
PHYSICAL REVIEW B 107, 075146 (2023)

Learning of error statistics for the detection of quantum phases
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We present a binary classifier to detect gapped quantum phases based on neural networks. By considering the
errors on top of a suitable reference state describing the gapped phase, we show that a neural network trained on
the errors can capture the correlation between the errors and can be used to detect the phase boundaries of the
gapped quantum phase. We demonstrate the application of the method for matrix product state calculations for
different quantum phases exhibiting local symmetry-breaking order, symmetry-protected topological order, and
intrinsic topological order.
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I. INTRODUCTION

The classification of quantum phases at zero temperature is
one of the most important tasks in condensed matter physics.
While phases characterized by local order parameters can
be successfully described in terms of spontaneous symme-
try breaking [1], the discovery of topological phases without
local order presents a significant challenge in this endeavor.
Here, we show that the notion of an order parameter can be
transferred to such exotic phases also, by representing the
classification of ground states of gapped quantum phases as
a binary classification problem for a neural network.

In recent years, algorithms based on machine learning have
also been found useful in the study of condensed matter
physics, where different supervised and unsupervised algo-
rithms have been employed to analyze both classical [2,3] and
quantum phase transitions [4–8], to compute the ground-state
wave functions [9,10] and their properties [11]. While efforts
are in progress to apply classical machine learning algorithms
to gain insights into quantum systems, there has also been in-
terest in the emerging field of quantum machine learning [12],
where quantum variants of the classical machine learning
concepts are being proposed with applications in condensed
matter physics [13] and quantum information [14,15].

In this paper, we introduce an approach to quantify the
amount of local or nonlocal order in a quantum state, based
on a machine learning method. Our approach is motivated
by the characterization of errors on top of an ordered ref-
erence state in the recently introduced operational definition
for topologically ordered quantum phases [16]. By employ-
ing conventional neural networks, we propose a classification
scheme resulting in a binary classifier capable of detecting
gapped quantum phases. In Sec. II, we briefly review the
operational definition and present possible generalizations.
Furthermore, we outline the machine-learning-based method
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capable of detecting different gapped phases. To demonstrate
the above-introduced method, we apply this to detect quan-
tum phases with local order in Sec. III, symmetry-protected
topological (SPT) order in Sec. IV A, and intrinsic topologi-
cal order in Sec. IV B and their associated phase transitions.
Furthermore, in Sec. V, we discuss the ability of a neural
network trained on the errors of one quantum phase to detect
another quantum phase with similar error correlations. Finally,
in Sec. VI, we summarize the results while also providing
few directions that can be further explored using our machine-
learning-based method.

II. LEARNING FROM THE OPERATIONAL
DEFINITION OF TOPOLOGICAL ORDER

In the following, we introduce our method to detect gapped
quantum phases, which is inspired by the operational defini-
tion for topological order [16]. We therefore briefly review
this approach and extensions to phases exhibiting local order
[17]. Essentially, this operational definition interprets topo-
logical order as the intrinsic ability of a system to perform
topological error correction and classifies topological phases
in terms of reference states without any errors. An important
step is the identification of errors on top of the reference state.
Following the identification of the errors, it further requires
defining an error correction circuit which annihilates all er-
rors, thereby projecting back to the reference state. States are
classified as topologically ordered if the quantum state under
consideration can be corrected to the reference state by a
circuit whose depth remains finite in the thermodynamic limit,
i.e., the time required to complete the error correction does
not diverge. To summarize, the operational definition has two
parts: (i) identification of an appropriate excitation basis for
the errors with respect to a reference state and (ii) an appro-
priate error correction circuit leading to the computation of the
circuit depth. In this paper, we provide a drastic simplification
of the second step in the operational definition, by removing
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the requirement to construct an error correction circuit and
replacing it with a machine learning approach.

The operational definition can be generalized towards
phases exhibiting symmetry-protected topological order and
phases undergoing spontaneous symmetry breaking exhibit-
ing local order parameters, by imposing symmetry constraints
on the error correction circuits [17]. In the following, we will
also discuss how these generalizations can be implemented
within our machine learning approach.

