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We analyze the global ground-state (quantum) phase diagram of the one-dimensional spinful Holstein model
at half filling as a function of the strength of the electron-phonon coupling (represented by the strength of the
phonon-induced attraction, U ) and the phonon frequency ω0. In addition to reanalyzing the various asymptotic
regimes, we carry out density-matrix renormalization group simulations to correct previous inferences concern-
ing the antiadiabatic (large ω0) and strong-coupling (large U ) regimes. There are two distinct phases—a fully
gapped commensurate charge-density-wave phase and a spin-gapped Luther-Emery phase with a gapless charge
mode—separated by a phase boundary, with a shape that reflects different microscopic physics in the weak- and
strong-coupling limits.
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I. INTRODUCTION

The interaction between charge carriers and lattice vibra-
tion plays a fundamental role in strongly correlated quasi-one-
dimensional (quasi-1D) materials [1–8]. The Holstein model
[5,6] is probably one of the simplest microscopic models of
coupled electrons and phonons, which makes it an ideal plat-
form for exact numerical methods such as the density-matrix
renormalization group (DMRG) [9–12], quantum Monte
Carlo (QMC) [13–18], and other algorithms [19–21]. Surpris-
ingly, there remain some long-standing debates, even for the
1D Holstein model at half filling, concerning basic facts about
the structure of the zero-temperature (T = 0) phase diagram,
as well as discrepancies in the critical values of couplings
that mark the phase boundaries obtained with different nu-
merical methods [13]. While early studies inferred a single
ordered phase for any nonzero electron-phonon coupling and
finite phonon retardation [17,22,23], more recent numerical
results [9,10,12,13,15,16,24] have suggested the existence of
a disordered phase and at least one phase boundary. Specif-
ically, Hirsch and Fradkin [17] examined the behavior of
the model as a function of ω0, the bare phonon frequency,
and U , the bipolaron binding energy, which is an appropri-
ate characterization of the electron-phonon coupling strength,
both measured in units of the electron bandwidth, 4|t |. Based
on topological constraints on the nature of the phase dia-
gram and other considerations, they speculated that the phase
diagram exhibits only one phase—a fully gapped, long-range-
ordered charge-density-wave (CDW) phase—everywhere off
these boundaries. They partially corroborated this conjecture
with QMC studies, which were among the first such studies
for a fermionic system.

In this paper, we revisit this problem and conclude that the
correct quantum phase diagram for the half-filled 1D Holstein
model is the one shown schematically in Fig. 1. In addition
to the CDW phase, there is also a Luther-Emery (LE) phase,
which has a spin gap but a gapless charge mode and CDW
quasi-long-range order; that is, it resembles an incommen-
surate fluctuating CDW. This structure of the phase diagram
is consistent with the topological arguments of Fradkin and
Hirsch in that the phase boundary does not terminate on any
of the edges of the phase diagram, but rather extends from
the “corner” at U = ω0 = 0 to that at U = ω0 → ∞. Effects
of electron-electron repulsions have been ignored for the pur-
poses of the present study.

In support of these conclusions, we have explored the be-
havior in the vicinity of the four edges of the phase diagram,
each of the regions indicated by a different color of shading
in Fig. 1. The analysis in the neighborhood of the upper
(ω0 = ∞) and leftmost (U = 0) edges is subtle, as they corre-
spond to quantum critical lines, and of course, the two corners
of the phase diagram at which the phase boundary starts and
ends are of particular interest.

(i) We have derived an effective Hamiltonian in powers of
t/ω0 and U/ω0 that is valid in the vicinity of the ω0 → ∞
(upper) edge of the phase diagram and then solved it using
high-precision DMRG studies on very long (up to length L =
400) systems. We establish that the asymptotic equivalence
between the CDW and LE correlations [i.e., the emergent
SU(2) symmetry as ω0 → ∞] is lifted for large but finite
ω0 so that there is a LE phase immediately below this edge
of the phase diagram. This is in contrast to what was con-
jectured by Hirsch and Fradkin and is our most important
result.
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FIG. 1. Ground-state phase diagram of the 1D Holstein model.
Both phases have a spin gap, �s > 0. The LE liquid phase has
a gapless charge mode, while the CDW is fully gapped. Distinct
asymptotic approaches apply at each edge of the phase diagrams:
(i) In the blue (antiadiabatic) region, where ω0 � |t |,U , we have
derived an effective Hamiltonian in powers of t/ω0 and U/ω0 and
solved it using DMRG as denoted by the blue points. (ii) In the
orange (strong-coupling) region, U � |t |, we use a combination of a
strong-coupling expansion [25] and DMRG to numerically identify
the position of the phase boundary, ω0 ∼ ycU , with yc ≈ 0.45, as
indicated by the black circles. (iii) In the red (adiabatic) region,
where ω0 � �0 and |t |, with �0 = 4|t | exp[−2π |t |/U ] being the
mean-field gap (for charge and spin), the CDW is stable against
quantum fluctuations up to a critical value of ω0. For small U � t ,
we estimate the critical phonon frequency to be ωc ∼ xc�0, with
xc ≈ 1. (iv) In the green (weak-coupling) region, U � |t |, a previous
functional renormalization group analysis [24] confirms an extended
LE liquid phase. The solid portions of the phase boundary are drawn
according to the asymptotic expressions obtained in the text; the dot-
ted portion is a conjectural smooth interpolation between these end
regions. The points labeled A–G refer to previous numerical studies
(not our own), as discussed in the text, in which those indicated by an
open circle, stars, and solid circles were argued to lie in a LE liquid,
in a CDW, and on the phase boundary, respectively.

(ii) We consider a strong-coupling expansion of the model
(originally derived by Freericks [25]) to fourth order in t/U
to explore the right edge of the phase diagram. Again, we use
high-precision DMRG studies to determine the behavior of
this effective model, which (as was previously known) always
has an ordered CDW phase if the limit U → ∞ is taken at
fixed ω0. However, we find that for large but finite U , there is a
phase transition from a CDW ordered state for ω0 < yc U to a
LE liquid phase for ω0 > yc U , where we estimate yc ≈ 0.45.

(iii) The familiar Peierls instability ensures that for any
fixed U > 0, the ground state is an ordered CDW in the limit
ω0 → 0, i.e., on the lower boundary of the phase diagram.
Specifically, for ω0 = 0, a mean-field analysis is exact, which
predicts a finite gap �0 = 4|t | exp(−2π |t |/U ) for both charge
and spin modes.

