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Drude weights in one-dimensional systems with a single defect
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Ballistic transport of a quantum system can be characterized by Drude weight, which quantifies the response of
the system to a uniform electric field in the infinitely long timescale. The Drude weight is often discussed in terms
of the Kohn formula, which gives the Drude weight by the derivative of the energy eigenvalue of a finite-size
system with the periodic boundary condition in terms of the Aharonov-Bohm flux. Recently, the Kohn formula is
generalized to nonlinear responses. However, the nonlinear Drude weight determined by the Kohn formula often
diverges in the thermodynamic limit. In order to elucidate the issue, in this work we examine a simple example
of a one-dimensional tight-binding model in the presence of a single defect at zero temperature. We find that its
linear and nonlinear Drude weights given by the Kohn formula (i) depend on the Aharonov-Bohm flux and (ii)
diverge proportionally to a power of the system size. We argue that the problem can be attributed to different
order of limits. The Drude weight according to the Kohn formula (“Kohn-Drude weight”) indicates the response
of a finite-size system to an adiabatic insertion of the Aharonov-Bohm flux. While it is a well-defined physical
quantity for a finite-size system, its thermodynamic limit does not always describe the ballistic transport of the
bulk. The latter should be rather characterized by a “bulk Drude weight” defined by taking the thermodynamic
limit first before the zero-frequency limit. While the potential issue of the order of limits has been sometimes
discussed within the linear response, the discrepancy between the two limits is amplified in nonlinear Drude
weights. We demonstrate the importance of the low-energy excitations of O(1/L), which are excluded from the
Kohn-Drude weight, in regularizing the bulk Drude weight.
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I. INTRODUCTION

The transport phenomenon is one of the most fundamental
problems in condensed matter and statistical physics. Com-
pared to the widely studied linear response, nonlinear ones
have been less explored and still are an intriguing topic. For
instance, rectification current [1,2] and high-harmonic genera-
tion [3,4] originating from nonlinear responses are extensively
studied recently. Although the theoretical sides have also been
actively investigated and various interesting phenomena have
been proposed [5–11], we still do not reach a systematic
understanding of them. In particular, the general aspects of
the nonlinear responses in quantum many-body systems have
been less studied [12].

The current induced by the uniform electric field is an
important subject in the charge transport. Since electromag-
netic waves used to probe materials usually have a wavelength
much longer than the microscopic length scale, optical absorp-
tion can be related to the conductivity in the uniform (zero
wave-number) limit at the frequency of the wave. Thus, the
corresponding conductivity as a function of the frequency is
often called optical conductivity. In a finite system with the
periodic boundary condition, the problem can be formulated
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as the response towards an insertion of a U(1) Aharonov-
Bohm magnetic flux (AB flux). In particular, the celebrated
Kohn formula [13] relates the response to an adiabatic flux
insertion to the Drude weight. The Drude weight is the co-
efficient of the delta function peak at zero frequency in the
optical conductivity, and characterizes the ballistic transport
[14] of the system within the linear response theory. The Kohn
formula and Drude weight have been studied in numerous
papers over nearly half a century [15–21].

Recently, nonlinear Drude weights were introduced as a
direct generalization of the Drude weight of linear response
to higher-order responses [22], and their nature has been
further investigated [23–29]. For noninteracting band insula-
tors, the Drude weights underlie the phenomenon so-called
Bloch oscillation [22]. The N th-order Drude weight D̃L,θ

(N ) is

the coefficient of the most singular term
∏N

�=1 δ(ω�) in the
N th-order optical conductivity σ L,θ

(N ) (ω1, . . . , ωN ) for a fixed L,

which D̃L,θ
(N ) can be computed by the generalized Kohn formula

D̃L,θ
(N ) = LN dN+1EL,θ

0 /dθN+1. In the studies of the nonlinear
responses in the spin- 1

2 XXZ Heisenberg chain [22,24–28],
it turns out that its nonlinear Drude weights diverge in the
limit of large system size, depending on the order of the
response and the value of the anisotropy parameter [22,24,25].
While the origin of the divergence in the XXZ chain was
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discussed in Ref. [24], the general condition, such as whether
the many-body interaction is needed or not for the divergence,
is still unknown. It is also unclear what happens under a
static electric field in the system with the divergent Drude
weights. It is important to clarify the above problems in
order to reach a systematic understanding of the nonlinear
responses.