The depth of the error correction circuit fundamentally
captures the deconfinement of the errors, which signals the
breakdown of the ordered phase. This deconfinement is con-
tained in the correlations between the errors and provides
a natural way to employ machine learning for the classifi-
cation of quantum phases. Neural-network-based algorithms
belonging to the class of supervised machine learning algo-
rithms have been effective in capturing correlations in data
and therefore are suitable candidates for the task of learning
the correlations between the errors. The key advantage of
employing such neural-network-based classifiers is not only
that they are efficient at learning the correlations but also that
the trained neural network is capable of classifying errors
sampled on a wave function which is different from the one
used for training the neural network. In other words, given
any state and the errors obtained by sampling in the excitation
basis defined with respect to a reference state, the trained
neural network is capable of predicting whether the given state
belongs to the same phase as the reference state.

Learning the properties of the error correlations requires
the generation of suitable training data. For this, we weakly
perturb the reference state as well as a disordered param-
agnetic state, for which we know which phase the resulting
states are in. Using a Monte Carlo sampling [17], we obtain
simulated measurement data representing snapshots of the
errors in the perturbed ground state. This training set is then
fed into a deep neural network (DNN; see Fig. 1), which is
trained using standard machine learning algorithms for clas-
sification problems. The binary output variable of the DNN is
given by the classification into the ordered phase connected
to the reference state (1) or the disordered paramagnet (0).
The trained network is then used to predict at which strength
of the perturbation the errors become deconfined, i.e., where
the phase transition takes place. The prediction probability
for the ordered state, P1, can then be interpreted as a binary
classifier for the phase boundary, as at criticality, the neural
network becomes confused [18] and P1 ≈ P0 ≈ 0.5. Although
for the rest of the analysis we employ a DNN to quantify
various quantum phases, in Appendix C we show that the con-
volutional neural network (CNN) architecture is also capable
of quantifying gapped phases when trained on the errors of
the same. This further provides evidence that various neural
network architectures that effectively learn correlations in the
data are probable candidates for quantifying gapped quantum
phases when trained on their errors.

III. DETECTING QUANTUM PHASES
WITH LOCAL ORDER

Quantum phases with local order respect the Landau
symmetry-breaking principle, and thus the phase transition

FIG. 1. Scheme for machine learning of gapped quantum phases.
(a) As the first step, the ground-state wave function is sampled in the
error basis, yielding a classical set of measurement results for each
sample. (b) The error sets sampled deep inside the ordered (trivial)
phase are labeled as 1 (0) and are passed as inputs to train a deep
neural network (DNN). To extract the critical point, we sample the
wave function at intermediate strengths h, i.e., outside the regime
used for the training of the DNN. The prediction probability for
the ordered phase, P1, can serve as a binary classifier for the phase
transition.

can be characterized by a local order parameter. One of the
paradigmatic models encoding such a phase transition is the
Ising model in the presence of a transverse field. Here, we con-
sider a spin- 1

2 chain with open boundary conditions with an
antiferromagnetic (AFM) nearest-neighbor interaction (J >

0) in the presence of a transverse field, whose Hamiltonian
is given by

HTFI = J
N−1∑

i

σ i
zσ

i+1
z − hx

N∑

j

σ j
x . (1)

This model has been extensively analyzed in the litera-
ture, and it is well known that in the limit of J � hx, the
ground state exhibits antiferromagnetic order, while in the
limit of J � hx, the ground state is a paramagnet with the
spins aligned in the x direction. The critical point for the
phase transition is located at hx/J = 1. For convenience, we
set J = 1 in the following.

A. Errors associated with the AFM phase

To apply the machine learning procedure, we begin by first
introducing the errors associated with the AFM phase. As
within the operational definition for topological order [16],
the errors can be found using an operator expansion on top
of a suitable reference state. For phases exhibiting local order,
the reference state is given by an eigenstate of the operator
representing the order parameter that maximizes its value. For
HTFI, the two possible states are given by |1010 · · · 10〉 or by
|0101 · · · 01〉, where 0 and 1 denote a spin pointing down and
up, respectively. One can choose either of these two states and
construct errors by applying local σx operators to the reference
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FIG. 2. Detecting antiferromagnetic order using machine learning. (a) Classification probability P1 for antiferromagnetic order close to the
phase transition and outside of the training regime. The probability of measured errors belonging to the AFM phase is 1 below the transition
and approaches zero above the critical point. The inset shows the finite-size scaling analysis for the critical value, leading to hc = 1.001(1).
(b) P1 for a DNN trained on the errors of the AFM phase of the transverse field Ising model is used to detect the antiferromagnetic order in
the presence of a longitudinal field. (c) The same DNN is used to map out the AFM phase in the extended bosonic SSH model. The captured
results in (b) and (c) are shown for N = 100 spins.

state, which are giving rise to domain-wall excitations on top
of the ground state, which appear when two neighbors have
the same spin. As the transverse field is turned on, the per-
turbed ground states exhibit virtual domain-wall excitations.
Below the transition, the domain walls are bound, while above
the transition the domain walls become free and proliferate
through the entire system. Hence the phase transition can be
understood as a confinement-deconfinement transition of the
domain walls, and the correlations between the domain walls
can be used to characterize the AFM phase.

