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Resolving Hall and dissipative viscosity ambiguities via boundary effects
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We examine the physical implications of the viscous redundancy of two-dimensional anisotropic fluids, where
different components of the viscosity tensor lead to identical effects in the bulk of a system [Rao and Bradlyn,
Phys. Rev. X 10, 021005 (2020)]. We first reintroduce the redundancy, show how it reflects a lack of knowledge
of microscopic information of a system, and give microscopic examples. Next, we show that fluid flow in systems
with a boundary can distinguish between otherwise redundant viscosity coefficients. In particular, we show how
the dispersion and damping of gravity-dominated surface waves can be used to resolve the redundancies between
both dissipative and Hall viscosities, and discuss how these results apply to recent experiments in chiral active
fluids with nonvanishing Hall viscosity. Our results highlight the importance of divergenceless, magnetizationlike
contributions to the stress (which we dub contact terms). Finally, we apply our results to the hydrodynamics of
quantum Hall fluids and show that the extra contribution to the action that renders the bulk Wen-Zee action gauge
invariant in systems with a boundary can be reinterpreted in terms of the bulk viscous redundancy.
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I. INTRODUCTION

Viscosity in a fluid describes stresses developed in re-
sponse to time-dependent strains. Viscous forces can be either
dissipative or nondissipative. The former arise from the dis-
sipative viscosity, which for an isotropic fluid consists of the
familiar bulk and shear viscosities [1]. The latter come from
the time-reversal odd part of the viscosity tensor called the
Hall (odd) viscosity [2,3], which has been recently studied in
topological phases [4–19] and in classical chiral active fluids
[20–27].

In this paper, we expand on and explore the experimen-
tal consequences of the viscous redundancy highlighted in
Ref. [28]: In anisotropic systems, there are more viscosity
coefficients than independent bulk viscous forces. We show
that this reflects a lack of experimentally accessible micro-
scopic information in the bulk of the system. We derive
several implications for our understanding of hydrodynamics
in general, and resolve the redundancy by studying boundary
phenomena. We show that the dispersion of boundary waves
can be used as an experimental probe of viscosity coefficients
that cannot be distinguished in the bulk. Furthermore, we will
derive constraints on the degree to which power dissipation
and angular momentum conservation can be used to extract in-
dividual viscosity coefficients, absent additional microscopic
information.

The viscosity determines fluid flow through the Navier-
Stokes equation

∂t g j + ∂i
(
τ i

j + g jv
i
) = 0, (1)
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where g j is the momentum density, v is the fluid velocity, and
the stress tensor is

τ i
j = pδi

j − ηi k
j l∂kv

l , (2)

with pressure p. Roman indices index the Cartesian directions,
and repeated indices are summed. For conceptual clarity, we
maintain the natural orientation of upper indices for velocity
and lower indices for momentum. This is particularly impor-
tant since the stress tensor τ i

j is not symmetric for anisotropic
fluids; the first index of the stress tensor denotes which surface
on which internal forces act, while the second index denotes
the direction of the force. We give a complete account of the
notation used in this paper in Appendix A.

Since bulk flows are only sensitive to bulk viscous force

f η

bulk, j = ∂iη
i k
j l∂kv

l (3)

rather than the individual viscosities themselves, this implies
that the viscosity coefficients contain redundant information.

For the Hall viscosity, this can be seen in fluids with three-
fold or higher rotational symmetry, where the Hall viscosity
tensor takes the form

(ηH)i k
j l =ηH(δikε jl − δ jlε

ik ) + η̄H
(
δi

jε
k

l − δk
l ε

i
j

)
, (4)

where ηH is the isotropic Hall viscosity, η̄H is a second
angular-momentum nonconserving Hall viscosity, δ is the
Kronecker delta, and ε is the antisymmetric Levi-Civita sym-
bol. This leads to a bulk viscous force

fH
bulk = (ηH + η̄H)∇2v∗, (5)

where we have defined

v∗,i = εi
jv

j . (6)

The bulk viscous force is determined by the sum

ηH
tot = ηH + η̄H (7)
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of the two Hall viscosity coefficients, and so ηH and η̄H

[25,28] are redundant, as they have the same effect in the bulk
equations of motion. The difference

ηH
diff = ηH − η̄H (8)

does not enter into the bulk force, and can be shifted by a
contact [28] term

δτ i
j = C0∂

∗iv j (9)

in the bulk stress tensor, as shown explicitly in Appendix B.
As δτ i

j can be written as the curl of a vector, we can view
the contact term as a magnetization stress [7,29]. Analogous
to electrical magnetization, a uniform magnetization stress
has no effect in the bulk but will give rise to a force on
the boundary; thus we expect the boundary force to depend
on ηH

diff . This magnetization stress has previously been inter-
preted as a torsional Hall viscosity [5,7,30], which we revisit
in Appendix D.

Similar considerations also apply to the dissipative vis-
cosity. For an incompressible anisotropic fluid with threefold
(or higher-than-fourfold) rotational symmetry, the dissipative
viscosity is [28,31,32]

(ηD)i k
j l = ηsh(σ x � σ x + σ z � σ z )i k

j l + ηR(ε � ε)i k
j l ,

where � is the symmetric tensor product. Note that, as
discussed in Appendix B, in general there can also be an
additional contribution ηRC ∝ δ � ε to the viscosity tensor.
However, for an incompressible fluid this cannot be distin-
guished from η̄H, and so we will set ηRC = 0 for convenience.
See Ref. [33] for a related discussion. Furthermore, we ex-
clude the unique case of fourfold rotational symmetry where
the shear viscosity splits. The bulk dissipative viscous force is
proportional to the sum of dissipative viscosities,

fdis
bulk = (ηsh + ηR)∇2v, (10)

illustrating that ηsh and ηR are redundant. The dissipative
contact term (derived in detail in Appendix B 2)

δτ i
j = Cdis

(
∂ jv

i − δi
j∇ · v

)
(11)

gives a magnetization stress that shifts the difference

ηdis
diff = ηsh − ηR (12)

while leaving the sum

ηdis
tot = ηsh + ηR (13)

fixed. Consequently, considering dissipation fdis · v and using
only the bulk equations of motion [1] requires ηdis

tot > 0; mi-
croscopic information other than the flow is necessary to say
more [32]. In Appendix C, we derive this explicitly by com-
puting the dissipated power from the mass and momentum
continuity equations.

Unless the bulk stress tensor is directly measurable (which
requires knowledge of microscopics), redundant viscosity
coefficients are indistinguishable through bulk flow measure-
ments, which probe the force f η

bulk, j . As an example, we note
that if the internal angular momentum Lint and its associated
flux M int,k are known (e.g., in a liquid crystal [34] or spin-orbit
coupled electron fluid [35]), then for an incompressible fluid

angular momentum conservation

∂t Lint (r, t ) = ε
j
i τ

i
j + ∂kM int,k (14)

determines the antisymmetric part of the stress tensor. Com-
bined with Eq. (1), this determines ηH − η̄H and ηsh − ηR, as
shown in Appendix D. For example, in a fluid with no internal
angular momentum, Eq. (14) requires the antisymmetric stress
to vanish, telling us that ηR = η̄H = 0. For a nonrotationally
invariant example, in Appendix D 1 we contrast a quantum
Hall fluid with mass anisotropy and an isotropic quasi-2D
quantum Hall fluid in a tilted magnetic field. The low-energy
spectrum for these two systems are identical [36]. Further-
more, these two systems have the same bulk Hall viscous
forces. However, as we review in Appendix D 1, the two
systems have different viscosity tensors due to the magneti-
zation stresses [10,19]. Absent knowledge of the microscopic
Hamiltonian, bulk flow measurements cannot distinguish be-
tween these two systems. Thus, the viscous redundancy can be
experimentally resolved, and the value of the magnetization
stress fixed, if the microscopic internal degrees of freedom of
the fluid can be directly measured or inferred.

Similarly, Ref. [32] argued that the redundancy in the dis-
sipative viscosity can be resolved through measurements of
local heating. As we show in Appendix C, however, this relies
on knowing the microscopic form of the bulk energy current.
Without this microscopic knowledge, the local heating rate
suffers from the same ambiguity as the force density, essen-
tially since the local heating rate in the bulk is proportional to
fη

bulk · v. For the same reason, the local heating rate cannot be
used as a probe of the Hall viscosity.

In the absence of experimental or theoretical access to mi-
croscopic information, we can use boundary effects to resolve
the viscous ambiguity, as redundant viscosity coefficients
provide unique forces on a fluid boundary. Independently,
viscous boundary effects have been an interesting area of
study [37], especially for the Hall viscosity [21,38–43]. The
Hall viscosity ηH is often viewed as trivial in the bulk of an
incompressible fluid, since it can be absorbed into a redefini-
tion of the pressure; on the boundary it provides a nontrivial
effect [42,43]. In field theories of hydrodynamics [39], Hall
viscosity is encoded in geometric terms in the bulk and bound-
ary action for the fluid [9]. We will show how this reflects
the redundancy between ηH and η̄H. From an experimental
perspective, boundary effects of ηH have been studied through
free-surface waves [38,40], culminating in measurements of
the Hall viscosity in a colloidal chiral fluid [21].

Here we consider boundary effects to resolve the vis-
cous ambiguity. We interpret magnetization stresses through
the language of stress boundary conditions and describe a
trade-off between modified boundary conditions and no-stress
boundary conditions with a bulk contact term. We show
how surface-wave dispersion relations disambiguate redun-
dant viscosities, both dissipative and nondissipative. We relate
this to recent experiments examining Hall viscosity in chiral
active fluids. We then revisit the effective description of quan-
tum Hall fluids, showing how the boundary term added to the
action to preserve gauge invariance [9] can be interpreted as a
(gauge-noninvariant) magnetization stress, revealing another
perspective on this system.
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II. BOUNDARY FORCES

We begin by computing the boundary viscous forces for an
incompressible fluid. The boundary Hall viscous force is

f H
bdd, j = n̂i(τ

H)i
j, (15)

with ni the unit boundary normal vector. For an incompress-
ible fluid, we find from Eq. (4) that

fH
bdd =

[(
ηH

tot + ηH
diff

)(
∂svn + vs

R

)
+ ηH

totω

]
n̂

+
[(

ηH
tot + ηH

diff

)(
∂svs − vn

R

)]
ŝ, (16)

where ŝ = −n̂∗ is the boundary tangent vector, ω = εi
j∂iv

j

is the vorticity, and R = 1/κ is the local radius of curvature
of the boundary [9,21]. The pressurelike contribution ηH

totωn̂
in Eq. (16) is the bulk force restricted to the boundary and
can be captured by defining the modified pressure [38,39,41]
p̃ = p − ηH

totω. This reflects a more general sentiment from
previous works that the only bulk effect of the Hall viscosity
is to modify the pressure [21,42,43]. We see from Eq. (16)
that the boundary force has additional terms, including contri-
butions dependent on ηH

diff and therefore on C0.
Analogously, the boundary dissipative viscous force is

fdis
bdd = [(

ηdis
tot + ηdis

diff

)
∂nvn

]
n̂

+
[
ηdis

tot ω + (
ηdis

tot + ηdis
diff

)(
∂nvs − vs

R

)]
ŝ. (17)

The boundary force depends on both the bulk observable
ηdis

tot and the difference ηdis
diff . In order for the differences

ηH
diff and ηdis

diff to have a measurable effect on flows, we must
consider systems with a boundary.