(iv) The Fermi liquid state at U = 0 is perturbatively unsta-
ble (and in that sense is quantum critical) since weak attractive
interactions inevitably lead to a state with a spin gap. For small
U and ω0, we present a field-theoretic analysis that suggests
that the CDW state melts with increasing ω0 at an exponen-

tially small value, ω0 = xc�0 ∼ exp(−2π |t |/U ). Concerning
larger values of ω0, but still in this weak-coupling regime, we
also briefly recap a previous functional renormalization group
(RG) analysis [24] that shows the existence of a LE liquid
phase everywhere proximate to the U → 0 (left) edge of the
phase diagram.

Along the way, we comment on the relation between our
results and several other numerical studies [12,13,15] that
have been carried out since the pioneering work of Fradkin
and Hirsch. We also present arguments suggesting that the
lightly doped system exhibits a single LE liquid phase for all
ω0 and U �= 0.

II. THE MODEL

The Holstein model is defined as

Ĥ = − t
∑
〈i j〉,σ

(ĉ†
i,σ ĉ j,σ + H.c.) + α

∑
i

n̂ix̂i

+
∑

i

[
p̂2

i

2m
+ Kx̂2

i

2

]
. (1)

The first term describes the hopping of electrons between
nearest-neighbor sites 〈i j〉, where ĉ†

i,σ creates an electron
with spin polarization σ at site i. The second term describes
the electron-phonon interaction, where n̂i ≡ ∑

σ ĉ†
i,σ ĉi,σ is the

electron density operator and α is the electron-phonon cou-
pling parameter. The last term contains the lattice degrees
of freedom, with x̂i being an optical phonon coordinate at
site i and p̂i being the conjugate momentum. There are three
independent energy scales in this problem: the electron band-
width 4|t |, phonon frequency ω0 ≡ √

K/m, and an effective
electron-phonon interaction strength U ≡ α2/K .

III. THE ANTIADIABATIC LIMIT, ω0 → ∞
To derive an effective Hamiltonian that is valid in the

ω0 � |t |,U limit, we perform a unitary transformation Q̂ =
�i exp[iα p̂in̂i/K], such that the transformed Hamiltonian
Ĥ ′ = Q̂†HQ̂ reads [26]

Ĥ ′ = −t
∑
〈i j〉,σ

(eiα( p̂i−p̂ j )/K ĉ†
i,σ ĉ j,σ + H.c.)

− U

2

∑
i

n̂2
i +

∑
i

[
p̂2

i

2m
+ Kx̂2

i

2

]
. (2)

Then through direct perturbation theory up to second order,
we derived the effective Hamiltonian in powers of 1/ω0 for
large phonon frequency:

Ĥeff = −t
∑
〈i j〉,σ

(ĉ†
i,σ ĉ j,σ + H.c.) − U

2

∑
i

n̂2
i

− U

ω2
0

∑
n

( ĵn − ĵn−1)2, (3)

where ĵn is the local current operator defined as

ĵn = it
∑

σ

(ĉ†
n,σ ĉn+1,σ − ĉ†

n+1,σ ĉn,σ ). (4)
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FIG. 2. Spin-spin correlations [Eq. (5)] with exponential fit.

When ω0 = ∞, the effective model reduces to the attractive
Hubbard model, while for large but finite ω0, the leading-order
correction gives a finite-range effective electron-electron in-
teraction. Higher-order corrections to Heff are of the order of
(t/ω0)4 and higher. The same effective Hamiltonian can be al-
ternatively derived by a path integral representation. Detailed
calculations are deferred to the Appendix A.

We determined ground-state properties of this effective
Hamiltonian using DMRG studies on systems up to 400 sites
long for values of ω0 between 8 and ∞ and for values of U
between 3 and 10. The values explored are indicated by the
blue solid circles in the phase diagram in Fig. 1. All extracted
quantities such as the Luttinger exponent Kc are obtained
from the correlation function data that were extrapolated to
infinite system size (see Fig. 14 for the details). The larger
ω0 results are more reliable since this is where the effective
model best approximates the original problem. All the DMRG
data collected are obtained from the lowest energy state out of
five trials with independently randomized initial states, and all
the results shown (unless otherwise stated) are extrapolated to
zero truncation error, utilizing data collected with five trun-
cation errors ranging from 1 × 10−7 to 9 × 10−7. We have
checked our results do not change significantly down to a
truncation error of 1 × 10−10, corresponding to keeping bond
dimensions up to m = 1500. All data involving sites within
L/4 to the open boundary are discarded; that is, we retain the
data only in the interval x ∈ [L/4, 3L/4] to reduce boundary
effects.

Our findings can be summarized as follows; in all cases, we
conclude that the system is in a LE phase, characterized by a
spin gap and a single gapless charge mode. The presence of a
spin gap is inferred from the fact that the spin-spin correlation
function falls exponentially with distance, as shown in Fig. 2.
Meanwhile, as shown in Fig. 3, the existence of a gapless
charge mode follows from the observation that the charge-
density correlations oscillate with wave vector π and have an
amplitude that falls as a power of distance, i.e., as eiπr |r|−Kc .
The inferred values of the charge Luttinger exponent Kc are

FIG. 3. Charge-charge correlation [Eq. (7)] for U = 6 and ω0 =
30 at half filling. The Luttinger exponent is extracted using Eq. (8).

shown in Fig. 4 for all the values of U and ω0 we have
explored. As expected, Kc → 1 as ω0 → ∞, independent of
U . Significantly, however, for a large but not infinite ω0, we
find that Kc > 1. This is an important consistency check, as
umklapp scattering that could stabilize a long-range-ordered
CDW phase is perturbatively irrelevant for Kc > 1 but would
be relevant for Kc < 1.

We have carried out two further consistency checks of our
results. We have computed the central charge, as shown in
Fig. 5, and in all cases, we find values consistent with c = 1
within our uncertainty. This is the expected value for a LE
liquid; these results are surely inconsistent with the c = 0
expected for a commensurate CDW with long-range order. We
have also examined the nature of the state slightly away from
the half-filled case. If commensurability effects are irrelevant

FIG. 4. A summary of Luttinger exponents for all values of (U ,
ω0) that have been calculated by DMRG.
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FIG. 5. The extracted central charge agrees well with c = 1 for
all parameter points.

for n = 1, then the system is expected to evolve continuously
with doping, δ ≡ 1 − n > 0. Indeed, as shown in Figs. 6
and 7, we find that both the spin gap (or, more precisely,
the correlation length characterizing the exponential falloff
of the spin correlations) and the charge Luttinger exponent
evolve continuously with δ. Were the system commensurate,
we would expect a factor of 2 discontinuity in the spin gap and
a jump of the Luttinger exponent to Kc ≈ 2 for 0 < δ � 1.