In order to clarify the issues, in this work we study the
(linear and nonlinear) Drude weights in a very simple setup:
single-band tight-binding model with a single defect at zero
temperature. The exact solvability of the model helps un-
derstanding of the problem in detail. Even in such a simple
setup, we find the divergence of nonlinear Drude weights in
the thermodynamic limit. We relate the apparent pathological
behavior of the nonlinear Drude weights to the order of the
two limits: the zero-frequency limit and the thermodynamic
limit. In order to clarify the difference, we call the Drude
weight determined by the Kohn formula, which characterizes
the adiabatic transport of the finite-size system, as Kohn-
Drude weight. The thermodynamic limit of the Kohn-Drude
weight does not necessarily characterize the ballistic transport
of the bulk, which is quantified by the bulk Drude weight.
Roughly speaking, the bulk Drude weight is defined by taking
the thermodynamic limit first, before taking the adiabatic (in-
finitely slow AB flux insertion) limit. The bulk Drude weight
is generally different from the thermodynamic limit of the
Kohn-Drude weight, although they can be identical in some
cases. While the importance of the distinction between the two
limits has been discussed for the linear Drude weight [30–32],
the discrepancy is amplified in the nonlinear Drude weights,
most notably in the divergence of the nonlinear Kohn-Drude
weights in the thermodynamic limit [22,24,25]. Thanks to the
simple exactly solvable setup, we demonstrate explicitly how
the bulk Drude weight free from the pathological features is
recovered in the appropriate thermodynamic limit.

First, we examine the dependence of the ground-state
energy to the twisted boundary condition in general one-
dimensional (1D) systems and clarify the relation to the
adiabatic transport including the nonlinear responses through
the Kohn formula. We then study the specific case of the
single-band tight-binding model with a single defect, in
which the nonlinear Kohn-Drude weights diverge in the ther-
modynamic limit. This demonstrates that the many-body
interactions are not essential for the divergence of the non-
linear Kohn-Drude weights. Regardless of the details of the
defect, the divergence of nonlinear Kohn-Drude weights is
much stronger than those observed in the XXZ model. Fur-
thermore, we find that even the linear Kohn-Drude weight
shows a pathological behavior, depending strongly on AB flux
in the thermodynamic limit.

We also elucidate the physical consequence of the diverg-
ing behavior of the Kohn-Drude weights. One might think that
the divergence implies an arbitrarily large current response.
To clarify this point, we employ the numerical real-time sim-
ulation to study the time evolution of the current under the
static electric field. We find that the induced current is rather
suppressed compared to the defect-free case. The real-time
simulations would be the most direct approach to the question
of the current response to the uniform electric field. However,
the real-time numerical study of the Drude weight in the

gapless phase of the XXZ model is challenging because the
interaction makes the long-time simulation difficult. In con-
trast, the noninteracting nature of our model makes it possible
to study the crossover between the adiabatic (Kohn formula)
limit and the bulk limit.

For a fixed system size L, the Kohn-Drude weight cor-
responds to the coefficient of the delta function at zero
frequency in the optical conductivity. However, the optical
conductivity also contains low-frequency peaks originating
from low-energy excitations with the excitation energy of the
order O(1/L). They can contribute to the bulk Drude weight
since they merge to the zero-frequency delta function when
the thermodynamic limit L → ∞ is taken first. For the single-
defect model, we demonstrate that, in the bulk Drude weight
thus obtained, the pathological features of the Kohn-Drude
weight such as the dependence on the AB flux and the diver-
gence of the nonlinear Drude weights disappear. Therefore,
the bulk Drude weight indeed behaves as a well-defined bulk
quantity. We also discuss implications of these findings for
the pathological behaviors observed in many-body interacting
systems such as the XXZ spin chain [22,24–26].