A. Stress boundary conditions

We now relate the viscous redundancy to boundary con-
ditions on the stress tensor [12,37,41,44]. The no-stress
boundary condition, relevant for the free surface considered
later, is given by

n̂iτ
i
j = −pn̂ j + f H

bdd, j + f dis
bdd,j = 0 (18)

for a fluid with pressure p. For the sake of brevity, we ignore
surface tension, which would modify the tangential compo-
nent of Eq. (18) We see that both the tangent and normal
components of Eq. (18) depend on the differences ηdis

diff and
ηH

diff , and therefore the no-stress boundary conditions are sen-
sitive to the magnetization stresses and in turn to the contact
terms C0 and Cdis.

The normal component of Eq. (18) requires that the mod-
ified pressure balances the viscous forces at the boundary. It
was previously thought that balancing the tangential no-stress
condition for an isotropic fluid without dissipation would re-
quire finite curvature R [21,38]. Here, in contrast, we see the
tangential component in Eq. (18) can be balanced if ηH

diff =
−ηH

tot even if R → ∞.
The boundary force allows us to probe the values of

ηH
diff and ηdis

diff , which we can view as intrinsic properties of
the fluid. Alternatively, changes to the difference viscosities

(and hence changes to the magnetization stress) can be ab-
sorbed into a modification of the boundary conditions. This
trade-off reflects a broader statement that changing the mi-
croscopic definition of the magnetization stress in the bulk
modifies the notion of no-stress boundary conditions. This
has implications for unambiguously determining the viscos-
ity coefficients when the boundary conditions are not well
controlled (as in electron hydrodynamics) and when the bulk
stress tensor cannot be directly measured. We will see a con-
crete example of this trade-off in quantum Hall fluids. First,
we explore the implications of Eq. (18) for surface waves.

III. SURFACE WAVES

The viscous redundancy can be translated into a physical
effect by considering surface waves on an incompressible,
anisotropic fluid with Hall viscosity. We consider linearized
waves on the surface of a half plane with height h(x, t ) in the
presence of a gravitational field −gŷ. A linearized kinematic
boundary condition

∂t h = vy(y = h) (19)

ensures the continuity of the velocity at the boundary. We also
have the no-stress condition Eq. (18), where to linear order

n̂ = ŷ, (20)

ŝ = −x̂. (21)

We take a wave ansatz

v ∝ exp[i(kx − 
t )] (22)

and solve for the dispersion


(k) = ξ (k) − i�(k), (23)

where ξ (k) is the frequency and �(k) the damping rate.

A. Gravity-dominated waves

When the gravitational force is the dominant scale, we can
follow the approach of Ref. [38]. We introduce the dimension-
less parameter

β2 = ηdis
tot k

2/
√

gk. (24)

Gravity-dominated waves occur when β � 1, with all viscosi-
ties treated as small comparatively. In Appendix E, we show
that in this limit the dispersion relation for surface waves is
given by

ξ±(k) = ±
√

gk − 2ηHk2, �±(k) = 2ηshk2. (25)

We see that �±(k) depends on ηdis
diff through ηsh, whereas ξ±(k)

depends on ηH
diff via ηH. Note that we obtain the same results

to leading order in k, even without considering the viscosities
to be small. Equations (25) agree with Ref. [38] despite our
additional nonzero viscosity coefficients.

We thus propose that the damping rate gives an experimen-
tal measure of the difference between dissipative viscosities:

�±
k2

− ηdis
tot = ηdis

diff . (26)
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Similarly, ξ can be used to experimentally measure the differ-
ence between nondissipative viscosities:

ηH
diff = ±

√
g

k3/2
− ξ±

k2
− ηH

tot. (27)

Recall that ηH
tot and ηdis

tot can in principle be determined from
independent bulk measurements: Eqs. (26) and (27) allow us
to determine ηH

diff and ηdis
diff and therefore resolve the viscous

ambiguity.
It is possible for the damping �± = 0 even in a dissipative

fluid provided ηdis
diff → −ηdis

tot , i.e., if all dissipation is due to
rotational viscosity. Alternatively, we can get the same result
for a fluid with no rotational viscosity by viewing the magneti-
zation stress as modifying the no-stress boundary conditions;
it is only when the boundary conditions are fixed that �

resolves the dissipative ambiguity. This can also be viewed as
a modification of Eq. (18), interpreting Cdis as an anomalous
stress at the boundary.

Furthermore, when ηsh < 0, our surface waves grow ex-
ponentially in time. This implies that the fluid surface is
unstable at the linearized level. Thus, non-negativity of the
shear viscosity alone is dictated by stability of the free surface,
while the bulk equations of motion require ηdis

tot � 0; there is
no further constraint on ηR from this setup.

B. Chiral viscosity waves

We next consider g = 0 and find chiral waves propagating
along the boundary of the half plane, in agreement with pre-
vious work [21,41]. The details of the calculation are given in
Appendix E 2. To leading order in ηdis

tot , the dispersion is given
by


 = −2ηHk2 − 2ik2
√

|ηH|ηdis
tot . (28)

This indicates that the chiral waves move in a direction set by
the Hall viscosity. Importantly, it is only the component ηH

rather than ηH
tot that sets the direction. Hence, the direction

of the waves cannot be determined from bulk data alone
or, equivalently, that the expression above is sensitive to the
nondissipative contact term. Because we assumed that the
dissipative viscosities were small in this derivation, we do not
find a dependence of the dispersion relation on the dissipative
contact term at this order.

C. Chiral active fluids

So far, we have considered a fluid with an external mecha-
nism of time-reversal symmetry breaking, such as a magnetic
field. Recent experiments on colloidal chiral active fluids,
however, break time reversal via a local rotation rate � for
fluid particles [21]. This changes the constitutive relation for
the stress tensor to measure vorticity as a deviation from 2�.
As shown in Appendix F, this allows for a steady-state vor-
ticity which takes the value ωs = ηR�/ηdis

tot at y = 0. We also
introduce a frictional force μ between the fluid and the sub-
strate, which introduces a hydrodynamic length δ =

√
ηdis

tot /μ.
In the long wavelength kδ � 1 limit, where gravity is small
compared to other scales, we show in Appendix F that there

FIG. 1. Dispersion relation for surface waves with gravity and
time-reversal breaking from a local rotation rate �. The red plot has
g = 10, the blue plot has g = 1, and the orange has g = 1.2. The
other parameters are fixed at ηsh = 0.1, ηR = 0.5, ηH = 0.3, � =
−0.6, and μ = 1. We see that as g increases, the dispersion relations
begin to converge to the Lamb wave dispersion of ±√

gk

are two physical modes:


1g(k) = 2(iηH − ηsh )
2�δηR

iηdis
tot

k3 − igkδ√
ηdis

tot μ
,


2g(k) = −iμ − 2�ηR

ηdis
tot

kδ + igkδ√
ηdis

tot μ
. (29)

The 
2,g mode is strongly overdamped at small k. Despite the
inclusion of the additional Hall viscosity η̄H, the 
1,g=0(k)
mode matches the dispersion relation found in Ref. [21] in
the absence of gravity. We see that the fluid surface is stable
only if sign(ηHηR�) < 0 to ensure perturbations decay expo-
nentially in time. We see that the 
1,g=0 mode is sensitive to
contact terms via

ξ1,g=0(k) = −((
ηdis

tot

)2 − (
ηdis

diff

)2)�δk3

μηdis
tot

,

�1,g=0(k) = −(
ηH

tot + ηH
diff

)(
ηdis

tot − ηdis
diff

)�δk3

μηdis
tot

. (30)

Finally, we note that there is a crossover to gravity-dominated
waves for sufficiently large g (β � 1),


1/2,g → ξ∓ − i�∓ − (iμ + kδωs)/2, (31)

with ξ±, �± from Eqs. (25). We show the dispersion for vari-
ous g in Fig. 1.

IV. QUANTUM HALL REGIME

Finally, we examine quantum Hall fluids. The quantum
Hall fluid is dissipationless and rotationally invariant, and thus
we only consider the isotropic Hall viscosity. Although the
quantum Hall fluid is rotationally invariant, we will see that
there are boundary forces which have the appearance of mag-
netization stress. In this section, we work in 2+1 dimensions
and use Greek works for space-time indices (see Appendix A).
The Hall viscosity is given by [2,15,45]

ηH
WZ = ν s̄

4π
B, (32)
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where, ν is the filling fraction [46], −s̄ is the average orbital
spin per particle, and B is the magnetic field. The Hall viscos-
ity derives from the Wen-Zee (WZ) action [47]:

SWZ = ν s̄

2π

∫
M

A ∧ dω̄. (33)

The WZ term couples geometry [SO(2) spin connection ω̄]
to the U (1) electromagnetic vector potential A. Absent a
boundary, the variation of SWZ with respect to the geome-
try with fixed (reduced) torsion [7,48] yields the bulk Hall
viscous stress. To see this, we consider a strain perturbation
ea
μ = δa

μ + ua
μ(t ) with traceless spatially uniform deformation

tensor ua
μ = ∂μua(t ). The nonvanishing component of the spin

connection is [7,30,48] ω̄0 = 1
2εabeμ

a ∂t eb
μ and the correspond-

ing bulk stress response is

(τWZ)i
j = ηH

WZ(∂ iv∗
j + ∂∗ iv j ). (34)

With a boundary present, the WZ action Eq. (33) is no longer
invariant under U (1) gauge transformations of the vector po-
tential, and to preserve gauge invariance we must add the
boundary action [9]

SBT = ν s̄

2π

∫
∂M

A ∧ K, (35)

where the extrinsic curvature one-form K = nμ∂λsμdxλ

[9,39]. Equations (33) and (35) combine to yield the fully
gauge invariant action

S = ν s̄

2π

∫
M

ω̄ ∧ dA − ν s̄

2π

∫
∂M

A ∧ dα. (36)

Above, α is the angle between the boundary frame {n, s} and
ea
μ|∂M [49].