A. Spin-spin correlation

We have computed the spin-spin correlation function,
which is defined as

S(x) = 1

Nr

∑
r

[〈Sz(r)Sz(r + x)〉 − 〈Sz(r)〉〈Sz(r + x)〉], (5)

where Sz(r) is the z component of the spin operator at site r
and we have introduced an average over Nr = 5 “reference
sites” near the center of the chain to reduce the finite-size
effects. As shown in Fig. 2, it is clear that the spin correlators
decay exponentially at large distances with a finite correlation
length ξ extracted by fitting the large x decay of S(x) to the
asymptotic form

S(x) ∼ AS exp[−x/ξ ]. (6)

The data presented in Fig. 2 are for U = 3, 4, 5, and 6, with
ω0 = 30 and L = 100.

That similar long-range behavior has been found for all
the values of ω0 and U indicated in Fig. 1 confirms the
noncontroversial expectation that there is a spin gap in the
antiadiabatic limit for all U . A summary of ξ as a function of
ω0 for different values of U is shown in Fig. 8.

B. Density-density correlation

The charge correlation function is defined as

C(x) = 1

Nr

∑
r

[〈n(r)n(r + x)〉 − 〈n(r)〉〈n(r + x)〉], (7)

FIG. 6. KC as a function of doping level δ, with error bars show-
ing 95% confidence bounds for the intercepts. The extrapolated KC

at δ = 0, i.e., the intercept of the fitting function, is 1.19 for (U = 4,
ω0 = 15) and 1.30 for (U = 5, ω0 = 15). Both agree well with the
values observed at half filling (δ = 0), as shown in Fig. 4.

where n(r) ≡ ∑
σ nσ (r) is the total density of electrons on

site r and, again, we average over Nr = 5 reference sites. At
large distances, we always find that C(x) exhibits power-law
behavior,

C(x) = Cρ

x2
+ C′

ρ

xKC
cos(πx + φ), (8)

which, from bosonization [13,27,28], is the expected behavior
of a LE liquid with a spin gap and a charge Luttinger exponent
Kc. (By contrast, a CDW insulator with a spin gap would def-
initionally exhibit long-range order at long distances, C(x) ∼
m2eiπx, where m is the order parameter, and should approach
this asymptotic behavior exponentially.) As examples of the
nature of the fits to Eq. (8) we have used to obtain KC , in
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FIG. 7. Spin-spin correlation for (U, ω0) = (4, 15) and (5, 15)
at different hole-doping concentrations from 0.02 to 0.1. We see
for both values of (U, ω0) that the spin correlations are essentially
unchanged at different dopings.

Fig. 3 we show the results for (U, ω0) = (6, 30) on a chain
with L = 200. The dashed lines show the expected power-law
behavior from Eq. (8), where, because we find a value of
Kc = 1.13 < 2, we can ignore the nonoscillatory contribution
(i.e., we set Cρ = 0).

The values of KC we have obtained as a function of ω0

for all the values of U we have considered are shown in
Fig. 4. In the limit ω0 → ∞, since the Holstein model maps
to the attractive Hubbard model, which has a charge SU(2)
symmetry, the value of KC must approach 1, as can be seen in
Fig. 4. However, for a large but finite ω0, we find KC > 1 for
all parameters we have considered.

FIG. 8. A summary of the spin correlation lengths for all values
of (U , ω0).

FIG. 9. Here we use U = 3 and ω0 = 8 as an example. We fit the
middle part of the system with Eq. (8), as shown by the solid blue
line. The extracted values of parameters are shown in the legend.

C. von Neumann entanglement entropy

To confirm that the system indeed has one gapless mode,
we also calculate the von Neumann entanglement entropy
SE (x) = −tr(ρx ln ρx ), where ρx is the reduced density matrix
of a subsystem with length x. As was established in [29,30],
for a (1+1)-dimensional system with open boundary condi-
tions described by a conformal field theory,

SE (x) = c

6
ln

[
4(L + 1)

π
sin

(
π (2x + 1)

2(L + 1)

)
| sin q|

]

+ A sin[q(2x + 1)]
4(L+1)

π
sin

(
π (2x+1)
2(L+1)

)| sin q| + B, (9)

where L is the length of the system and c, q, A, and B are
adjustable parameters. As expected, we find that extrapolated
to the limit L → ∞, these fits produce a central charge c
consistent with the predicted value, c = 1, and q = kF . The
quality of the fits to Eq. (9) can be seen for representative
parameters in Fig. 9; the precise values of c obtained from
such fits for various ω0 and U are shown in Fig. 5, where we
have assumed that q = kF . Within the error bars, in all cases
c = 1.

D. Finite hole doping

We perform one more consistency check on our numerics.
If the state at half filling is a CDW with long-range order,
then upon light hole doping, δ � 1, we generate a gas of
widely separated solitons. For small δ, where they are far
from each other (i.e., when δξsp � 1, where ξsp is the spin
correlation length), the solitons should interact only through
an effective hard-core interaction. Thus, they should behave
like spinless fermions. Since the system is now incommensu-
rate, this should result in power-law CDW correlations with
a wave vector Q = π (1 + δ) and with a Luttinger exponent
Kc → 2 as δ → 0. The result is a discontinuity of Kc at δ = 0.
On the other hand, if the system is in a LE phase where the
commensurability lock-in is irrelevant, then Kc should be a
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continuous function of δ as δ → 0. As shown in Fig. 6, Kc

shows no sign of a discontinuity at δ = 0.
Moreover, the spin correlation length as shown in Fig. 7 is

essentially unchanged for different doping levels, which is as
expected since doping makes little difference in the nature of
the state in a LE liquid phase.

IV. THE ADIABATIC LIMIT, ω0 → 0

For ω0 = 0, the phonons are static, and the problem re-
duces to a version of the Peierls problem, which can be exactly
treated with a mean-field analysis. In other words, the ground
state of the system can be obtained by optimizing the energy
while varying the phonon coordinates. For all nonzero U ,
this leads to a long-range-ordered, fully gapped phase with a
gap �0 of magnitude �0 ≈ 4|t | exp[−2π |t |/U ] for small U .
Moreover, it is easy to see that the CDW is stable for small
nonzero ω0 as long as ω0 � �0.

