic continuation methods could successfully
retrieve information such as the band gap from Matsubara data
even under a significant noise level.

IV. DISCUSSION

In this article, we have proposed a robust analytic contin-
uation method called PES, consisting of the following three
steps: causal projection, pole estimation, and SDR fitting
through bilevel optimization. The PES method is noise ro-
bust, could deal with matrix-valued Green’s functions and is
applicable to both fermionic and bosonic systems. As a by
product, we also find that the causal projection could signif-
icantly improve the performance of noise-sensitive methods
such as Nevanlinna and Carathéodory continuation. We have
also demonstrated these properties with extensive numerical
experiments.

Our current strategy of pole estimation is to perform AAA
algorithm on the projected data. Note that the AAA algorithm
is still an interpolation procedure can be susceptible to noise.
The causal projection alleviates this drawback, and in practice
it often provides a good enough initial guess for SDR fitting
even in the noisy scenario. A better strategy to estimate the
pole locations (e.g., by combining with the Prony method
[33]) may still be helpful in improving the overall perfor-
mance of the PES method. Moreover, the current SDP solver
(SDPT3) can be computationally expensive when the number

of variables is large. In such a case, more efficient solvers
based on first-order methods may reduce the computational
time in both the projection and the SDR fitting steps.

As we have shown, the PES method is useful for retriev-
ing the excitation spectra of molecules and band structures
in solids. These data feature multiple sharp peaks modeled
by poles on the real axis. It could also be used to perform
bath fitting in the dynamical mean field theory (DMFT) [35],
and it is applicable in lattice gauge theory (for example, see
[63,64]). Broadened spectral functions that cannot be resolved
into discrete peaks may be modeled by a relatively small
number of poles away from the real axis. This would require
modification of the definition of the causal space. Note that
in the noisy scenario, it may be very difficult to distinguish
the spectra described by a pole in the complex plane and the
spectra due to many poles on or near the real axis. Therefore
prior information such as the maximum number of complex
poles and approximate pole locations may become necessary.
This scenario will be investigated in future work.
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