The first term in Eq. (36) is equivalent to Eq. (33) in the
bulk. The bulk stress response is therefore given by Eq. (34).
The first term in Eq. (36) does not contribute to the boundary
stress tensor. However, for a half-plane geometry, Ref. [39]
showed that the second term in Eq. (36) gives a viscous force

f BT
n = −2ηH

WZ∂svn (37)

normal to the boundary that modifies the boundary condi-
tions. We have chosen the gauge A = −Bydx [38]. The total
boundary force is now n̂iτWZ

i j + f BT
n n̂ j . We may interpret the

boundary term in Eq. (36)—and hence the boundary force—as
arising from a contact term, choosing (in this gauge) C0 =
−2ηH

WZ. To this end, we can reinterpret the stress tensor of the
system with the contact term added as

(τW Z )i
j + (τC0 )i

j = ηH
WZ(∂ iv∗

j − ∂∗ iv j ). (38)

The stress tensor is no longer symmetric, and appears to
break U (1) gauge invariance in the bulk. The effective stress
Eq. (38) reproduces the normal boundary force n̂in̂ jτWZ

i j +
f BT
n with a modification to the (already non-universal) tangen-

tial boundary condition. This is depicted in Fig. 2. The stress
tensor Eq. (38) corresponds to viscosities ηH = 0, η̄H = ηH

WZ:
All of ηH

tot comes from the rotational symmetry-breaking co-
efficient η̄H . In the language of Refs. [33,39], this means the
boundary term has the effect of shifting the Hall viscosity into
the odd pressure η̄H. Rotational symmetry is restored by the
additional tangential boundary force −n̂iŝ jτ

C0
i j .

FIG. 2. Schematic of the two views of quantum Hall fluids pre-
sented. Left: fluid with Hall viscosity and a modified normal stress at
the boundary and Right: fluid with Hall viscosity and a bulk contact
term, with zero normal stress at the boundary.

V. OUTLOOK

We have seen that waves at a free surface provide an exper-
imentally accessible way to distinguish between (dissipative
and Hall) viscosity coefficients that produce identical bulk
flows. Our work is directly applicable to experiments in chiral
active fluids. Additionally, as shown in detail in Appendix D,
the nondissipative magnetization stress is intimately related
to torsional Hall viscosity [5,30]. Our results thus serve as a
guide to probing torsional response in two-dimensional fluids.

Going forward, our approach extends to fluids with twofold
rotational symmetry, where additional anisotropic viscosities
appear. Additionally, exploring surface waves in compressible
fluids could be relevant for both classical active fluids and
composite Fermi liquid states. For compressible fluids, the
dissipative viscous redundancy involves ηsh, ηR, and the bulk
viscosity ζ , as we discuss in Appendix B 2. We expect that
the interplay between Hall viscosity and odd torque [33] will
play a larger role in the free-surface properties of compress-
ible fluids. Our analysis can be straightforwardly generalized
to analyze partial-slip boundary conditions [12] relevant for
electron hydrodynamics and quantum Hall transport. Lastly,
our work highlights the importance of local spin imaging [35]
as a probe of the viscous redundancy in electron fluids.
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APPENDIX A: NOTATION AND CONVENTIONS

We denote two-dimensional spatial indices by letters
i, j, k, l, ..., which label the Cartesian coordinates i ∈ {x, y}.
We use an Einstein summation convention to sum over con-
tracted indices, i.e.,

aibi = axbx + ayby. (A1)

For Sec. IV, we require an additional type of index for the
flat internal space, which we denote a, b, c, ... = 1, 2. In that
section, we also require a covariant notation for the external
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space-time manifold, and use Greek letters μ, ν = t, x, y to
denote external space-time indices.

In all sections, external spatial indices are raised and low-
ered with the flat space metric δi

j , since we are working with
linearized (time-dependent) perturbations around flat space.
Where possible, we retain the distinction between upper and
lower indices to emphasize the different meaning of the in-
dices in the stress tensor and viscosity tensor. As an example
of our notation, we translate the Navier Stokes equation from
Ref. [1] into our notation:

(∂t + v · ∇(ρv) + ∇ · τ) = 0


⇒ (∂t + vi∂i )(ρv j ) + ∂iτ
i
j = 0. (A2)

Using conservation of mass ∂tρ + ∂ j (ρvi ) = 0 and taking the
momentum density to be g j = ρ δk

j v
k , we recover Eq. (1):

∂t g j + ∂i
(
τ i

j + g jv
i
) = 0. (A3)

Since the stress tensor τ i
j is not symmetric for anisotropic

systems, it is important to distinguish between its two indices.
The first upper index refers to the normal vector to a fluid
parcel, while the second lower index refers to the direction of
the internal force. To avoid confusion between these indices,
we retain the notational distinction between upper and lower
indices in the stress and viscosity tensors despite working
in (and perturbing around) flat space for much of the work.
Furthermore, we note that to make contact with the hydro-
dynamics literature, our choice g j = ρ δk

j v
k implies that the

stress tensor τ i
j does not include corrections due to internal

spin current (i.e., it is not the Belinfante stress of Refs. [7,28]).
As we discuss in Sec. I and Appendix D, knowledge of the
microscopic degrees of freedom is necessary to perform the
Belinfante symmetrization.

APPENDIX B: REVIEW OF ANISOTROPIC VISCOSITY

In this Appendix, we give a more general review of the
anisotropic Hall viscosity, summarizing the setup of Ref. [28].
Without any rotational symmetry and in the absence of time-
reversal symmetry, the Hall viscosity tensor is generically
expressed in terms of six coefficients:

(ηH)i k
j � ≡ 1

2

(
ηi k

j � − ηk i
� j

)
= ηH(σ z ∧ σ x )i k

j � + γ (σ z ∧ ε)i k
j �

+ �(σ x ∧ ε)i k
j � + η̄H(δ ∧ ε)i k

j � + γ̄ (δ ∧ σ x )i k
j �

+ �̄(σ z ∧ δ)i k
j �. (B1)

Now when we look at the viscous forces produced in the
bulk by this Hall viscosity tensor, we see that the barred and
unbarred coefficients contribute to the same component of the
bulk viscous force. In particular, we have that the viscous
force density is controlled by the rank-two Hall tensor:

f H,η

j =
∑
i j′�′
�k

1

2

(
ε j′�′

(ηH)i k
j′ �′

)
∂i∂k (ε j�v

�) (B2)

≡
∑
ik�

ηik
H∂i∂k (ε j�v

�), (B3)

with

η
i j
H = 1

4

∑
k�

εk�
(
η

i j
k �

+ η
j i
k �

)
= (ηH + η̄H)δi j + (γ + γ̄ )σ i j

z + (� + �̄)σ i j
x . (B4)

The coefficient ηH is the usual isotropic Hall viscosity [50],
the coefficient η̄H breaks angular momentum conservation and
can appear in active (or anisotropic) systems, and the rest of
the coefficients are explicitly anisotropic and appear when a
system has less than threefold rotation symmetry.

1. Nondissipative contact terms

As mentioned in Sec. I, the difference ηH
diff ≡ ηH − η̄H

between the isotropic Hall viscosities does not enter into the
bulk force, it can be shifted by adding a divergenceless contact
[28] term

δτ i
j = C0∂

∗ iv j (B5)

to the bulk stress tensor. From the lens of the viscosity tensor,
the individual coefficients get shifted as

ηH → ηH + C0/2,

η̄H → η̄H − C0/2. (B6)

We note here a more general expression of the contact term

δτ i
j =

∑
k�

εikCj�∂kv
�, (B7)

with the more general form of the coefficient Cj� now as a
symmetric rank-two tensor:

Cj� = C0δ j� + Cxσ
x
j� + Czσ

z
j�. (B8)

In addition to the described effect of C0, this provides the ef-
fect of shifting the difference between all barred and unbarred
viscosities, and individually shifting the other viscosities as

γ → γ + Cz/2, γ̄ → γ̄ − Cz/2, (B9)

� → � + Cx/2, �̄ → �̄ − Cx/2. (B10)

We can continue viewing the contact terms as viscosities by
looking at the boundary force provided by the contact term
C0, for example,

f (C0, bdry) = C0

[(
∂svn + vs

R

)
n̂ +

(
∂svs − vn

R

)
ŝ
]
, (B11)

in the viewpoint that the contact term is a proxy for modified
stress boundary conditions, with the above expression dictat-
ing the stress at the boundary.

2. Dissipative viscosities and contact term

With higher than twofold rotational symmetry [51], the
dissipative viscosity tensor for a fluid can be parametrized as

(ηD)i k
j � ≡ 1

2

(
ηi k

j � + ηk i
� j

)
= ηsh(σ x � σ x + σ z � σ z )i k

j � + ηR(ε � ε)i k
j �

+ ηRC(δ � ε)i k
j � + ζ (δ � δ)i k

j �.
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The familiar bulk viscosity ζ and shear viscosity ηsh pro-
vide frictional forces in response to dynamic dilatations
and volume-preserving shears, respectively. The rotational or
vortex viscosity ηR breaks angular momentum conservation
(analogous to η̄H) and provides local resistive torques in re-
sponse to vorticity. Lastly, ηRC is another dissipative viscosity
that breaks angular momentum conservation. For an incom-
pressible fluid, ηRC and η̄H provide the same stress both in
the bulk and on the boundary, and so in our analysis we can
set ηRC = 0 without loss of generality [52]. In addition to
the nondissipative contact terms, there is another contact term
that plays a similar role, except for dissipative viscosities, and
amounts to considering an antisymmetric piece of the tensor
Ci j in Eq. (B8). Explicitly, this contact term is

δτ i
j = Cdis

∑
k�

εikε j�∂kv
�. (B12)

Similar to the nondissipative case, the bulk dissipative forces
only depend on the linear combination. This contact term
shifts three viscosities when added in this case:

ηsh → ηsh − Cdis/2,

ηR → ηR + Cdis/2, (B13)

ζ → ζ + Cdis/2.

For the case of an incompressible fluid with ζ = 0, the contact
term shifts the difference ηdis

diff ≡ ηR − ηsh, which is the case
considered in the main text. We also note that it appears
from the above that the contact term can generate a nonzero
bulk viscosity for incompressible fluid with ζ = 0. In prac-
tice, however, this is unobservable as the dynamic constraint
∇ · v = 0 for an incompressible fluid prevents the bulk vis-
cosity from contributing to the stress tensor. For the threefold
or higher rotationally symmetric case we consider in the main
text, the dissipative viscous force on the boundary is

fdis = [(
ηdis

tot + ηdis
diff

)
∂nvn

]
n̂

+
[
ηdis

tot ω + (
ηdis

tot + ηdis
diff

)(
∂nvs − vs

R

)]
ŝ. (B14)

Just as in the nondissipative case, the boundary force depends
not only on the bulk hydrodynamic observable ηdis

tot but also on
the difference ηdis

diff .