V. THE WEAK-COUPLING LIMIT, U → 0

A. The Takayama–Lin-Liu–Maki model

For small U , the low-energy properties of the Holstein
model can be characterized by an effective field theory [the
Takayama–Lin-Liu–Maki (TLM) model] [26]. Importantly,
this effective field theory can be extended to the case of small
but finite ω0, where it is identical to the one that arises from the
Su-Schrieffer-Heeger model. Thus, the phase diagram must
be the same in this range of parameters for the two models.
An estimate of the phase boundary in this region can be
made as follows: (i) Because the model is asymptotically free,
the UV cutoff can be taken to infinity in such a way that
the low-energy properties are independent of it. Therefore,
the soliton creation energy, which is the energy to produce
a discommensuration in the CDW order, can be expressed as

ES = �0 F (ω0/�0), (10)

independent of the cutoff energy (bandwidth). (ii) While the
full form of the scaling function F is not known, the first two
terms for the small argument have been computed [8,31],

F (x) = 2

π
− Ax + O(x2), (11)

where A ≈ 0.6. (iii) Quantum melting of the CDW order is
expected to occur with increasing ω0 at the critical point,

ω0 = xc�0, (12)

where F (xc) = 0. In other words, this is the point
at which a quantum-fluctuation-driven commensurate-to-
incommensurate transition occurs.

Thus, Eq. (12) defines the phase boundary between the LE
and CDW phases in the lower left corner of the phase dia-
gram, where U → 0 and ω0 → 0. In other words, the phase
boundary approaches this corner as

ω0 = 4xc|t | exp[−2π |t |/U ] . (13)

Moreover, we can estimate xc from the first two terms in the
small x expansion of Fs, which gives xc ≈ 2/(0.6π ) ≈ 1.

B. The functional RG method

In Ref. [24], the weak-coupling limit of this problem was
analyzed using a perturbative RG method [32,33], which con-
sists of successive integration of electron momentum degrees
of freedom for all Matsubara frequencies divided into multiple
patches. Consistent with our proposed phase diagram, it is
found that as for weak enough U , the system flows toward
a LE fixed point [24] characterized by a gap in the spin sector
but not in the charge sector. To the best of our understanding,
the perturbative RG is controlled only for asymptotically weak
U . We thus mention, but do not further analyze, the fact that
when the same analysis is carried out for a range of U , it
is found that for fixed ω0, when U exceeds a nonvanishing
critical value, the umklapp scattering becomes relevant, sug-
gesting a transition to a phase with CDW long-range order.

VI. THE STRONG-COUPLING U → ∞ limit

When the bipolaron binding energy is much larger
than the electron energy scale (|U | � |t |), performing a
strong-coupling expansion for the Holstein model with the
transformed Hamiltonian (2) up to fourth order yields an
effective (pseudospin) Hamiltonian [25]:

Heff =
∑

i

[
t1(J+

i J−
i+1 + J−

i J+
i+1) + t2(J+

i J−
i+2 + J−

i J+
i+2)

+ 2V1

(
Jz

i Jz
i+1 − 1

4

)
+ 2V2

(
Jz

i Jz
i+2 − 1

4

)]
, (14)

where

J+
j = (−1) jc+

j↑c+
j↓, J−

j = (J+
j )†, Jz

j = 1
2 (n j↑ + n j↓ − 1).

(15)

These pseudospin operators satisfy an SU(2) algebra and form
a spin- 1

2 representation, where a doubly occupied site corre-
sponds to an up pseudospin and an empty site corresponds to
a down pseudospin [25].

In this expansion, the combination t and U comes out as
the overall energy scale, and the only tuning parameter is
the dimensionless retardation factor S ≡ U/ω0. In Fig. 10 we
show the coefficients t1, t2, V1, and V2 as a function of S for
a given value of U and t . Explicit expressions and a detailed
evaluation of all coefficients are given in the Appendix C. In
the anti-adiabatic limit (S → 0), these values agree with those
in the strong-coupling expansion of the attractive Hubbard
model:

t1
S→0−−→ 1

4

(
4t2

|U | − 16t4

|U |3
)

,

t2
S→0−−→ 1

4

4t4

|U |3 ,

V1
S→0−−→ t1,

V2
S→0−−→ t2. (16)

In the opposite limit S → ∞, only V1 remains nonzero, and
we obtain a classical lattice gas, which has a CDW ground
state, as expected. With the coefficients determined, we then
solve the effective pseudospin Hamiltonian (14) with DMRG
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FIG. 10. An illustration of t1, t2, V1, and V2 as a function of the
polaron band narrowing parameter S = |U |/ω0, with t = 1. Here we
use |U | = 5 as an example.

and measure the spin-spin correlation function and the struc-
ture factor at k = π :

J (x) = 1

Nr

∑
r

〈Jz(r)Jz(r + x)〉,

J (k = π ) =
∑

x

eiπxJ (x) =
∑

x

(−1)xJ (x). (17)

Because the phase transition between the CDW and LE phases
is a commensurate to incommensurate transition, when it is
continuous, it should be in the Kosterlitz-Thouless (KT) uni-
versity class. Therefore, in the CDW phase, we should see
an antiferromagnetic pattern of pseudospin order and J (k =
π ) ∼ M2L, with M being the order parameter approaching 1

2
as ω0 decreases. And in the LE liquid phase, the spin-spin
correlation should exhibit power-law behavior J (k = π ) ∼
L1−η, where η > 1/4, such that η → 1/4 upon approaching
the transition point. In this spirit, we plot L(k = π )/L3/4

for L = 100, 150, 300. As shown in Fig. 11, there is a clear
crossing point at ω0 ≈ 67 for L(k = π )/L3/4 with different L,
which thus confirms the existence of a KT transition between
the CDW and LE phases in the strong-coupling limit.

VII. OTHER NUMERICAL RESULTS

In the lower left corner of Fig. 1, A–G refer to a few
calculations (not our own) by various numerical methods.
The model at points A (U = 0.6, ω0 = 0.5), C (1.2, 0.5),
D (1.62, 1.2), and E (1.62, 0.4) were studied using QMC
continuous-time interaction expansion (CT-INT) method,
with A and C at a temperature such that βt = 50, while for
D and E βt = 20 [13]. On the basis of these studies, it was
inferred that A is in the LE phase, while C, D, and E are in
the CDW phase. On the basis of an early DMRG study, it was
concluded that point F (2, 1) is in a CDW phase [12]. The two
remaining points, B (1.0, 0.5) and G (3, 5), were identified
as quantum critical points using a stochastic series expansion

FIG. 11. Determining the position of the phase boundary at
strong coupling. (We use data for |U | = 30 for illustrative purposes.)
The finite-size scaling properties of the structure factor J (k) =∑

x eikxJ (x) evaluated at k = π are used to identify the critical value
of ω0, where J (x) is the pseudospin correlation defined as in Eq. (17).
In the ordered phase, J (k) ∼ M2L2, while in the disordered phase
J (k) ∼ L1−η, where η > 1/4 such that η → 1/4 upon approaching
the KT transition. The clear crossing point in this plot establishes the
existence of a KT transition between the CDW and LE phases with
an estimated value of the critical ω0 ≈ 67.

quantum Monte Carlo method [15], augmented by a finite-size
scaling analysis.