This paper is organized as follows. In Sec. II, we review
response theory to set up notations. In Sec. III, we examine
the dependence of the ground-state energy on the twisted
boundary condition, and summarize its relation to the
adiabatic transport. We derive general upper bounds of the
adiabatic current density and the linear Drude weights in terms
of the frequency sum of the optical conductivity. In Sec. IV,
we introduce our central model in this study, a single-band
tight-binding model with a defect, and analytically show
that the model has pathological properties including the
divergence of the Kohn-Drude weights. In Sec. V, we study
the physical implication of the divergent Kohn-Drude weights
using the numerical real-time simulation. In Sec. VI, we
demonstrate how the low-frequency components of the
optical conductivity in finite-size systems contribute to the
bulk Drude weight and cancel the pathological behavior of the
Kohn-Drude weight. After discussing the relation between
the Kohn-Drude and bulk Drude weights in Sec. VII, we
summarize this paper in Sec. VIII.

II. REVIEW OF RESPONSE THEORY

Let us start by summarizing the setting of the systems con-
sidered in this work and briefly reviewing the linear and the
second-order response theory to set the basis of discussions in
the subsequent sections.

A. Setting and definitions

Let us consider 1D systems described by a local Hamil-
tonian ĤL,θ that contains only finite-ranged hoppings and
finite-ranged interactions. We impose the periodic bound-
ary condition (PBC) with the system size L. Assuming a
global U(1) symmetry for the particle-number conservation,
we introduce a uniform vector potential A = θ/L. The nth
eigenstate of ĤL,θ is denoted by |nL,θ 〉 and its energy eigen-
value is written as EL,θ

n . The ground state is assumed to
be unique and corresponds to n = 0. In the following, the
expectation value 〈 · 〉 is taken using the the ground state |0L,θ 〉
of ĤL,θ .
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The averaged current operator ĵL,θ and the kinetic energy
operator k̂L,θ are given by

ĵL,θ ≡ 1

L

dĤL,θ

dA
= dĤL,θ

dθ
, (1)

k̂L,θ ≡ 1

L

d2ĤL,θ

dA2
= L

d2ĤL,θ

dθ2
. (2)

We also define t̂ L,θ by the third derivative

t̂ L,θ ≡ 1

L

d3ĤL,θ

dA3
= L2 d3ĤL,θ

dθ3
(3)

for a later purpose.
Suppose that a time-dependent electric field E (t ) is applied

to the system. In the Fourier space, the current induced by
the electric field can be expressed in terms of the optical
conductivities σ L,θ

(N ) (ω1, . . . , ωN ) as

jL,θ (ω) =
∞∑

N=1

2π

N!

∫
dω1

2π
· · ·

∫
dωN

2π
δ

(
ω −

N∑
�=1

ω�

)

× σ L,θ
(N ) (ω1, . . . , ωN )

N∏
�=1

E (ω�). (4)

Here N represents the order of the response: N = 1 is the
linear response and N � 2 is a higher-order response. We
define the N th-order Kohn-Drude weight D̃L,θ

(N ) as the coef-

ficient of the πN
∏N

�=1 δ(ω�) term in σ L,θ
(N ) (ω1, . . . , ωN ) [22].

The Kohn-Drude weight can be computed by the generalized
Kohn formula [13,22]

D̃L,θ
(N ) = 1

L

dN+1

dAN+1
EL,θ

0 = LN dN+1

dθN+1
EL,θ

0 . (5)

In Secs. III and IV, we will examine the properties of the
N th-order Kohn-Drude weights in Eq. (5). We give concrete
expressions of σ L,θ

(1) (ω), σ L,θ
(2) (ω), D̃L,θ

(1) , and D̃L,θ
(2) below.