3. Contact terms as magnetization stress

Let us consider the stress due to the combined dissipative
and nondissipative contact terms,

δτ i
j = εik (Cjl + Cdisε jl )∂kv

l (B15)

= −εki∂k[(Cjl + Cdisε jl )v
l ] (B16)

= εkn∂kmi
jn, (B17)

where we have introduced the tensor

mi
jn = δi

n[(Cjl + Cdisε jl )v
l ]. (B18)

We see then that the contact stress δτ i
j is the curl of the vector

of tensors mi
jn. In analogy with electrodynamics, we can view

mi
jn as a magnetization, and hence δτ i

j is a magnetization
stress (by analogy with magnetization currents).

Since δτ i
j is divergenceless, in a uniform bulk it can only

provide physical effects at system boundaries, consistent with
the interpretation in terms of a magnetization. Conceptually,
the magnetization stresses are very similar to the energy mag-
netization currents in Refs. [7,53].

The density of power dissipated in an incompressible vis-
cous fluid (with the same symmetry considerations as in the
previous section). Microscopic considerations beyond hydro-
dynamics might modify this statement.

4. Stress boundary conditions

We detail the modified version of the no-stress boundary
condition, relevant for the free-surface fluid problem we con-
sider later on:

n̂iτ
i
j = 0. (B19)

For a fluid with pressure p, we have the following conditions
for the normal and tangential forces on the boundary:

n̂in̂
jτ i

j = − p + (
ηH

tot + ηH
diff

)(
∂svn + vs

R

)

+ ηH
totω + (

ηdis
tot + ηdis

diff

)
∂nvn = 0,

n̂iŝ
jτ i

j = (
ηH

tot + ηH
diff

)(
∂svs − vn

R

)

+ ηdis
tot ω + (

ηdis
tot + ηdis

diff

)(
∂nvs − vs

R

)
= 0. (B20)

APPENDIX C: POWER DISSIPATION AND THE TOTAL
DISSIPATIVE VISCOSITY

In this Appendix, we will explore the implications of the
viscous ambiguity on expressions for power dissipation and
entropy production in a fluid. We will follow the logic of
Ref. [1], generalizing where necessary to allow for anisotropic
and nondissipative viscosity. We will begin by considering
energy dissipation in an incompressible, anisotropic fluid, and
then generalize to incompressible fluids as well. For illus-
trative purposes, we will consider only fluids with particle
rotation rate � = 0; the case of � �= 0 can be treated by
similar methods, replacing ∇ × v → ∇ × v − 2�.

1. Incompressible fluids

As a starting point, let us consider an incompressible fluid
with nonzero ηsh, ηR, ηH, and η̄H. The equations of motion for
this fluid are

∂ρ

∂t
+ v · ∇ρ = 0, (C1)

ρ
∂v j

∂t
+ ρvi∂iv

j = −∂ j p + ∂i
(
ηi k

j �∂kv
�
)
. (C2)

The first equation expresses conservation of mass, while the
second equation is the Navier-Stokes equation with gen-
eral viscosity tensor. We have left the viscous force written
as ∂i(ηi k

j �∂kv
�) for bookkeeping purposes—as discussed in

Sec. I:

∂i
(
ηi k

j �∂kv
�
) = (ηsh + ηR)∇2v j + (ηH + η̄H)∇2v∗

j . (C3)
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We can use the equations of motion to derive an expression
for the rate of change of kinetic energy Ek of the fluid in a
volume V . First, note that

Ek =
∫

dV
1

2
ρv2. (C4)

Taking the time derivative, we have

Ėk =
∫

dV

[
1

2
v2 ∂ρ

∂t
+ δikv

iρ
∂vk

∂t

]
(C5)

=
∫

dV

[
−1

2
v2vi∂iρ − ρviv j∂ jvi

− vi∂i p + v j∂i
(
ηi k

j �∂kv
�
)]

. (C6)

Using the incompressibility of the fluid, we can rewrite the
first three terms as a total divergence to obtain

Ėk =
∫

dV

[
−∇ ·

(
1

2
ρv2v + vp

)
+ v j∂i

(
ηi k

j �∂kv
�
)]

.

(C7)

We would now like to perform a partial integration on the sec-
ond term. There is an ambiguity in how we do this, however,
due to the viscous redundancy. In particular, we can write

∂i
(
ηi k

j �∂kv
�
) = ∂i

(
ηi k

j �∂kv
� + εikC̃ j�∂kv

�
)
, (C8)

where C̃j� = Cj� + Cdisε j�, and Cj� was defined in Eq. (B8).
We see that C̃j� parametrizes the fact that the antiderivative
of ∂i(ηi k

j �∂kv
�) is determined only up to a divergenceless term

and is equivalent to our original viscous ambiguity. Inserting
Eq. (C8) into Eq. (C7) and integrating by parts yields

Ėk =
∫

dV

[
−∇ ·

(
1

2
ρv2v + vp − v j

(
ηi k

j � + εikC̃ j�
)
∂kv

�

)

− ∂iv
j
(
ηi k

j � + εikC̃ j �

)
∂kv

�

]
(C9)

= −
∮

dai

[
vi

(
1

2
ρv2 + p

)
− v j

(
ηi k

j � + εikC̃ j�
)
∂kv

�

]

−
∫

dV
[
∂iv

j
(
ηi k

j � + εikC̃ j�
)
v j∂kv

�
]

(C10)

≡ −
∮

da · jKE −
∫

dVW, (C11)

where we have defined the kinetic energy flux density

jKE,i = vi
(

1
2ρv2 + p

) − v j
(
ηi k

j � + εikC̃ j�
)
∂kv

� (C12)

and the local heating rate

W = (
ηi k

j � + εikC̃ j�
)
∂iv

j∂kv
�. (C13)

We see that the ambiguity C̃j� in defining the divergence-free
part of the stress tensor results in an ambiguity in the way we
separate kinetic energy loss into flux out of a volume (cap-
tured by jKE) and local dissipation (captured by W ). Writing
out W for the case at hand with C̃j� = C0δ j� + Cdisε j�, we

find that

W = ηsh(∂iv
j + ∂ jv

i )∂iv
j

+ ηR(∂iv
j − ∂ jv

i )∂iv
j − Cdis∂iv

j∂ jv
i (C14)

= ηsh(∂iv
j + ∂ jv

i )∂iv
j + ηR(∂iv

j − ∂ jv
i )∂iv

j

− Cdis

2
(∂ jv

i + ∂iv
j )∂iv

j − Cdis

2
(∂ jv

i − ∂iv
j )∂iv

j (C15)

=
(

ηsh − Cdis

2

)
(∂iv

j + ∂ jv
i )∂iv

j

+
(

ηR + Cdis

2

)
(∂iv

j − ∂ jv
i )∂iv

j (C16)

= 1

2

(
ηsh − Cdis

2

)(
∂iv

j + ∂ jv
i
)2 +

(
ηR + Cdis

2

)
(∇ × v)2.

(C17)

This is precisely the local dissipation rate predicted from
classical fluid dynamics with an effective shear viscosity
(ηsh − Cdis

2 ) and an effective rotational viscosity (ηR + Cdis
2 ).

To unambiguously relate the local heating rate to the vis-
cosity coefficients ηsh and ηR, the energy flux jKE needs to
be determined. Given a microscopic model for a fluid, such
as a continuum field theory, the energy flux may be uniquely
specifiable via a (minimal) coupling of the fluid to background
fields [7,31,54]. Such a procedure would fix a value for C̃ j�

and hence fix a relationship between W and the viscosity
coefficients [32]. However, absent such a microscopic model,
an experimental method for determining jKE independently of
W is needed to extract the viscosity coefficients from local
heating.

One might worry that changing the definition of jKE may
have implications for the stability of the fluid. In the standard
approach, bulk stability of a fluid necessitates that the Ėk � 0
when integrated over the entire fluid, assuming that the veloc-
ity of the fluid goes to zero at infinity (or at the boundary). In
this case, we have that the boundary integral of jKE goes to
zero, and

Ė tot
kin = −

∫
dVW =

∫
dV (ηsh + ηR)v · ∇2v, (C18)

where we used the vanishing of the velocity at the boundary of
the volume to integrate by parts. Since v · ∇2v is negative def-
inite, we see that the fluid is stable provided (ηsh + ηR) > 0,
as stated below Eq. (13). Crucially, we notice that our choice
of C̃j� in defining the energy flux does not play a role.

Note also that although the Hall viscosities and C0 do not
contribute to local heating, they do contribute to the kinetic
energy flux jKE. In fact, by direct substitution we have

v j
(
(ηH)i k

j � + C0ε
ikδ j�

)
∂kv

� = ηH[(v · ∇)v∗,i + (v × ∇)vi]

+ η̄Hvi∇ × v + C0v�∂
∗,iv�.

(C19)

This does not vanish. This means that the nondissipative vis-
cosity contributes to kinetic energy flux, even though it does
not contribute to local heating. Focusing on the contribution
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from the Hall viscous ambiguity, however, we have that

C0v�∂
∗,iv� = C0

2
∂∗,iv2 (C20)

is a total (exterior) derivative; for any nonsingular velocity
field, the integral of this term around any closed curve is
zero. Thus, the Hall viscous ambiguity has no impact on the
integrated kinetic energy flux. In this sense, C0 determines
the definition of the energy magnetization current familiar in
quantum Hall systems [29].