There are manifestly some discrepancies between the con-
clusions drawn on the basis of these different numerical
studies. Similarly, the smooth dotted line for the phase bound-
ary shown in Fig. 1 is somewhat to the right of the optimal
phase boundary one might draw on the basis of the earlier
numerics. Due to the rather high temperature at which the
QMC studies were conducted in comparison to the theoreti-
cally expected exponentially small CDW gap, we think that
while these results may be qualitatively right, it should be
expected that they will not be quantitatively precise. In any
case, it is presently unclear whether the detailed shape of this
phase boundary should be adjusted to better accommodate
the results of contemporary numerical studies or one should
stick to the present smooth interpolation and attribute the
discrepancies to numerical uncertainty.

VIII. DISCUSSION OF THE PHASES OF
THE DOPED SYSTEM

Slightly away from half filling, it is likely that there is a
single LE phase everywhere in the phase diagram. The spin
gap that characterizes both phases of the half-filled system
is expected to extend smoothly to the lightly doped sys-
tem. On the other hand, the generalized Luttinger theorem
ensures that for an incommensurate electron density, there
must be a gapless mode at 2kF . Thus, the only plausible
phase is a LE liquid with a spin-gap and power-law CDW
correlations.

There is one subtlety here worth noting. For ω0 = 0, slight
doping is expected to produce a state consisting of an array
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of solitons or discommensurations [8]. These will produce
mid-gap states, resulting in a spin gap that is half the value of
the spin gap in the undoped system. Upon including quantum
fluctuations (i.e., for small but nonzero ω0) the soliton lattice
will melt to form a power-law phase with Kc = 2 (correspond-
ing to dilute hard-core bosons or spinless fermions), but the
spin gap is expected to be largely unaffected.

It is also possible that at larger deviations from half filling,
CDW order with higher-order commensurability, for example,
for the 1/3 filled band, can arise, especially in the small-ω0

limit.

IX. CONCLUSIONS

Our major finding is the phase diagram in Fig. 1. The
topology of the phase diagram rests on general arguments,
although the possibility of additional phases at intermediate
U/t and ω0/t has not been definitively excluded. Moreover,
the asymptotic forms of the phase boundary in the upper and
lower corners of the phase diagram have been supported by
what we believe to be a convincing analysis. The dotted part
of the phase diagram is a sketch, drawn to smoothly connect
with the established results in the asymptotic regimes. The
quantitative disagreements between this sketch and some of
the earlier numerical results (indicated by the gray points in
Fig. 1) either may reflect some quantitative uncertainty in
those results or may imply a more convoluted shape to the
phase boundary.

The phase transition between the CDW and LE phases is
a commensurate to incommensurate transition, so where it
is continuous it should be described by a (1+1)-dimensional
sine-Gordon theory and should thus be in the Kosterlitz-
Thouless universality class. This has been verified by the
strong-coupling calculations in the upper right corner of the
phase diagram. However, it is not precluded that it could be
first order along other parts of its extent.
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APPENDIX A: EFFECTIVE HAMILTONIAN
IN THE ANTIADIABATIC LIMIT

In this Appendix, we provide details on the derivation of
the effective Hamiltonian that provides the first corrections
around the antiadiabatic limit, ω0 → ∞. We do this in two
ways, first via a path integral technique and then with Hamil-
tonian methods.

1. Path integral approach

In path integral language, the Euclidean action is

S[ψ†, ψ, v]

=
∫ β

0
dτ

⎧⎨
⎩

∑
i j

ψ
†
iσ [(∂τ + μ)δi j + ti j]ψ jσ

+
∑

i

[
M

2
(∂τvi )

2 + K

2
v2

i

]
+ α

∑
i

viψ
†
iσ ψiσ

}
(A1)

=
∑

n

⎧⎨
⎩

∑
i j

ψ
†
iσ,n[(iωn + μ)δi j + ti j]ψ jσ,n

+ 1

2

∑
i

vi,−n
(
Mν2

n + K
)
vi,n + α

∑
i

vi,−nρiσ,n

}
.

(A2)

In the second line we transform to Matsubara frequencies
ωn = (2n + 1)π/β and νn = 2nπ/β, and we define the den-
sity ρiσ = ψ

†
iσ ψiσ . The phonon Green’s function is

D(νn) = 1

Mν2
n + K

= 1

K

ω2
0

ν2
n + ω2

0

→
{
δνn,0/K ω0 → 0,

1/K ω0 → ∞.

(A3)
Integrating out the phonon fields yields a retarded electron-
electron interaction:

Sint[ψ
†, ψ] = −α2

2

∑
n

∑
iσ

ρiσ,−nD(νn)ρiσ,n

= − α2

2K

∑
n

∑
iσ

ρiσ,−n

(
ω2

0

ν2
n + ω2

0

)
ρiσ,n. (A4)

For ω0 = ∞, the interaction is instantaneous, and we recover
the attractive Hubbard model with U = α2/K . We can expand
around this limit in powers of 1/ω0. This is equivalent to a
gradient expansion in imaginary-time derivatives. The result is

Sint = − U

2

∑
n

∑
iσ

ρiσ,−nρiσ,n + U

2ω2
0

∑
n

∑
iσ

ρiσ,−nν
2
nρiσ,n

+ O

(
1

ω4
0

)
. (A5)

In imaginary time, the second term is

S(2)
int = − U

2ω2
0

∫ β

0
dτ

∑
iσ

(∂τρiσ )2. (A6)

2. Hamiltonian approach

For a Hamiltonian approach, consider a unitary transfor-
mation of the Hamiltonian

H ′ = UHU †, U =
∏

i

eiαpini/K , (A7)

where ρi = ∑
σ ρiσ = ∑

σ c†
iσ ciσ . The result is

H ′= −
∑

i j

ti je
iα(pi−p j )/K c†

iσ c jσ −U

2

∑
i

ρ2
i +

∑
i

p2
i

2M
u+K

2
v2

i .