Having introduced the notion of domain walls, i.e., errors
associated with the AFM phase, we now outline the proce-
dure to generate errors at a finite strength of the transverse
field hx. For this, we consider the matrix product state (MPS)
representation of the perturbed ground state computed using
the density matrix renormalization group (DMRG) algorithm
using the ITENSOR library [19]. We sample the MPS computed
at various strengths of the transverse field in the σz basis, i.e.,
given an MPS we simulate the measurement outcomes using a
Monte Carlo technique as in Refs. [17,20]. From the sampled
data, we construct the errors by observing the nearest neighbor
of a given site and denote the presence (absence) of domain
wall with 1 (0).

B. Training a DNN with errors

To recognize the correlations between the errors, we turn to
supervised machine learning algorithms and employ a DNN.
A DNN is characterized by an input layer, an output layer, and
multiple hidden layers with each layer consisting of multiple
nodes. These nodes are further connected by edges which
carry a weight. Here, we consider an all-to-all connected
DNN, i.e., all the nodes are interconnected. As DNNs belong
to the class of supervised machine learning algorithms, a
labeled data set is required for the purposes of training, i.e.,
optimizing the variable weighted edges to map the input data
to their appropriate labels. To estimate the performance of a
DNN, we randomly split the labeled data set into training and

validation data sets, with the former being used for training
and the latter being used to benchmark the training.

Having introduced the key ingredients of DNNs, we now
outline the procedure to train the errors of the AFM phase at a
finite field strength hx. For our training procedure, we need
labeled inputs to train and validate the DNN. For this, we
sample the ground state of Eq. (1) at various hx deep inside
the AFM phase, i.e., 0.25 < hx < 0.75, and deep in the trivial
phase, i.e., 1.5 < hx < 2, to construct the respective errors.
We then label the errors in the AFM (trivial) phase with 1
(0) for the purpose of training the DNN. For details on the
structure of the DNN, a binary classifier, and other associated
training parameters, see Appendix A.

C. Detecting quantum criticality using a DNN

In the following, we will be interested to determine the
critical point of the phase transition between the AFM and
the paramagnet using our trained DNN. For this, we sample
the MPS representation of the ground-state wave function
at different intermediate values of the field strength hx. The
resulting errors are classified by the trained DNN, resulting
in a probability P1 for the classification in the ordered phase.
Likewise, P0 represents the probability for the classification
in the disordered phase. As shown in Fig. 2(a), P1 is very
close to 1 until one gets very close to the quantum phase
transition. The location of the phase transition can be further
narrowed down by a finite-size scaling analysis. The inset of
Fig. 2(a) shows the position of the maximum of ∂P1/∂hx,
predicting the critical point to be located at hx = 1.001(1),
which is in excellent agreement with the exact value of hx = 1.
Remarkably, the accuracy of the DNN on the training and the
validation data set is close to 100% leading to negligible error
bars in the finite-size scaling analysis.

D. Detecting antiferromagnetic order
under different perturbations

One of the significant features of the introduced machine
learning method is that the trained DNN can now be utilized to
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detect antiferromagnetic order under different perturbations.
To demonstrate this, we consider two cases: (a) the Ising
model in the presence of both a transverse and a longitudi-
nal field and (b) an extended bosonic Su-Schrieffer-Heeger
(SSH) model. Here, we detect the phase boundaries for AFM
order based on the DNN trained on the Ising model in only a
transverse field. Again, we sample the perturbed ground states
to construct the errors formed by domain-wall excitations and
pass the Monte Carlo samples into the trained DNN for binary
classification in terms of the classification probability P1.