2. Compressible fluids

It is natural to ask what happens to these considerations
when we look at compressible fluids. To do so, we must allow
∇ · v �= 0, and so generically the bulk viscosity ζ �= 0 and
the additional torque ηRC �= 0. For a compressible fluid, the
conservation of mass takes the more general form

∂ρ

∂t
+ ∇ · (ρv) = 0, (C21)

which ensures that the Navier-Stokes equation Eq. (C2) re-
mains unchanged (aside from the inclusion of the more
general viscosity tensor). We can now look at the total energy
density for our compressible fluid,

ε = 1
2ρv2 + ρu, (C22)

where u is the thermodynamic internal energy per unit mass of
the fluid. We would like to examine the rate of change ∂ε/∂t .
For concreteness, we will consider a fluid where the dynamics
conserve energy locally, such that we expect

∂ε

∂t
+ ∇ · jE = 0 (C23)

for some definition of the total energy flux jE to be determined.
To proceed, it is useful to recall a few thermodynamic

identities. From the first law of thermodynamics, we have that
when the number of fluid particles is conserved,

du = T ds − pd
1

ρ
= T ds + p

ρ2
dρ. (C24)

To separate out heating from work done by the fluid, it will
also be useful to introduce the enthalpy per unit mass,

w = u + p

ρ
, (C25)

whose differential change is given by

dw = T ds + 1

ρ
d p. (C26)

Using these relations, We can compute

∂ε

∂t
=

(
1

2
v2 + u

)
∂ρ

∂t
+ 1

2
ρ

∂v2

∂t
+ ρ

∂u

∂t
. (C27)

From the first law Eq. (C24), we have

ρ
∂u

∂t
= ρT

∂s

∂t
+ p

ρ

∂ρ

∂t
. (C28)

We can insert this into Eq. (C27) and use our definition of w

to find

∂ε

∂t
=

(
1

2
v2 + w

)
∂ρ

∂t
+ 1

2
ρ

∂v2

∂t
+ ρT

∂s

∂t
. (C29)

Using next conservation of mass and the Navier-Stokes equa-
tion yields

∂ε

∂t
= −

(
1

2
v2 + w

)
∂i(ρvi ) + ρT

∂s

∂t

− ρv jv
i∂iv

j − v j∂ j p + v j∂i
(
ηi k

j �∂kv
�
)
. (C30)

We can now eliminate the gradient of the pressure using
Eq. (C26) to write

∇p = ρ∇w − ρT ∇s. (C31)

Additionally, note that

1
2v2∂i(ρvi ) + ρv jv

i∂iv
j = ∂i

(
1
2ρv2vi

)
. (C32)

Inserting Eqs. (C31) and (C32) into Eq. (C30) yields

∂ε

∂t
= − ∂i

(
1

2
ρv2vi + ρwvi

)

+ ρT

(
∂s

∂t
+ vi∂is

)
+ v j∂i

(
ηi k

j �∂kv
�
)
. (C33)

Up to now, we have followed the usual derivation (of, e.g.,
Ref. [1]) quite closely. To make further progress, we will
introduce the general antiderivative Eq. (C8) just as before and
integrate by parts. We find then that

∂ε

∂t
= −∂i

(
1

2
ρv2vi + ρwvi − v j

(
ηi k

j � + εikC̃ j�
)
∂kv

�

)

+ ρT

(
∂s

∂t
+ vi∂is

)
+ ∂iv

j
(
ηi k

j � + εikC̃ j�
)
∂kv

�

(C34)

= −∂i( jKE,i + ρuvi ) + ρT

(
∂s

∂t
+ vi∂is − W

ρT

)
,

(C35)

where we have reintroduced the kinetic energy flux jKE and
the local heating W from Eqs. (C12) and (C13), respectively,
allowing here for a more general ηi k

j �. To allow for thermal
conductivity in the fluid, we can also add and subtract to
Eq. (C35) the energy flux from thermal conductivity:

q = ∂i(κ
i j∂ jT ). (C36)

We can then write

∂ε

∂t
= −∂i( jE,i ) + ρT

(
∂s

∂t
+ vi∂is − W

ρT
− 1

ρT
∂i(κ

i j∂ jT )

)
,

(C37)

where we have introduced the total energy flux

jE,i = jKE,i + ρuvi − κ i j∂ jT, (C38)
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accounting for the flow of kinetic energy in the first term,
internal energy in the second term, and heat in the third term.
Using the conservation Eq. (C23), we have that

∂ε

∂t
+ ∇ · jE = 0, (C39)

∂s

∂t
+ v · ∇s = 1

ρT
(W + q). (C40)

The first term is a restatement of energy conservation, al-
though now the energy flux is defined by Eq. (C38); it depends
on the bulk viscous ambiguity C̃j� via Eq. (C12). As before,
this means we can only uniquely express the heating W in
terms of the bulk viscosity coefficients once we fix a def-
inition for the energy flux, either via an experiment or via
microscopic considerations such as coupling to background
geometric fields.

We see also that the local heating W indeed controls the
rate of change of entropy due to fluid friction. Inserting our
explicit form of the viscosity tensor into Eq. (C13), we find
that

W = 1

2

(
ηsh − Cdis

2

)(
∂iv

j + ∂ jv
i − δ

j
i ∇ · v

)2

+
(

ηR + Cdis

2

)
(∇ × v)2 +

(
ζ + Cdis

2

)
(∇ · v)2

+ 2ηRC(∇ · v)(∇ × v). (C41)

Note that the presence of nonzero ηRC entangles the ηR and ζ

contributions to the local heating. In fact, we can write

1

2

(
ηsh − Cdis

2

)(
∂iv

j + ∂ jvi − δi
j∇ · v

)2

+ (∇ × v ∇ · v)

(
ηR + Cdis

2 ηRC

ηRC ζ + Cdis
2

)(∇ × v
∇ · v

)
.

(C42)

To verify that the second law of thermodynamics is satis-
fied, we can examine the rate of change of the total entropy of
the fluid:

Ṡ =
∫

dV
∂ρs

∂t
(C43)

=
∫

dV ρ
∂s

∂t
− s∇ · ρv (C44)

= −
∫

dV ∇ · ρvs + 1

T
(W + q). (C45)

The first term is the total entropy flux out to infinity, while
the second term describes local entropy generation. Since we
are integrating over the whole fluid, and if we assume that
gradients of the fluid velocity vanish at infinity, the first term
integrates to zero. The second law of thermodynamics then
demands that ∫

dV
1

T
(W + q) � 0. (C46)

For this to be true for any flow, it must be the case that
each quadratic form appearing in the integrand must be non-
negative. This means, in particular, that

ηsh � Cdis

2
, (C47)

ζ + ηR � −Cdis, (C48)(
ηR + Cdis

2

)(
ζ + Cdis

2

)
� (ηRC)2, (C49)

tr(κ ) � 0, (C50)

det(κs) � 0, (C51)

where κs
i j = 1/2(κi j + κ ji ) is the symmetric part of the ther-

mal conductivity. Note that Eqs. (C47)–(C49) imply that

ηR + ηsh � 0, (C52)

ζ + ηsh � 0, (C53)

independent of the choice of energy flux (i.e., independent of
C̃i j). These same constraints were also derived in Ref. [31]
by considering damping of sound waves in the bulk. We see,
additionally, that a nonzero ηRC places an additional nontrivial
constraint on the energy flux. Note also that when ζ = 0, these
coincide with the stability conditions derived in Sec. III from
surface-wave stability.

To summarize, we see that for a general fluid, the bulk
equations of motion do not uniquely specify the stress tensor,
and hence do not uniquely specify the viscosity tensor. The
ambiguity is due to divergenceless contributions to the stress
tensor that do not enter into the bulk equations of motion.
From the point of view of energy flow, this results in an ambi-
guity in defining the energy flux in the system. We have shown
that the local heating rate depends not just on the viscosity
coefficients in the bulk but also on the choice of energy flux.
We emphasize that, given a microscopic description of the
fluid dynamics or, alternatively, a field theory description of
the fluid coupled to background geometric fields, it is possible
to define the energy flux and hence compute C̃i j from first
principles—in most textbook descriptions, C̃i j = 0.

APPENDIX D: STRESS AMBIGUITIES, CONTACT TERMS,
AND INTERNAL ANGULAR MOMENTUM

In this Appendix, we aim to emphasize that unless there
is a procedure to determine the antisymmetric stress or, in
particular, measure the internal angular momentum Lint in the
bulk of a system, the contact terms, and viscous ambiguity
must be present. Ambiguities in the stress tensor appear in
other contexts, most notably through the Irving-Kirkwood
formalism for treating the stress tensor for interacting systems
[6,55,56]. In that picture, for a two-body interaction, one
must define a path length between interacting constituents,
and there is an inherent ambiguity in choosing this path. In
Ref. [6], for example, the authors choose the geodesic distance
between particles, which is the standard approach and agrees
with the stress tensor in theories of gravity.

We can shift between various choices of this path by adding
divergenceless pieces to the stress tensor, which are very
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similar to the contact terms mentioned in the present paper
and in Ref. [28]. The main difference is that the divergence-
less terms arising through the Irving-Kirkwood formalism
are proportional to gradients in the fluid density and there-
fore are not viscous, whereas the contact terms of this paper
are manifestly viscous contributions to the stress. In the case
where interactions between particles are spin-orbit coupled,
such as in the active fluids we consider in the present paper,
the pertinent ambiguity relates to the antisymmetric part of the
stress tensor and, specifically, the internal angular momentum
generator Lint.

In this paper, we are able to tie the contact terms to phys-
ical observables and resolve the viscous ambiguity, showing,
for example, that different choices of the stress tensor yield
different dispersions for surface waves. We can then revisit
situations where the internal angular momentum Lint is un-
clear (such as in Ref. [21] where it is assumed to be constant),
and from purely boundary information learn more about the
true form of the bulk internal angular momentum.

1. Microscopic example of viscous ambiguity

As a further example of a system where the viscous am-
biguity is present, consider a quantum Hall system with band
mass anisotropy [19]:

HAM = 1
2 m̃abπ

aπb, ∇ × �A = Bẑ. (D1)

The inverse mass tensor is a symmetric and diagonalizable
matrix, so we choose a basis where

m̃ab = mδδab + mσ z
σ z

ab. (D2)

The Hall viscosity can be calculated [19] to find

(ηH)a c
b d = h̄ρ

4

[
δa

dε
e
b(mm̃ce) + δc

bε
e
d (mm̃ae)

]
. (D3)

In Appendix B, we introduced the Hall tensor Eq. (B4) as
a useful device to parametrize the total viscosities that con-
tribute to bulk forces; for this model, it is given by

ηH
ab = h̄ρ

4

(
1

m
m̃ab

)
= h̄ρ

4m

(
mδδab + mσ z

σ z
ab

)
. (D4)

Comparing with Eq. (B4), we can identify the coefficients

ηH
tot = h̄ρ

4m
mδ,

γtot = h̄ρ

4m
mσ z

. (D5)

We can also read off the viscosity components from the full
tensor Eq. (D4) and find which specific components the total
viscosities are comprised of

ηH
tot = ηH,

γtot = γ . (D6)

The point we make is that this Hall tensor matches that of
another system, a 3D system with tilted field anisotropy pro-
jected to two dimensions, with Hamiltonian [19]

HTF = 1

2m
πμπμ + 1

2
mω2

0z2 with ∇ × �A = Bxx̂ + Bzẑ.