(A8)
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The transformation removes the bilinear electron-phonon
coupling at the cost of introducing an attractive electron-
electron interaction and adding electron-phonon interaction
into the hopping matrix elements. To find an expansion around
ω0 = ∞, we rewrite the phonon coordinates and conjugate
momenta in terms of the creation and annihilation operators,

p = i
√

Mω0/2(b† − b) ⇒ eiαp/K = e−√
U/(2ω0 )(b†−b), (A9)

so that we may expand

H ′ ≈ −
∑

i j

ti j

⎧⎨
⎩1 +

√
U

2ω0
[(b j − b†

j ) − (bi − b†
i )]

⎫⎬
⎭c†

iσ c jσ

− U

2

∑
i

ρ2
i + ω0

∑
i

(b†
i bi + 1/2). (A10)

Specializing to the case of nearest-neighbor hopping, this ex-
pansion yields a coupling between the conjugate momentum
of the phonon and the “lattice divergence” of the current:

H̃ (2)
int =

√
U

2ω0

∑
nσ

i(bn − b†
n)( jn − jn−1), (A11)

where the local current operator is

jn = it (c†
ncn+1 − c†

n+1cn). (A12)

In momentum space,

H̃ (2)
int =

√
U

2Nω0
t
∑
kqσ

fkq(bq − b†
−q)c†

k+qσ
ckσ , (A13)

where

fkq = −2i[cos(k + q) − cos k]. (A14)

Direct perturbation theory about the ω0 = ∞ limits yields the
effective electron-electron interaction:

H (2)
int = −U

N

(
t

ω0

)2 ∑
kq

Vkk′qc†
k+qσ

ckσ c†
k′−qσ ′ck′σ ′, (A15)

where

Vkk′q = fk,q fk′,−q = −4(1 − cos q)[cos(k + k′)

− cos(k − k′ + q)]. (A16)

The continuity equation relates Eqs. (A15) and (A6).

APPENDIX B: THE ADIABATIC LIMIT ω0 → 0
(DERIVATION FOR THE TLM MODEL)

Takayama, Lin-Liu, and Maki (TLM) found a remarkable
analytic solution for solitons in a condensed CDW system,
and their model is a continuum version of the Su-Schrieffer-
Heeger model [8,35,36]. With similar treatment, we find in
the continuum limit the effective field theory of the Holstein
model is also the TLM model. The following is a short deriva-
tion. The Holstein model is defined as

H = −t
∑
n,σ

(c†
nσCn+1,σ + H.c.) − λ

∑
n,σ

xnnnσ

+ 1

2
K

∑
n

x2
n + 1

2
M

∑
n

ẋn
2. (B1)

Let

xn = eiπnzn. (B2)

Then the coupling term becomes

λ
∑
n,σ

(−1)nznc†
n,σ cn,σ = λ

∑
n,σ

∑
kqq′

zk eikneiπneiqne−iq′nc†
q,σ cq′,σ

= λ
∑

kqq′,σ

zk c†
q,σ cq′,σ δk+π+q−q′

= λ
∑
kq,σ

zk c†
q,σ cπ+k+q,σ . (B3)

Now let p = q − π
2 and p′ = q′ + π

2 ,

λ
∑
kq,σ

zk c†
q,σ cπ+k+q,σ

= λ
∑

k,|p|< π
2 ,σ

zk c†
kF +p,σ c−kF +k+p,σ

+ λ
∑

k,|p|< π
2 ,σ

zk c†
−kF +p,σ ckF +k+p,σ

=
∫

dx λz(x)[L†
σ (x)Rσ (x) + R†

σ (x)Lσ (x)]. (B4)

The free-fermion part is (we set h̄ = vF = 1)

H0 =
∑

σ

∫
dx − (R†

σ i∂xRσ − L†
σ i∂xLσ )

=
∑

σ

∫
dx ψ†

σ (x)[−iσz∂x]ψσ (x), (B5)

where ψσ (x) is a spinor made up of the right-moving Rσ (x)
and left-moving Lσ (x) components of the Fermi field near the

FIG. 12. The second-order and fourth-order diagrams used in
the determination of the effective Hamiltonian. Reproduced from
Ref. [25].
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Fermi points. And the free-phonon part is

1

2
K

∑
n

x2
n + 1

2
M

∑
n

ẋ2
n = 1

2
K

∑
n

ei2πnz2
n + 1

2
M

∑
n

ei2πnż2
n.

(B6)

So in the continuum limit, the Holstein model is also the TLM
model:

H =
∫

dx ψ†(x)[−iσz∂x]ψ (x) + λz(x)ψ†(x)σxψ (x)

+
∫

dx K

[
ż(x)2

ω2
0

+ z2(x)

]
. (B7)

APPENDIX C: THE STRONG-COUPLING U → ∞ limit

The strong-coupling expansion for the 1D Holstein model
can be schematically expressed as the diagrams in Fig. 12.
Figure 12(a) denotes the hopping of an electron from site i
to site j and then back to site i, which is the only possi-
bility for the second-order term. Similarly, Figs. 12(b) and
12(c) represent two possible fourth-order processes, while the
unlinked diagram is not included here since its contributions
vanish.

Then with pseudospin operators defined as in Eq. (15), the
corresponding terms in the effective Hamiltonian are [25]

H (2) = 1

2

∑
i

[
j (2)
⊥ (i)

1

2
(J+

i J−
i+1 + J−

i J+
i+1) + j (2)

‖ (i)

(
Jz

i Jz
i+1 − 1

4

)]
, (C1)

H (4) = 1

2

∑
i

[
( j (4)

⊥ (i) + j′⊥(i))
1

2
(J+

i J−
i+1 + J−

i J+
i+1) + j′′⊥(i)

1

2
(J+

i J−
i+2 + J−

i J+
i+2)

+ ( j (4)
‖ (i) − j′‖(i))

(
Jz

i Jz
i+1 − 1

4

)
+ ( j′‖(i) + j′′‖ (i))

(
Jz

i Jz
i+2 − 1

4

)]
, (C2)

where the explicit expressions for eight coefficients are [25]

j (2)
⊥ = − 2

(
− 2t2

|U |e−2S

)(
1 +

∞∑
n=1

Sn

(S + 1)(S + 2) · · · (S + n)

)
,

(C3)

j (2)
‖ = − 2

(
− 2t2

|U |
)(

1 +
∞∑

n=1

(−S)n

(S + 1)(S + 2) · · · (S + n)