1. Ising model with transverse and longitudinal field

As the first case, we add an additional longitudinal field hz

to the transverse field Ising model HTFI of Eq. (1), i.e.,

HTLFI = HTFI − hz

N∑

j

σ j
z . (2)

We sample the MPS representation of the ground-state
wave function obtained using the DMRG algorithm at dif-
ferent strengths of hx and hz. We construct the corresponding
errors from the sampled wave function and provide these as
input to the trained DNN to obtain the classification probabil-
ity P1 for AFM ordering. The phase diagram computed within
our machine learning method is shown in Fig. 2(b), which
is in strong agreement with the previously established phase
diagram using a local order parameter [21]. The trained DNN
not only is capable of detecting the second-order phase transi-
tion at hz �= 0 and hx �= 0 but also detects the first-order phase
transition phase transition at hz �= 0 and hx = 0. Extracting the
order of the phase transition using machine learning remains
an open task for future work.

2. Extended bosonic SSH model

The Hamiltonian of the extended bosonic SSH model [22]
is given by

HBSSH = v

2

N/2∑

i=1

(
σ 2i−1

x σ 2i
x + σ 2i−1

y σ 2i
y + δσ 2i−1

z σ 2i
z

)

+ w

2

N/2−1∑

i=1

(
σ 2i

x σ 2i+1
x + σ 2i

y σ 2i+1
y + δσ 2i

z σ 2i+1
z

)
.

(3)

While the model is mostly interesting for its topological
properties (see below), it also features an AFM phase for
large values of δ. As in the earlier case, we sample the MPS
representation of the ground-state wave function at various
strengths of the tuple (w/v, δ). The errors associated with the
AFM phase are passed as inputs to the trained DNN output
P1 as before. The antiferromagnetic order computed using the
DNN in Fig. 2(c) is in strong agreement with the phase dia-
gram established using other methods [17,22]. Hence we have
demonstrated that a DNN trained with a certain perturbation
of the reference state is capable of detecting the gapped phase
in the presence of different perturbations.

While it is in general straightforward to work with local
order parameters for phases exhibiting spontaneous symmetry
breaking, another key feature of our approach is that it can be
extended to gapped quantum systems with topological order,
which we shall explore in the next section.

FIG. 3. The SSH Hamiltonian describes the hopping of particles
on a 1D lattice with the choice of the unit cell as AB or BA and
hopping strengths between the rails A and B, given by v and w,
respectively.

IV. DETECTING QUANTUM PHASES WITH
TOPOLOGICAL ORDER

Let us now establish that the machine learning method is
also capable of detecting topological phases of matter, which
are beyond the conventional Landau symmetry-breaking prin-
ciple. Many different topological states of matter have been
discovered [23], and their classification remains an important
problem. In the following, we limit our discussion to models
exhibiting symmetry-protected topological (SPT) order and
intrinsic topological order. In the following, we briefly review
the notion of topological order based on entanglement prop-
erties of the respective phases captured via the local unitaries
connecting them to a product state [24]. In this notion, one
considers the properties of a quantum circuit composed of
a sequence of quasilocal unitary operations. States having
topological order are said to be long-range entangled, i.e., any
circuit that takes a topologically ordered state to a product
state has to have a circuit depth that diverges in the thermo-
dynamic limit.

A. Detecting symmetry-protected topological order

Importantly, not all short-range entangled states that can
be connected to a product state by a finite-depth quantum
circuit are topologically trivial. If one imposes symmetries
on the quantum circuits, it is possible that a short-range
entangled state can only be connected to a product state
by symmetry-preserving circuits whose depth diverges in
the thermodynamic limit. These states are said to have
symmetry-protected topological (SPT) order. In the con-
text of the recently introduced operational definition [17], a
state is said to be SPT ordered if it can be corrected by a
symmetry-preserving finite-depth error correction circuit. In
the following, we introduce the machine-learning-based order
parameter to detect SPT phases in the variants of the SSH
model.

1. Phase transitions in the SSH model

One of the well-known models exhibiting SPT order is the
SSH model [25], whose Hamiltonian describes the hopping
of a particle on a one-dimensional (1D) lattice; see Fig. 3.
We consider a hard-core boson variant, which is given by the
δ = 0 case of Eq. (3), i.e.,

HSSH = v

N/2∑

i=1

σ 2i−1
− σ 2i

+ + w

N/2−1∑

i=1

σ 2i
− σ 2i+1

+ + H.c. (4)