(D7)

This model has a symmetric stress tensor as opposed to the
band mass anisotropic system, and so while the Hall tensors
for both systems are equivalent, the individual viscosity com-
ponents differ. When the tilted-field system is projected to two
dimensions, if we scale the density and out-of-plane magnetic
field as ρ∗ = ρ(1 − k2l2), B∗

z = Bz(1 − k2l2
z ), the system can

be viewed as a two-dimensional system with effective band
mass anisotropy:

meff
ab = m

(
1 − 1

2 k2l2 0
0 1 + 1

2 k2l2

)
. (D8)

The Hall tensor for the tilted field system then takes the form
[19]

ηH
ab = h̄ρ∗

4

(
1

m
meff

ab

)
. (D9)

The stress tensor is symmetric for the model Eq. (D1), so this
tells us that the total viscosities are entirely due to the fol-
lowing individual components: ηH

tot = ηH and γtot = γ̄ . Thus,
although the tilted field and anisotropic mass systems have
identical ηH

tot and γtot, they have opposite difference viscosities
γ − γ̄ . Therefore, the stress tensors for the two systems differ
by a divergenceless contact term. This serves as a quantum
example of the viscous ambiguity.

2. Resolution of ambiguity with internal angular momentum

If the internal angular momentum Lint of a system is
known, then the contact terms are fixed and the viscosities are
unambiguous. For a quantum fluid, the procedure to correct
the antisymmetric part of the stress with Lint is elaborated in
detail in Ref. [28]. Here, we summarize this construction for a
classical fluid. We assume translational invariance so we have
conserved momentum density:

∂t g j (r) = −∂iτ
i
j . (D10)

We also consider total angular momentum conservation,
where the total angular momentum is Ltot = Lorb + Lint and
the orbital angular momentum is expressed from the kinetic
momentum density as Lorb = εi

j (xigj ). Angular momentum
conservation is then stated as

∂t Ltot = ∂kM tot,k . (D11)

The tensor M tot,k parametrizes the flux of angular momentum
and is determined from microscopic considerations. This can
also be decomposed into orbital and internal parts:

M tot,k = εi
j (xiτ

jk ) + M int,k . (D12)

Combined with the continuity equation, this leads to a con-
straint on the antisymmetric stress:

∂t Lint (r, t ) = ε
j
i τ

i
j + ∂kM int,k . (D13)

The equation above tells us that angular momentum conser-
vation and knowledge of Lint and M int,k place a constraint on
the antisymmetric stress of the system and fixes the contact
terms. Furthermore, if were we to shift the angular momentum
flux tensor, we could shift the antisymmetric stress. For an
incompressible fluid, this shifts the difference between ηsh and
ηR, which is also the effect of the dissipative contact term. As
a result, if we can measure not only the fluid velocity but also
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the fluid angular momentum, then it is possible to uniquely
determine the viscosity coefficients with bulk measurements.
Otherwise, boundary measurements are necessary to experi-
mentally fix the viscosity coefficients.

There are experimental settings where this type of reso-
lution of the viscous ambiguity is feasible, namely, nematic
liquid crystals [34] and hydrodynamic electron fluids with
spin-orbit coupling [35]. These settings provide natural bulk
constitutive relations for internal angular momentum (the di-
rector for liquid crystal and spin for the electron fluid). We
leave a more detailed experimental proposal for the measure-
ment of individual viscosity coefficients and resolution of the
ambiguity in these settings for future work.

3. Torsional Hall viscosity and viscous ambiguity

In a system where torsion is treated as independent and can
be nonminimally coupled to, a torsional Hall viscosity ξH [5]
can arise, which is due to the stress response of the following
effective action:

Seff = ξH
∫

ea ∧ T bηab, (D14)

where ea = ea
μdxμ are the vielbeins introduced in Sec. IV, and

the torsion two-form T a is given by T a = dea + ωa
b ∧ eb with

spin connection ωa
b. If the torsion is fixed, the spin connection

is determined by the vielbeins. If we consider linear perturba-
tions of the vielbein ∂t ea

μ = ∂μva, the (spatial) stress response
from this action is given by

Ti j = −ξHεik∂kv
j = −ξH∂∗

i v j . (D15)

We recognize the form of this (viscous) stress in Eq. (B5); it
matches the stress due to a nondissipative contact term C0 =
−ξH. In short, the torsional Hall viscosity is a contact term
and produces a magnetization stress. It is therefore no surprise
that upon symmetrization of the stress tensor (disallowing
nonminimal coupling to torsion), the torsional Hall viscosity
ξH vanishes: such a constraint would determine individual
viscosities (and fix contact terms to be zero). Looking further,
we can use this knowledge to examine generic nonminimal re-
sponses to torsion, even in crystalline settings, where analogs
of the e ∧ T term have been studied [57].

APPENDIX E: MODIFIED LAMB SURFACE WAVES:
ANISOTROPIC VISCOSITY

In this Appendix, we provide a more detailed derivation
of the results of Sec. III for (incompressible) surface-wave
flow for a fluid with anisotropic odd viscosity in a half-plane
geometry, parameterized by y = h(x, t ) (see Fig. 3). In par-
ticular, we would like to see how the dispersion 
(k) of the
surface waves is modified by the presence of our anisotropic
odd viscosities, and how this is impacted by the dissipative
and nondissipative contact terms C0 and Cdis. We follow the
strategy outlined in Ref. [38], paying particular attention to
the redundancies between the viscosity coefficients. We
choose to frame the velocity field in terms of potentials φ

(velocity potential) and ψ (stream function) such that ψ is
the only source of vorticity:

vi = ∂ iφ + εki∂kψ. (E1)

FIG. 3. Half-plane geometry where the height of the half plane is
a surface wave with wave number k and frequency 
. Considering an
anisotropic viscous fluid, we try to find the dispersion relation 
(k).

For the incompressible flow we consider, the velocity poten-
tial φ is harmonic:

∇ · v = ∇2φ = 0. (E2)

Similarly, the Laplacian of the stream function gives the vor-
ticity:

∇ × v = −∇2ψ = ω. (E3)

In the bulk of the half plane, our viscous fluid must satisfy
the momentum continuity equation—which serves as the bulk
equation of motion:

Dt (ρvi ) = ∂t (ρvi ) + ρv j∂ jvi = −∂ jτ ji − ρgŷi. (E4)

Here we have used the classical constitutive relation gmom =
ρv to express the momentum density of the fluid in terms
of the density ρ. We consider the Eulerian perspective of
fluid flow and write the continuity equation in terms of a
fluid derivative Dt = ∂t + vi∂i [58]. As we are considering
linearized surface waves for an incompressible fluid, we can
set ρ = 1 for convenience and neglect the higher-order con-
vective term in the continuity equation to obtain the linearized
equation of motion:

∂t v = −∇p + ηH
tot∇ω + ηdis

tot ∇2v − gŷ. (E5)

As expected, the viscosities enter the equation of motion in
terms of the sums ηH

tot = ηH + η̄H and ηdis
tot = ηR + ηsh. Here

we notice that in the bulk nondissipative viscosities can be
thought of as a modification to the pressure of the fluid, in
particular, we can define the modified pressure [38,41]:

p̃ = p − ηH
totω. (E6)

This is a manifestation of the triviality of the Hall viscosity
in the bulk, since we can view it as a modification to the
pressure of the fluid [42,43]. We now see the equation of
motion simplifies to

∂t v = −∇ p̃ + ηdis
tot ∇2v − gŷ. (E7)

If we take the curl of the equation above, we find that the
vorticity ω satisfies

∂tω = ηdis
tot ∇2ω. (E8)

The bulk equation of motion must be supplemented by bound-
ary conditions, and for the problem at hand we are physically
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motivated [37] to choose a no-stress boundary condition at the
surface of the half plane and a kinematic boundary condition
on the velocity vector. These are, denoting the boundary as
Y = h(x, t ):

n̂μτμν |Y = 0,

vy|Y = ∂tY. (E9)

These are sometimes referred to as the dynamic (stress condi-
tion) and kinematic (velocity condition) boundary conditions,
respectively [38]. We now have the equations of motion that
are to be satisfied for our surface-wave flow, and proceed by
assuming a wave solution for the velocity potentials φ and ψ ,
where

φ =
(

−iA
k

|k|e|k|y + Be−|k|y
)

eikx−i
t ,

ψ = (Cemy + De−my )eikx−i
t . (E10)

We enforce that the velocity be zero as y → −∞, meaning we
need to set B = 0 and D = 0 [Re(m) � 0 by construction].
The incompressibility condition Eq. (E2) dictates that the
wave-number k parametrizes both the x and y dependence of
the potential φ, whereas ψ requires two parameters m and k.
To begin to apply the boundary conditions in terms of the
wave ansatz solutions in Eq. (E10), we explicitly write the
components of velocity according to Eq. (E1):

vx = (A|k|e|k|y + Cmemy )eikx−i
t ,

vy = −ik(Ae|k|y + Cemy )eikx−i
t . (E11)

The physical velocity is determined by taking the real part of
this expression. We see that the velocity potential φ appears
through the coefficient A and ψ through C—consequently,
the amplitude C needs be proportional to the vorticity. The
kinematic boundary condition tells us ∂t h = vy(x, h, t ) and
thus the explicit behavior of the surface. This gives us the
following relations for the height h(x, t ), the vorticity ω, and
the pressure p̃ from the velocity potentials:

h(x, t ) = k



(A + C)eikx−i
t ,

ω = eikx−i
t (k2 − m2)Cemy, (E12)

p̃ = 

k

|k|Ae|k|yeikx−i
t − gy.

The first expression comes from integrating the kinematic
boundary condition with respect to time, and keeping only
terms to lowest order in the wave amplitudes. The second
expression comes from substituting our ansatz for the velocity
into the definition of the vorticity. Finally, the third equa-
tion comes from writing Eq. (E5) in terms of φ and ψ , and
making use of Eqs. (E8) and (E2). We have thus reduced the
problem to finding relations for m, k, 
, and the amplitudes
A and C, and move to apply the bulk equations of motion and
no-stress boundary conditions. Our goal is find 
 as a function
of k, and thus to find how the dispersion is affected by the
viscosities and contact terms in our setup. We first proceed by
analyzing the bulk vorticity equation Eq. (E8):

∂tω = ηdis
tot ∇2ω. (E13)

If we substitute our wave ansatz Eq. (E12), this leads to the
relation

m2 = k2 − i
/(ηsh + ηR) (E14)

between dispersion 
 and the parameters m and k. The other
two unknowns of the problem are the amplitude coefficients A
and C. The no-stress boundary conditions in Eq. (E9) should
now supply us with enough information to estimate the dis-
persion and amplitudes for these surface waves.

In the bulk, we have the same setup as Lamb [37], with
the modified pressure p̃ playing the role of the pressure.
On the boundary, the Hall viscosity has a contribution sep-
arate from the pressure and the resulting stress boundary
conditions differ from Lamb’s setup [21,38]. Further, our sit-
uation diverges further from previous works as our additional
anisotropic Hall and dissipative viscosities (η̄H and ηR) differ-
entiate themselves from their usual counterparts (ηH and ηsh)
at the boundary.