)
,

j (4)
⊥ = 8t4

|U |3 S3e−2S

⎡
⎣ ∞∑

m,m′=0m+m′ �=0

∫ 1

0
dx

∫ 1

0
dy (xy)S−1 2cosh[S(x − y)]

(S/2)m+m′
(1 − x2)m(1 − y2)m′

m!m′!(m + m′)

−
∞∑

m,m′=0

Sm+m′

m!m′!
(−1)m + (−1)m′

(m + S)2(m′ + S)

⎤
⎦, (C4)

j (4)
‖ = 8t4

|U |3 S3e−2S

⎡
⎣ ∞∑

m,m′=0m+m′ �=0

∫ 1

0
dx

∫ 1

0
dy (xy)S−1

(
eS(x+y) (S/2)m+m′

(1 − x)2m(1 − y)2m′

m!m′!(m + m′)

+ e−S(x+y) (S/2)m+m′
(1 + x)2m(1 + y)2m′

m!m′!(m + m′)

)
−

∞∑
m,m′=0

Sm+m′

m!m′!
1 + (−1)m+m′

(m + S)2(m′ + S)

⎤
⎦, (C5)

j′⊥ = 4t4

|U |3 S3e−2S

[∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz(xyz)S−1

(
exp

{
S

2
[x − y + z − 2z(x − y) − xyz]

}
+ exp

{
S

2
[x − y − z(x + y)]

})

+ 2
∫ 1

0
dx

∫ 1

0
dy(xy)S−1eS(x−y)

∞∑
m=1

(S/2)m(1 − x)m(1 + y)m

m!m
+

∫ 1

0
dx

∫ 1

0
dy(xy)S−1eS(x−y)(lnx + lny)

]
, (C6)

j′′⊥ = − 4t4

|U |3 S3e−2S

[∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz(xyz)S−1exp

{
1

2
S[x + y + z − 2z(x + y) + xyz]

}

+ 2
∫ 1

0
dx

∫ 1

0
dy(xy)S−1e−S(x+y)

∞∑
m=1

(S/2)m(1 + x)m(1 + y)m

m!m
+ 2

∫ 1

0
dx

∫ 1

0
dy(xy)S−1e−S(x+y)lnx

]
, (C7)

j′‖ = − 4t4

|U |3 S3e−2S

[∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz(xyz)S−1

(
exp

{
S

2
[−x − y + z + 2z(x + y) + xyz]

}
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FIG. 13. An illustration of the exchange integrals (coefficients of the effective pseudospin Hamiltonian) as a function of S with t = 1. Here
we use |U | = 5 as an example.

+ exp

{
S

2
[−x − y + 2z + z(x + y) + 2xyz]

})

+2
∫ 1

0
dx

∫ 1

0
dy (xy)S−1eS(x+y)

∞∑
m=1

(S/2)m(1 − x)m(1 − y)m

m!m
+ 2

∫ 1

0
dx

∫ 1

0
dy (xy)S−1eS(x+y)lnx

]
, (C8)

j′′‖ = 4t4

|U |3 S3e−2S
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz (xyz)S−1exp

{
1

2
S[x + y + 2z − z(x + y) + 2xyz]

}
. (C9)

FIG. 14. (a) Finite-size scaling analysis of KC for L ∈ [100, 200, 300, 400]. Here we use (U, ω0) = (4, 8) and (6, 8) as examples.
(b) Estimates of the ground-state energies per site for the middle 10 sites in various regimes.
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Here the combination t and U comes out as the overall energy scale, and the only tuning parameter is the dimensionless
retardation factor S ≡ U/ω0. We evaluate the values of eight coefficients as a function of S, as shown in Fig. 13. Then t1, t2, V1,
and V2 can be determined through Eq. (C10) and are plotted in Fig. 10. We see at finite |U | that, as S → 0, i.e., ω0 → ∞ (the
Hubbard limit), the values of t1, t2, V1, and V2 match the analytic expressions given in Eq. (16):

t1 =1

4

[
j (2)
⊥ (i) + j (4)

⊥ (i) + j′⊥(i)
] ω0→∞−−−−→ 1

4

(
4t2

|U | − 16t4

|U |3
)

, t2 = 1

4
j′′⊥(i)

ω0→∞−−−−→ 1

4

4t4

|U |3 ,

V1 =1

4

[
j (2)
‖ (i) + j (4)

‖ (i) − j′‖(i)
] ω0→∞−−−−→ t1, V2 = 1

4

[
j′‖(i) + j′′‖ (i)

] ω0→∞−−−−→ t2. (C10)

APPENDIX D: ADDITIONAL CALCULATIONS

In Fig. 14(a), we show an example of the finite-size scaling analysis we used to extract the Luttinger exponent Kc.
The system sizes accessible to us are very long (up to 400 unit cells). Further, the Luttinger exponent is extracted from
the correlation function data extrapolated to infinite system size L, assuming the leading correction is proportional to
1/L. In Fig. 14(b), we provide a table with the ground-state energies per site for the middle 10 sites computed with
DMRG.

[1] R. Peierls, Surprises in Theoretical Physics (Princeton Univer-
sity Press, Princeton, NJ, 1979).

[2] J.-P. Pouget, The Peierls instability and charge density wave
in one-dimensional electronic conductors, C. R. Phys. 17, 332
(2016).

[3] M. Hohenadler and H. Fehske, Density waves in strongly cor-
related quantum chains, Eur. Phys. J. B 91, 204 (2018).

[4] L. D. Landau, The movement of electrons in the crystal lattice,
Phys. Z. Sowjetunion 3, 644 (1933).

[5] T. Holstein, Studies of polaron motion: Part I. The molecular-
crystal model, Ann. Phys. (NY) 8, 325 (1959).

[6] T. Holstein, Studies of polaron motion: Part II. The “small”
polaron, Ann. Phys. (NY) 8, 343 (1959).

[7] A. Alvermann, H. Fehske, and S. A. Trugman, Polarons and
slow quantum phonons, Phys. Rev. B 81, 165113 (2010).

[8] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Solitons
in conducting polymers, Rev. Mod. Phys. 60, 781 (1988).

[9] H. Fehske, G. Hager, and E. Jeckelmann, Metallicity in the
half-filled Holstein-Hubbard model, Europhys. Lett. 84, 57001
(2008).

[10] S. Ejima and H. Fehske, DMRG analysis of the SDW-CDW
crossover region in the 1D half-filled Hubbard-Holstein model,
J. Phys.: Conf. Ser. 200, 012031 (2010).