The SSH Hamiltonian has been extensively studied, in the
case of periodic boundary conditions where the Hamiltonian
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FIG. 4. Probing SPT phases in the SSH model and the extended bosonic SSH model. (a) Classification probability P1 for the v < w SPT
phase as a function of the hopping strength ratio, v/w, for the choice of the unit cell as AB. The inset shows the finite-size scaling analysis
for the critical value, leading to vc = 1.003(2)w. (b) Using the DNN trained on the errors sampled with respect to the reference state |ψ〉AB of
the SSH model, we predict the corresponding SPT phase in the extended bosonic SSH model by computing P1 as a function of the hopping
strength ratio w/v and AFM interaction strength δ. (c) Using the DNN trained on the errors on top of the reference state |ψ〉BA, we map out
the extent of the v > w SPT phase. A system size of N = 100 is used for computing the phase diagrams in (b) and (c).

is exactly solvable with gapped phases in both the limit of
v < w and the limit of v > w with a gap closing at v = w

signaling a phase transition. Additionally, the limits of v < w

and v > w have nonvanishing winding number, ν = 1, which
is a characteristic feature of the topological phase. In the
case of open boundaries, in the limit of v � w we have edge
modes at the end of the chain which characterize topological
order with a topological phase transition at v = w. Within the
operational definition, one can show that the phase in the case
v > w is also SPT ordered, which is distinct from the SPT
ordered phase characterized by edge modes [17].

Having briefly reviewed the key features of the SSH model,
we turn to the machine learning method introduced earlier to
train a DNN to probe SPT phases and their respective phase
transitions. To train the DNN, we need to generate the errors
associated with a SPT phase. For this, we briefly review the
notion of errors related to the SPT phase as introduced in
Ref. [17]. For both SPT phases, the reference states are found
by setting either w = 0 or v = 0. Then, the ground state can
be found by putting singlets on the AB or BA unit cells, i.e.,

|ψ〉AB/BA = 1√
2

∏

i∈B/A

(|0〉i|1〉i+1 − |1〉i|0〉i+1). (5)

We can introduce an excitation basis for each unit cell, con-
sisting of the error-free state |−〉 = (|01〉 − |10〉)/

√
2 as well

as density fluctuations |0〉 = |00〉 and |1〉 = |11〉 and phase
fluctuations |+〉 = (|01〉 + |10〉)/

√
2. In the following, we

discuss the case of the unit cell choice being AB, leading to
a SPT ordered phase in the limit of v < w which is character-
ized by the presence of edge modes.

The errors in the system correspond to the density fluc-
tuations |0〉, |1〉 and the phase fluctuation |+〉. We construct
the errors by sampling the MPS representation of the ground-
state wave function in the excitation basis at finite v. For the
sake of training the DNN, we label the errors 0, 1,+,− as
{0, 1, 2,−1}, with the outputs generated in the limit of v < w

(v > w) labeled as 1 (0). As earlier, P1, i.e., the probability
of errors being labeled as 1, captures the phase transition. By

performing finite-size scaling analysis, we extract the critical
value for v (see Fig. 4) and note it to be in good agreement
with the exact result v = w.

The discussion on choosing the other unit cell, i.e., the BA
unit cell, leading to the detection of the v > w SPT is similar.
The key difference between the two scenarios is that in the
previous limit for training purposes we label the errors in
the limit of v < w (v > w) to be 1 (0) while in the current
scenario we invert the above by labeling the errors in the limit
of v > w (v < w) to be 1 (0). Training and constructing the
DNN, as well as extracting the critical point, can be performed
in exactly the same way.

2. Detecting SPT order in the extended bosonic SSH model

Let us now turn to the extended bosonic SSH model of
Eq. (3) with nonzero antiferromagnetic interaction δ. In par-
ticular, we are interested in the fate of the two SPT phases
upon increasing δ, using the trained DNNs from the previ-
ous section, which encodes the error correlations of the SPT
phases for δ = 0 and v < w and v > w, respectively. To this
extent, we consider the MPS representation of the ground state
of the Hamiltonian as a function of the tuple (w/v, δ). We
then sample the MPS representation in the excitation basis
defined with respect to the reference state to generate the
errors associated with the SPT phases in the limit of v < w

and v > w as introduced in Eq. (5). In Figs. 4(b) and 4(c), we
plot P1, the probability of sampled errors being labeled as 1,
in the v < w (v > w) regime thereby detecting the SPT phase
corresponding to v < w (v > w) of the extended bosonic SSH
Hamiltonian. The phase diagram of the extended bosonic SSH
model computed using the neural-network-based method is in
very good agreement with other methods [16,22].