We now unpack the no-stress conditions f bdry
j = n̂iτ

i
j =

0. In our linearized picture, the normal vector to the sur-
face is n̂ ≈ (0, 1) = ŷ. Above linear order, the normal vector
depends on the function h(x, t ) and is nonconstant. The state-
ment that there is no stress at the boundary gives us two
constraints. First, in the y direction we have

f bdry
y = 0,

↪→ p = 2ηsh∂yvy − ηH (∂yvx + ∂xvy) + η̄Hω. (E15)

Using the explicit expressions for pressure, vorticity and ve-
locity in Eqs. (E11) and (E12), this condition becomes

A{
2 + 2ηH
|k|k + 2i
k2ηsh − g|k|}
+ C{2i|k|
ηshm + 2k|k|
ηH − g|k|}

= 0. (E16)

Surprisingly, the anisotropic viscosities η̄H and ηR have can-
celed out leaving a normal boundary condition identical to
the cases considered in previous works [21,38]. Setting the
tangential component of the boundary force to zero yields

f bdry
x = 0,

↪→ 0 = ηsh(∂xvy + ∂yvx ) + ηH (∂yvy − ∂xvx ) − ηRω. (E17)

The anisotropic viscosities also do not enter this condition,
which simplifies to

2A[ηshik2 + ηH k|k|] + C[2ηH km + 2ik2ηsh + 
] = 0.

(E18)

We can combine the two conditions to form one overall
consistency condition which relates k, the dispersion 
, and
the viscosities. Since we are viewing 
 as a function of k,
and since the physical solutions are only determined by the
real part of Eq. (E11), we can restrict to k > 0 without loss
of generality; the k < 0 solutions are obtained by complex
conjugating our resultant expressions. Dividing Eq. (E16) by
(E18) gives, for k > 0:

gk − 
2 − 2
k2(ηH + iηsh )

2k2(ηH + iηsh )
= gk − 2
k(ηH k + iηshm)


 + 2k(ηH m + iηshk)
.

(E19)

075148-13



PRANAV RAO AND BARRY BRADLYN PHYSICAL REVIEW B 107, 075148 (2023)

We will use this equation to compute the dispersion 
(k)
in different limits, and examine how it is affected by the
anisotropic viscosity and contact terms [59]. Reorganizing
Eq. (E19) and discarding a trivial solution with m = k and

 = 0, we find a polynomial equation for m. Introducing
dimensionless quantities:

β2 = (ηsh + ηR)k2

√
gk

, α = ηH

ηsh + ηR
,

κ = m

k
and γ = ηsh

ηsh + ηR
. (E20)

We can now cast the consistency condition as

[κ + 1 − 2iα]

β4
+ (κ − 1)2(κ + 1)3 − 4(κ2 − 1)(α2 + γ 2)

+ 4γ (κ − 1)(κ + 1)2 − 2iα(κ − 1)(κ + 1)3

= 0. (E21)

1. Gravity-dominated waves

We first consider the case where gravity dominates so
β � 1, and rescaling our coordinates to x = βκ we find our
constraint equation to be

x + β − 2iαβ + (x − β )2(x + β )3 − 4β3(x2 − β2)(α2 + γ 2)

+ 4γ (x − β )(x + β )2β3 − 2iαβ(x − β )(x + β )3

= 0. (E22)

a. Zero viscosity solution

The zero viscosity limit α = β = γ = 0 gives the classical
dispersion relation for gravity waves [37,41]:


 = ±
√

gk. (E23)

b. Viscous corrections

We now keep up to second order in β, representing small
dissipative viscous corrections, and turn on a small nondissi-
pative correction α. We keep the order of limits in analogy
with Ref. [38], the dissipative viscosities are smaller than
g, i.e., that β � 1. The solution to the resulting constraint
equation is given by [60]

x± = A±β2 + C±,

C± = e∓iπ/4,

A+ = eiπ/4

2
[2γ − 2iα − 1],

A− = eiπ/4

2
[2γ − 2iα − i]. (E24)

The frequency in this case is given by


± = ±
√

gk − (2iγ + α)ηdis
tot k

2

= ±
√

gk − 2iηshk2 − 2ηHk2. (E25)

Despite the additional anisotropic viscosities in our picture,
this result matches exactly the case where ηR = η̄H = 0 con-
sidered in Ref. [41]. However, we can now interpret this

dispersion in terms of the total and differences between the
viscosities:


± = ±
√

gk − i
(
ηdis

tot + ηdis
diff

)
k2 − (

ηH
tot + ηH

diff

)
k2. (E26)

This dispersion is sensitive to both dissipative and nondissipa-
tive contact terms, as the differences between odd viscosities
and dissipative viscosities enter. To access the k < 0 regime,
we let k → |k|, α → −α in Eq. (E25) and find analogous
solutions.

2. Pure (odd) viscosity waves: g = 0

We now consider the case where g = 0 and the dynamics
of our surface waves are dominated by viscosity. We also
suppose that odd viscosity is playing the main role and ηH �
ηsh, ηR [61]. In this case, the constraint equation becomes

−
2 − 2
k2(ηH + iηsh )

2k2(ηH + iηsh )
= −2
k(ηH k + iηshm)


 + 2k(ηH m + iηshk)
. (E27)

This becomes (throwing out the trivial 
 = 0 solution)


2 + 2
k2(ηH + iηsh ) + 2
k(ηHm + iηshk)

+ 4k3(ηH + iηsh )(ηH − iηsh )(m − k)

= 0. (E28)

If we utilize the relation m2 = k2 − i
/ηdis
tot → 
 = i(m −

k)(m + k)ηdis
tot and throw out terms above first order in the

dissipative viscosities, we find

2iηdis
tot (m + k)2 + 4k2ηH = 0. (E29)

This leads to the following dispersion [keeping only the solu-
tion with Re(m) > 0 that decays into the bulk]:


 = −2ηHk2 − 2ik2
√

|ηH|ηdis
tot . (E30)

The dispersion above describes chiral waves moving in a
direction set by the odd viscosity. Importantly, it is only the
component ηH rather than the full odd viscosity ηH

tot that
sets the direction. This means that the direction of these
chiral waves cannot be determined from bulk data alone or,
equivalently, that the expression above is sensitive to the non-
dissipative contact term [62].

APPENDIX F: ACTIVE FLUIDS AND ANGULAR
MOMENTUM CONSERVATION

In many classical chiral active fluids [21], time-reversal
symmetry is broken by a local rotation rate � for fluid par-
ticles. In this case, for an isotropic and incompressible chiral
active fluid, the stress takes on a modified form due to angular
momentum conservation:

τ i
j = − pδi

j + ηsh(∂ iv j + ∂ jv
i ) + ηH(∂∗,iv j + ∂ iv∗

j )

+ ηRεμν (ω − 2�) + η̄Hδμν (ω − 2�). (F1)

We have effectively added two �-dependent terms to our
stress tensor. This corresponds to measuring vorticity of the
fluid in a locally rotating frame with frequency �. We treat �

as a fixed (constant) parameter of our setup, as in the physical
situation of a colloidal chiral mixture [21], and thus the modi-
fications to the stress tensor do not enter the bulk equations of
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motion. On the boundary, however, the �-dependent terms
provide a steady-state boundary force:

f bdry
j = −2(ηR ŝ j� + η̄Hn̂ j�). (F2)

The local rotation rate � causes an additional torque at the
boundary due to ηR and an additional pressure contribution
due to η̄H. In what follows, we consider how this alternate
form of time-reversal symmetry breaking could affect the
viscous surface waves in Appendix E. We also allow for
a longitudinal friction from a substrate f fric

j = −μv j to be
consistent with the experimental setup of Ref. [21]. This term
only enters the bulk equations of motion and stabilizes a
steady-state fluid velocity in the absence of external torques.
We will analyze surface waves for this fluid both with and
without gravity. To do so, we first begin by deriving the bulk
equations of motion.

1. Equations of motion

The linearized continuity equation for momentum, again
setting the density ρ = 1 for convenience, is now given by

∂t v = −∇ p̃ + ηdis
tot ∇2v − gŷ − μv, (F3)

where μ parametrizes the friction between the fluid and
the substrate. Following the experimental considerations of
Ref. [21], we have neglected the nonlinear term in the equa-
tions of motion. Taking the curl of Eq. (F3) leads to the
vorticity equation:

∂tω = ηdis
tot ∇2ω − μω. (F4)

2. Steady-state flow

The modifications we have made now allow for a steady-
state vorticity (zeroth order in the amplitude of surface
waves), whereas in the previous setup in Sec. II with � = 0
and μ = 0 we necessarily had ω = 0 at zeroth order. We can
look to solve the vorticity equation in the steady state, where
Eq. (F4) becomes (

ηdis
tot ∇2 − μ

)
ω = 0. (F5)

Again, in the half-plane geometry, y � 0, it can be verified
that

ωs = ηR

ηR + ηsh
(2�)ey/δ (F6)

satisfies the vorticity equation, where δ = ((ηR + ηsh )/μ)1/2

is the hydrodynamic length that appears in Ref. [21]. In
choosing the multiplicative constant, we have anticipated the
boundary conditions of Appendix F 3 below. The steady state
vorticity corresponds to a flow profile in the x direction (if
there was a y component, it would blow up as x → ∞):

vx = − ηR

ηR + ηsh
(2�)δey/δ. (F7)

We refer to the zeroth order velocity at the boundary as v(0)
x ≡

vx(y = 0).