[11] M. Tezuka, R. Arita, and H. Aoki, Phase diagram for
the one-dimensional Hubbard-Holstein model: A density-
matrix renormalization group study, Phys. Rev. B 76, 155114
(2007).

[12] E. Jeckelmann, C. Zhang, and S. R. White, Metal-insulator
transition in the one-dimensional Holstein model at half filling,
Phys. Rev. B 60, 7950 (1999).

[13] J. Greitemann, S. Hesselmann, S. Wessel, F. F. Assaad, and
M. Hohenadler, Finite-size effects in Luther-Emery phases of
Holstein and Hubbard models, Phys. Rev. B 92, 245132 (2015).

[14] M. Hohenadler and F. F. Assaad, Excitation spectra and spin
gap of the half-filled Holstein-Hubbard model, Phys. Rev. B 87,
075149 (2013).

[15] R. T. Clay and R. P. Hardikar, Intermediate Phase of the One
Dimensional Half-Filled Hubbard-Holstein Model, Phys. Rev.
Lett. 95, 096401 (2005).

[16] R. P. Hardikar and R. T. Clay, Phase diagram of the one-
dimensional Hubbard-Holstein model at half and quarter filling,
Phys. Rev. B 75, 245103 (2007).

[17] J. E. Hirsch and E. Fradkin, Phase diagram of one-dimensional
electron-phonon systems. II. The molecular-crystal model,
Phys. Rev. B 27, 4302 (1983).

[18] K.-M. Tam, S.-W. Tsai, and D. K. Campbell, Validity of the
Tomonaga Luttinger liquid relations for the one-dimensional
holstein model, Phys. Rev. B 84, 165123 (2011).

[19] H. Fehske, G. Wellein, A. Weiße, F. Göhmann, H. Büttner,
and A. R. Bishop, Peierls-insulator Mott-insulator transi-
tion in 1D, Phys. B (Amsterdam, Neth.) 312–313, 562
(2002).

[20] H. Fehske, A. P. Kampf, M. Sekania, and G. Wellein, Nature of
the Peierls- to Mott-insulator transition in 1D, Eur. Phys. J. B
31, 11 (2003).

[21] H. Fehske, G. Wellein, G. Hager, A. Weiße, and A. R. Bishop,
Quantum lattice dynamical effects on single-particle excitations
in one-dimensional Mott and Peierls insulators, Phys. Rev. B
69, 165115 (2004).

[22] I. P. Bindloss, Phase diagram and isotope effects of the quasi-
one-dimensional electron gas coupled to phonons, Phys. Rev. B
71, 205113 (2005).

[23] H. Bakrim and C. Bourbonnais, Quantum vs classical as-
pects of one dimensional electron-phonon systems revisited by
the renormalization group method, Phys. Rev. B 76, 195115
(2007).

[24] H. Bakrim and C. Bourbonnais, Nature of ground states in one-
dimensional electron-phonon Hubbard models at half filling,
Phys. Rev. B 91, 085114 (2015).

[25] J. K. Freericks, Strong-coupling expansions for the attractive
Holstein and Hubbard models, Phys. Rev. B 48, 3881 (1993).

[26] See Appendix B.
[27] T. Giamarchi, Quantum Physics in One Dimension (Oxford

University Press, Oxford, 2004).
[28] J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 58,

977 (1995).
[29] P. Calabrese and J. Cardy, Entanglement entropy and quantum

field theory, J. Stat. Mech. (2004) P06002.

075142-12

https://doi.org/10.1016/j.crhy.2015.11.008
https://doi.org/10.1140/epjb/e2018-90354-7
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1016/0003-4916(59)90003-X
https://doi.org/10.1103/PhysRevB.81.165113
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1209/0295-5075/84/57001
https://doi.org/10.1088/1742-6596/200/1/012031
https://doi.org/10.1103/PhysRevB.76.155114
https://doi.org/10.1103/PhysRevB.60.7950
https://doi.org/10.1103/PhysRevB.92.245132
https://doi.org/10.1103/PhysRevB.87.075149
https://doi.org/10.1103/PhysRevLett.95.096401
https://doi.org/10.1103/PhysRevB.75.245103
https://doi.org/10.1103/PhysRevB.27.4302
https://doi.org/10.1103/PhysRevB.84.165123
https://doi.org/10.1016/S0921-4526(01)01183-8
https://doi.org/10.1140/epjb/e2003-00002-2
https://doi.org/10.1103/PhysRevB.69.165115
https://doi.org/10.1103/PhysRevB.71.205113
https://doi.org/10.1103/PhysRevB.76.195115
https://doi.org/10.1103/PhysRevB.91.085114
https://doi.org/10.1103/PhysRevB.48.3881
https://doi.org/10.1088/0034-4885/58/9/002
https://doi.org/10.1088/1742-5468/2004/06/p06002


ONE-DIMENSIONAL HOLSTEIN MODEL REVISITED PHYSICAL REVIEW B 107, 075142 (2023)

[30] M. Fagotti and P. Calabrese, Universal parity effects in the
entanglement entropy of XX chains with open boundary con-
ditions, J. Stat. Mech. (2011) P01017.

[31] M. Nakahara and K. Maki, Quantum corrections to solitons in
polyacetylene, Phys. Rev. B 25, 7789 (1982).

[32] G. T. Zimanyi, S. A. Kivelson, and A. Luther, Supercon-
ductivity from Predominantly Repulsive Interactions in Quasi
One-Dimensional Systems, Phys. Rev. Lett. 60, 2089 (1988).

[33] L. G. Caron and C. Bourbonnais, Two-cutoff renormalization
and quantum versus classical aspects for the one-dimensional

electron-phonon system, Phys. Rev. B 29, 4230
(1984).

[34] M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor
Software Library for tensor network calculations, SciPost Phys.
Codebases 1, 4 (2022).

[35] H. Takayama, Y. R. Lin-Liu, and K. Maki, Continuum
model for solitons in polyacetylene, Phys. Rev. B 21, 2388
(1980).

[36] B. Horovitz, Solitons in polyacetylene: A comment, Phys. Rev.
B 22, 1101 (1980).

075142-13

https://doi.org/10.1088/1742-5468/2011/01/P01017
https://doi.org/10.1103/PhysRevB.25.7789
https://doi.org/10.1103/PhysRevLett.60.2089
https://doi.org/10.1103/PhysRevB.29.4230
https://doi.org/10.21468/SciPostPhysCodeb.4
https://doi.org/10.1103/PhysRevB.21.2388
https://doi.org/10.1103/PhysRevB.22.1101