B. Intrinsic topological order

In contrast to symmetry-protected topological order, intrin-
sic topological order refers to states that cannot be mapped
onto product states by a finite-depth quantum circuit, even if
arbitrary quasilocal unitaries are allowed. In the context of the
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FIG. 5. (a) Toric code with rough open boundaries with the vertex and face operators given by Av (green diamond), Bp (blue diamond), and
Bp′ (light blue diamond). The anticommutators of Av (Bp/p′ ) given by σz(x) generate the vertex (face) excitations denoted by red (orange) squares.
(b) Classification probability P1 for topological order, as predicted by the trained DNN, as a function of the external perturbation strength, hx .
The inset shows the phase transition between the topologically ordered phase and the trivial paramagnet to occur at hml

c = 0.401(3). (c) Standard
deviation σ of the error correction circuit depth according to the operational definition for topological order, resulting in a critical strength of
hod

c = 0.405(8) (inset). Results are shown for a Ly × Lx lattice, where Ly (Lx) is the number of rows (columns). We fix Ly = 5 while varying
Lx , with the total number of spins, N , given by (2Ly + 1) × Lx + Ly.

operational definition, topological order is quantified by the
error-correcting abilities of a state. Formally, the operational
definition quantifies a state to be topologically ordered if it can
be corrected by a finite-depth error correction circuit [16]. One
of the paradigmatic models exhibiting intrinsic topological
order is the toric code model [26]. In the following, we briefly
introduce variants of the toric code model and discuss the
robustness of topological order in various perturbed toric code
models using the machine learning method.

Phase transitions in the toric code model

To introduce the toric code model, we consider a square
lattice with open boundary conditions with spins on the edges
as in Fig. 5. The Hamiltonian is given by

HTC = −
∑

v

Av −
∑

p

Bp −
∑

p′
Bp′ , (6)

where Av = ∏
i σ

i
x, Bp = ∏

j σ
j

z , with i, j being the spins
attached to the vertex v and face p, respectively. The open
boundaries are in terms of Bp′ operators, which realize a three-
body σz interaction, in contrast to the four-body interaction
of Bp. Such boundary conditions are generally referred to as
rough boundaries; for a more detailed description of various
boundary conditions associated with the toric code, we refer
the reader to Ref. [27]. The ground state of the toric code
Hamiltonian on a planar geometry with rough boundaries
is given by N

∏
v (1 + Av )|0〉, where |0〉 = |000 · · · 0〉. The

excitations in the system are generated by the action of the
anticommutators of Av (Bp) given by σz(x) on the ground state
and are identified as vertex (face) excitations.

To demonstrate the machine-learning-based method, we
consider the toric code with rough boundaries in the presence
of an external magnetic field pointing in the x direction, lead-
ing to the Hamiltonian HPTC = HTC − hx

∑
i σ

i
x. In the limit

of hx → 0, the phase is topologically ordered, while in the
limit of hx → ∞ we have a paramagnetic phase. To capture
the phase transition using the DNN, we compute the MPS
representation of the ground-state wave function as a function
of the perturbation strength hx, using a DMRG algorithm. We

then sample the wave function in the σz basis to construct
the errors. Observing the fact that the perturbation only an-
ticommutes with the Bp operator, we conclude that the system
only hosts face excitations. To capture the face excitations and
therefore to construct the errors, it is sufficient to compute the
parity of 1s in each face by measuring each spin in the σz

basis. Even (odd) parity of 1s indicates the absence (presence)
of excitation leading to construction of the errors. As estab-
lished earlier, we label the errors in the topological (trivial)
phase as 1 (0) to train the DNN. The trained DNN is now
exposed to errors sampled outside of the training regime, and
P1, the probability of errors being labeled as 1, captures the
phase transition, with the critical strength being computed
by performing finite-size scaling analysis, as in Fig. 5. To
validate the transition point obtained by the machine learn-
ing method, we compare it with the critical value obtained
from the operational definition; see Fig. 5. We note that the
values for the critical perturbation strength obtained using
both methods are in good agreement and therefore further
validate the machine-learning-based method. Furthermore, we
would like to point out that, for the same number of samples,
P1 obtained from machine learning exhibits significantly less
noise than the standard deviation of the circuit depth σ within
the operational definition, i.e., the machine learning approach
requires less computational resources for the same level of
accuracy. For the details on the error correction circuit used
to extract the time statistics, see Appendix B.