3. Modification to surface-wave boundary conditions

We now consider the generalization of our earlier lin-
earized surface-wave boundary conditions to account for the
presence of a steady state, zeroth order fluid velocity. In terms
of our no-stress boundary condition, we have, by expanding
the normal vector and the stress tensor to first order:

niτ
i
j = (

n(0)
i + εn(1)

i

)(
τ

(0),i
j + ετ

(1),i
j

) = 0. (F8)

Here εn̂(1) is the first-order variation of the surface normal
vector (taking into account the variations in the fluid height)
and ετ (1)

μν is the first-order variation of the stress tensor (taking
into account the linearized fluid velocity). We consider our
surface-wave setup, where we treat the height y = h(x, t ) as a
small perturbation around y = 0. This means that the normal
vector can be written as

n̂ = n̂0 + εn̂1 ≈ ŷ − (∂xh)x̂. (F9)

Collecting the zeroth order terms in Eq. (F8), we have
n(0)

μ τ (0)
μν = 0 and hence

2ηR� − (ηsh + ηR)ωs = 0,

p0 = ηH
totωs − 2η̄H�. (F10)

The first equation is satisfied by our expression Eq. (F6)
for the zeroth order vorticity. The second tells us that with
the steady state vorticity Eq. (F6), we are able to set the
steady-state pressure outside of the half plane to p0 = ( ηHηR

ηdis
tot

−
η̄Hηsh

ηdis
tot

)(2�). At first order, we have that εn(1)
μ τ (0)

μν + εn(0)
μ τ (1)

μν =
0. Inserting Eqs. (F9) and (F1), this gives

p1 = 2ηsh∂yvy − ηH (∂yvx + ∂xvy) + η̄Hω1 + (∂xh)

× [
ηdis

diffωs + 2�ηR
] − h∂y

(
p0 − ηH

totωs
)
,

0 = ηsh(∂xvy + ∂yvx ) + ηH (∂yvy − ∂xvx ) − ηRω1 + (∂xh)

× [
ηH

diffωs + p0 + 2η̄H�
] − hηdis

tot ∂yωs. (F11)

We can apply the zeroth-order boundary conditions to find

p1 = 2ηsh∂yvy − ηH (∂yvx + ∂xvy) + η̄Hω1 + 2(∂xh)ηshωs,

0 = ηsh(∂xvy + ∂yvx ) + ηH (∂yvy − ∂xvx )

− ηRω1 + 2(∂xh)ηHωs − hηdis
tot ∂yωs, (F12)

where we have used the fact that from the zeroth-order bound-
ary conditions, p0 − ηH

totωs is constant at the boundary. The
kinematic boundary condition in this case, where we have a
zeroth order velocity, is given by

dh

dt
= ∂t h + v(0)

x ∂xh = vy(y = 0, x, t ). (F13)

4. Surface waves with �

We now continue on to consider surface waves with the
time-reversal symmetry breaking coming from an internal
rotation rate �. The bulk vorticity equation is still

∂tω = ηdis
tot ∇2ω − μω. (F14)

We can write the overall vorticity as a sum of the steady-state
contribution, which we just considered, and a contribution
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first-order in the amplitude of surface waves:

ω = ωs + ω1(x, y, t ). (F15)

To consider the first-order contribution to the vorticity, we
again introduce velocity potentials that parametrize our sur-
face wave Eq. (E10). The ansatz for the first-order vorticity is
then equivalent to Eq. (E12) and is given by

ω1 = eikx−i
t (k2 − m2)Cemy. (F16)

This satisfies the bulk equation of motion to linear order in the
perturbative parameter:

∂tω1 = (
ηdis

tot ∇2 − μ
)
ω1. (F17)

This leads to the modified condition:


 = iηdis
tot (m2 − k2) − iμ. (F18)

Our proposed form for the first-order velocities and vorticities
in Eq. (E12) still hold. The bulk equation of motions mandate
that the modified pressure now takes the form

p̃ = p1 − ηH
totω1 − μφ, (F19)

which differs from Eq. (E12) by the addition of −μφ, where
φ is the velocity potential, Eq. (E10). Additionally, the modi-
fied kinematic boundary condition Eq. (F13) implies that the
height h(x, t ) now takes the form

h(x, t ) = vy(y = 0, x, t )

−i
(k) + ikv
(0)
x

. (F20)

Now revisiting the first-order boundary conditions Eq. (F12),
we can substitute in our ansatz Eqs. (E10), (F19), and (F20)
for the velocities, modified pressure, and height, respectively.
The normal boundary condition in terms of surface-wave pa-
rameters becomes

A
[



(
kv(0)

x − 

) + gk + iμ

(
kv(0)

x − 

) + 2k2

(
kv(0)

x − 

)

+ 2k2
(
kv(0)

x − 

)
(ηH + iηsh + 2iηsh )ωsk

2
]

+ C
[
gk + 2k(ηHk + iηshm)

(
kv(0)

x − 

) + 2iηshωsk

2
]

= 0. (F21)

The tangential boundary condition becomes

A
[
2
(
kv(0)

x − 

)
k2(ηH + iηsh ) + 2k2ηHωs + ηdis

tot k∂yωs
]

+ C
[
(
 − iμ)

(
kv(0)

x − 

)

+ 2
(
kv(0)

x − 

)
k(ηHm + iηshk)

+ 2k2ηHωs + ηdis
tot k∂yωs

]
= 0. (F22)

The equations above Eqs. (F21) and (F22) represent our con-
sistency conditions for the wave setup with � and μ. To solve
the consistency conditions, we can combine Eqs. (F21) and
(F22) with Eq. (F18) to find three nontrivial solutions for m(k)
that can have Re(m) > 0. Due to the complicated nature of
the consistency condition, to make progress we will focus
analytically on three cases. First, we will consider surface
waves in the limit of long wavelength kδ � 1 and zero gravity.
Second, we will keep kδ � 1 and introduce gravity as a small
perturbation gδ � ηdis

tot �. Third, we will consider the large
gravity limit.

a. g = 0

We first consider the case without gravity, which was the
setup in Ref. [21]. In this case, in the long wavelength kδ � 1
limit, there are two modes which always decay into the bulk.
The first is, to third order,


1,g=0 = 2(iηH − ηsh )
2�δηR

μηdis
tot

k3 + O[(kδ)5/2]. (F23)

This mode matches exactly that found in the corresponding
long wavelength limit in Ref. [21], despite the addition of the
additional Hall viscosity η̄H [63]. It leads directly to the stabil-
ity condition sign(ηHηR�) < 0 for perturbations to decay in
time. Additionally, there is always an overdamped excitation
with dispersion given by


2,g=0 = − iμ − 2ηR�

ηdis
tot

kδ + eiπ/4(ηH + iηsh )

×
√

2�ηR

μ
(
ηdis

tot

)3/2 k3/2 + O[(kδ)2]. (F24)

This solution is effectively dominated by damping due to the
friction term in the limit kδ � 1. We will see below, however,
that for nonzero g this mode is essential to recovering the
second branch of our Lamb wave solutions Eq. (E25). Finally,
there is a third nontrivial solution that can decay into the bulk.
It corresponds to the solution

m3,g=0(k) = kηdis
diff

ηdis
tot

, (F25)

which decays into the bulk whenever ηR � ηsh. The disper-
sion relation is


3,g=0(k) = −iμ − 4i
ηRηshk2

ηdis
tot

+ O[(kδ)3]. (F26)

This mode is overdamped and almost completely stationary
at small kδ. We will see below that this mode is always
unphysical for g large enough (or, equivalently, for μ small
enough).

b. Small gravity case

We now consider the case where gravity is small and again
with the long wavelength limit kδ � 1. For the two main
physical modes, we find that the effect of gravity is, to lowest
order, to introduce a linear in k correction to the damping rate,
given by


1g(k) = 
1,g=0(k) − igkδ√
ηdis

tot μ
+ · · · ,


2g(k) = 
2,g=0(k) + igkδ√
ηdis

tot μ
+ · · · . (F27)

The effect of gravity is more drastic on the 
3 mode. First, we
find that to linear order in g, m3(k) is given by

m3(g) = k

ηdis
tot

(
ηdis

diff + ηHδg

ηR�

)
. (F28)

Stability of the fluid requires the second term to be strictly
negative. This implies that the 
3 mode will become
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FIG. 4. Dispersion (a) and damping (b) for modes 
g1 and 
g2 with ηsh = 0.1, ηR = 0.5, ηH = 0.3, μ = 1, ωs = −1, and g = 10. There is
a crossover from friction-dominated behavior at kδ � 0.025 to Lamb-wave-like behavior at kδ � 0.025.

unphysical even for small g, provided ηH and 1/ηR are large
enough. As such, we will neglect the 
3 mode in what fol-
lows.

c. Gravity g �= 0 case

To examine the surface waves for general g and k, let us
first return to the consistency conditions Eqs. (F21) and (F22).
Note that for ωs, μ → 0, this reproduces exactly the con-
sistency equation we obtained for gravity-dominated Lamb
waves in Eq. (E19). We thus expect that when gδ � ηdis

tot �, we
should recover the two branches of the modified Lamb wave
dispersion Eq. (E25). We examine the two modes 
1g(k) and

2g(k) in the limit of large gδ/ηtot

dis�. We expect that 
1g ∼
−√

gk and 
2g ∼ √
gk as � → 0. To see how this occurs, we

show in Fig. 4 the real and imaginary parts of 
1,2 for generic
values ηsh = 0.1, ηR = 0.5, ηH = 0.3, μ = 1, ωs = −1, with
g = 10. We see in Fig. 4(a) that for Re(
) there is a crossover
from nearly stationary behavior at small k to a dispersion
consistent with Re(
) ∼ ±√

gk at larger k. In Fig. 4(b), we
see that the damping rate Im(
) for the two modes depends
linearly on k for small k, and are approximately equal at
larger k, varying as O(k2). Expanding 
1g and 
2g to lowest
order in kδ captures the behavior of the dissipation at small k,
yielding


1g(k) = − igk

μ
+ · · · ,


2g(k) = −iμ + igk

μ
− 2ηR�

ηdis
tot

kδ + · · · . (F29)

Next, we can analyze the dispersion asymptotically for large
g. First, note that when both the dissipative and Hall viscosi-
ties are zero, the flow is pure potential flow (as in the case
� = 0). In this limit, we find the viscosity-free dispersion
relation:


0 = − iμ

2
± 1

2

√
4gk − μ2. (F30)

This describes propagating damped waves for k greater than
the threshold wave vector k∗ = μ2/(4g), and overdamped
stationary waves for k < k∗. In analogy with Appendix E 1,

we can compute the dispersion perturbatively for small β =√
ηdis

tot k2/(gk)1/4, which corresponds to a large-g expansion. In
full analogy with our modified Lamb waves of Appendix E 1,
we find


g→∞ = ±
√

gk − iμ

2
− 2k2(ηH + iηsh ) − 1

2
kδωs. (F31)

The first two terms correspond to the first two terms in the
Taylor expansion of 
0 in Eq. (F30) for large g. The second
term is identical to the modification to the Lamb wave disper-
sion found in Appendix E 1. Finally, the last term gives the
correction to the dispersion due to the nonzero angular veloc-
ity � of the fluid particles. This matches with our observations
in Fig. 4. Lastly, in Fig. 5 we show the imaginary part of 
1,2g

for the three different values of g discussed in Sec. III C. We
see that for small k, the damping rate for 
1g always goes to
zero, while the damping rate for 
2g always goes to μ.

FIG. 5. Corresponding damping Im(
)(k) for surface waves
with gravity with time reversal breaking from a local rotation rate
� to accompany Fig. 1. The red plot has g = 10, the blue plot has
g = 1, and the orange has g = 1.2. The other parameters are fixed at
ηsh = 0.1, ηR = 0.5, ηH = 0.3, and μ = 1.
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