V. DETECTING OTHER GAPPED PHASES
WITH SIMILAR ERRORS

In the previous sections, we have established that a DNN
trained on the errors of a gapped quantum phase is capable of
detecting the same phase even if the perturbation is changed.
As introduced in Sec. II, a gapped quantum phase has a
correspondence with the associated errors and their correla-
tions. However, a DNN trained on the error correlations of
a gapped phase is still capable of recognizing other gapped
quantum phases with similar error correlations. For instance,
consider gapped phases A and B whose error correlations
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FIG. 6. Detecting ferromagnetic order in a transverse field Ising
model with ferromagnetic interactions using a DNN trained on the er-
rors of the AFM phase, shown by the classification probability P1 for
ferromagnetic order as a function of the transverse field strength hx .
Finite-size scaling results in a critical field strength of hc

x = 1.005(1)
(inset).

almost remain the same; this implies that a DNN trained on
the error correlations of A is capable of identifying the gapped
phase B. However, the error correlations remaining exactly
the same does not guarantee the equivalence of the gapped
quantum phases as the errors themselves might be different.
In this section, we discuss two examples: (a) detecting a
ferromagnetic phase using a DNN trained on the errors of an
antiferromagnetic phase and (b) detecting topological order
in a punctured toric code under a perturbation using a DNN
trained on the errors of an nonpunctured toric code.

A. Detecting ferromagnetic order using
a DNN trained on an AFM phase

In this section, we consider the 1D transverse field Ising
model with ferromagnetic nearest-neighbor interactions with
open boundary conditions, i.e., HTFIM as in Eq. (1) with J < 0.

In the limit of the transverse field strength hx → 0 we have
a ferromagnetic phase, while in the the limit of hx → ∞ we
have a paramagnetic phase. The errors corresponding to the
ferromagnetic phase are given by observing the neighbors,
i.e., neighbors with different (same) parity indicate the pres-
ence (absence) of a domain wall (error). While the errors

of the ferromagnetic phase are different from those in the
antiferromagnetic case, their correlations are identical as the
ferromagnetic Ising model can be mapped onto the antifer-
romagnetic one by a unitary transformation flipping every
second spin. In Fig. 6, we confirm the expectation that the
transition between the ferromagnet and the paramagnet can
be detected by a DNN trained on the antiferromagnetic case.

B. Detecting intrinsic topological order
in perturbed punctured toric code

In this section, we consider a case where the two models
are not connected by a unitary transformation. Here, we start
from a DNN trained on the errors of a perturbed planar toric
code with rough boundaries and apply it to a punctured toric
code containing a hole in the center; see Fig. 7(a). Addition-
ally, on every second plaquette, we change the perturbation
from a local magnetic field hxσ

i
x to a ferromagnetic Ising

interaction hxxσ
i
xσ

j
x . A puncture in the toric code is realized

by turning off either the Bp or Av interactions. In the current
scenario, we turn off the Bp interactions over a small region re-
sulting in a puncture. The topological phase corresponding to
the punctured toric code is different from that of the nonpunc-
tured toric code as the former has a degenerate ground-state
manifold while the latter is nondegenerate. However, it is still
possible to map out the phase diagram of the punctured toric
code in the presence of perturbation by using a DNN trained
on the errors of the toric code with no punctures, as shown in
Fig. 7. For the purpose of predicting the phase diagram of the
perturbed punctured toric code, we consider that the punctured
faces do not host any errors. However, it is important to note
that the above technique of estimating the phase diagram of
the punctured toric code with a DNN trained on errors of
nonpunctured toric code is appropriate only in the limit where
few (in comparison to the total system size) interactions are
turned off.

VI. SUMMARY AND DISCUSSION

In summary, we have introduced a machine-learning-based
classifier to detect gapped quantum phases. Our method en-
hances the operational definition to detect not only gapped
quantum phases with topological order but also other quan-

FIG. 7. (a) Punctured toric code with alternating perturbations according to local terms hxσ
i
x and two-body interactions hxxσ

i
xσ

j
x . (b) The

robustness of the topological phase of a punctured toric code as determined by the classification probability P1 for the topologically ordered
phase. The phase diagram is mapped out for a square lattice of Ly × Lx = 5 × 50 with four Bp interactions at the center of the lattice being
turned off. This results in rough boundary conditions appearing around the puncture analogous to the Bp′ operators on the boundaries.
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tum phases with local order. Furthermore, within the machine
learning approach, it is no longer necessary to construct ap-
propriate error correction algorithms, as this task is effectively
carried out by a deep neural network (DNN). Our work estab-
lishes a correspondence between gapped quantum phases and
their errors along with the correlations between them. In other
words, any gapped quantum phase can be uniquely identified
and quantified by its errors on top of a suitable reference state
and the correlations between them. Crucially, the DNN trained
with a certain perturbation can also successfully detect the
quantum phase and its boundaries in the presence of different
perturbations.

Future avenues of our machine learning approach include
(a) exploring quantum phases in an open quantum system with
a DNN trained on the errors in a closed quantum system, (b)
exploring other DNN training routines such as using random
unitaries coupled with random measurements and/or random
dissipative channels, and (c) quantifying the time evolution of
a quantum system out of equilibrium using machine learning
classifiers. As a further development of the method, autoen-
coders could potentially be used to deduce the excitation basis
and therefore the errors associated with a given gapped quan-
tum phase. Hence, autoencoders in combination with DNNs
could lead to a powerful framework for the classification of
any gapped phase in the framework of machine learning.
Furthermore, recent technological progress has enabled the
possible realization of topological states of matter in quantum
simulation architectures [28,29], but unambiguous identifica-
tion of topological order remains challenging because of the
exponential resources required to measure quantities such as
the topological entanglement entropy [30,31]. In this context,
our machine learning approach can be used to verify the exis-
tence of topological order in these experiments in an efficient
way.
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APPENDIX A: MACHINE LEARNING PARAMETERS
FOR LEARNING THE ERROR CORRELATIONS

In this Appendix, we provide details on the neural networks
employed to train the errors associated with gapped quantum
phases. As introduced earlier and as depicted in Fig. 1, we
consider a DNN with input as the errors, multiple hidden lay-
ers, and two outputs. For a given system size, there is a fixed
number of errors, which thereby fixes the input nodes to the
DNN. Each hidden layer has approximately half the number
of nodes as the previous layer, and the number of hidden
layers is increased until the number of nodes in the hidden
layers is less than 30, with the final output layer having two
nodes. Having detailed the architecture, we briefly comment

on the tools used to construct the neural networks, as well
as the training parameters employed. We have implemented
the above DNN architecture using FLUXML [32], a machine
learning library in JULIA. For training purposes, we choose
the cross entropy loss function with the ADAM algorithm for
optimization. Furthermore, we set the learning rate η to be
on the order of 10−3 and have used GPUs for the purpose
of training. For training and predicting purposes, we generate
around 25 000 error samples for a given wave function.

APPENDIX B: ERROR CORRECTION CIRCUIT USED TO
COMPUTE THE CORRECTION TIME STATISTICS

In this Appendix, we briefly review the error correction
circuit employed to compute the standard deviation of the
circuit depth used within the operational definition as shown
in Fig. 5. For a given wave function, we sample the errors
as outlined in the main text, and for each error sample we
perform the error correction until all the face excitations are
annihilated. To compute the error correction time for a given
error sample, we follow the procedure from Ref. [16] and
attach to each error a walker that traverses the surroundings in
a diamond-shaped pattern of increasing Manhattan distance
from the error. Whenever two walkers start to overlap, their
corresponding errors are fused and removed from the system.
The circuit depth of a particular error sample is then given by
the number of steps required until the last errors have been
fused.

APPENDIX C: CONVOLUTIONAL NEURAL NETWORKS
TO QUANTIFY THE PHASE TRANSITION

In this Appendix, by considering the AFM Ising model as
in Eq. (1), we detect the AFM phase by employing a con-
volutional neural network (CNN). The general central theme
of a CNN is to define kernels mapping input channels to
multiple output channels (the kernel learns specific features of
the underlying image) further pooling the multiple layers into
a dense layer and then using a feedforward network for clas-
sifying the image (or learning the image by its label). In the
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FIG. 8. Detecting an AFM phase in a transverse field Ising model
with antiferromagnetic interactions using a CNN trained on the errors
of the AFM (trivial) phase labeled as 1 (0). P1, the probability of
the errors being labeled as 1, captures the phase transition. Inset:
The criticality of the phase transition, hc

x = 1.006(1), obtained by
finite-size scaling analysis.
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current context, we employ a 1D convolutional layer to learn
the 1D error strings. For the current scenario, we consider
three output channels which are further pooled together with a
window size of 3 which when flattened result in a single layer
with a size that is almost the size of the 1D error string. From

Fig. 8, we observe that the CNN defined above is capable of
capturing the criticality of the AFM Ising model with good
accuracy. However, we note that the DNN defined earlier is
more accurate to the third decimal compared with the CNN,
the investigation of which we postpone to the future.
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