B. Linear response

According to Kubo’s theory, the linear optical conductivity
σ L,θ

(1) (ω) can be expressed as [14,23]

σ L,θ
(1) (ω) = i

ω + iη

{
φL,θ

(1),0(ω) + φL,θ
(1),1(ω)

}
, (6)

where φL,θ
(1),0(ω) = 〈k̂L,θ 〉 and

φL,θ
(1),1(ω) = L

∑
n �=0

| 〈0L,θ | ĵL,θ |nL,θ 〉 |2

×
(

1

ω − 
L,θ
n + iη

− 1

ω + 
L,θ
n + iη

)
. (7)

Here and hereafter, 
L,θ
n ≡ EL,θ

n − EL,θ
0 represents the excita-

tion energy of the nth eigenstate and η > 0 is an infinitesimal
parameter. The real part of σ L,θ

(1) (ω) can be decomposed into
the singular and the regular parts:

Re
[
σ L,θ

(1) (ω)
] = πD̃L,θ

(1) δ(ω) + Re
[
σ L,θ

(1)reg(ω)
]
. (8)

The coefficient of the first term

D̃L,θ
(1) ≡ 〈k̂L,θ 〉 − 2L

∑
n>0

|〈nL,θ | ĵL,θ |0L,θ 〉|2

L,θ

n

(9)

gives the linear Kohn-Drude weight [13], for which Eq. (5)
with N = 1 holds. The regular part

Re
[
σ L,θ

(1)reg(ω)
] = πL

∑
n>0

|〈nL,θ | ĵL,θ |0L,θ 〉|2

L,θ

n

δ
(|ω| − 
L,θ

n

)
(10)

is a non-negative and even function of ω. The frequency-sum
rule∫ ∞

−∞
dω σ L,θ

(1) (ω) =
∫ ∞

−∞
dω Re

[
σ L,θ

(1) (ω)
] = π〈k̂L,θ 〉 (11)

and the positivity of the regular part implies that

D̃L,θ
(1) � 〈k̂L,θ 〉. (12)

C. Second-order response

Let us move to the second-order response. The second-
order optical conductivity σ L,θ

(2) (ω1, ω2) is given by

σ L,θ
(2) (ω1, ω2) = i

ω1 + iη

i

ω2 + iη

2∑
j=0

φL,θ
(2), j (ω1, ω2), (13)

where φL,θ
(2),0(ω1, ω2) = 〈t̂ L,θ 〉,

φL,θ
(2),1(ω1, ω2) = L

∑
n>0

〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ |k̂L,θ |0L,θ 〉
(

1

ω1 + ω2 − 
L,θ
n + 2iη

− 1

ω1 + 
L,θ
n + iη

− 1

ω2 + 
L,θ
n + iη

)

− L
∑
n>0

〈0L,θ |k̂L,θ |nL,θ 〉〈nL,θ | ĵL,θ |0L,θ 〉
(

1

ω1 + ω2 + 
L,θ
n + 2iη

− 1

ω1 − 
L,θ
n + iη

− 1

ω2 − 
L,θ
n + iη

)
, (14)

and

φL,θ
(2),2(ω1, ω2) = L2

∑
m,l>0

〈0L,θ | ĵL,θ |mL,θ 〉〈mL,θ | ĵL,θ |lL,θ 〉〈lL,θ | ĵL,θ |0L,θ 〉

×
[

1(
ω1 + ω2 − 
L,θ

m + 2iη
)(

ω1 − 
L,θ
l + iη

) + 1(
ω1 + ω2 − 
L,θ

m + 2iη
)(

ω2 − 
L,θ
l + iη

)
− 1(

ω1 + 
L,θ
m + iη

)(
ω2 − 
L,θ

l + iη
) − 1(

ω2 + 
L,θ
m + iη

)(
ω1 − 
L,θ

l + iη
)
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+ 1(
ω1 + 
L,θ

m + iη
)(

ω1 + ω2 + 
L,θ
l + 2iη

) + 1(
ω2 + 
L,θ

m + iη
)(

ω1 + ω2 + 
L,θ
l + 2iη

)]

− L2
∑
n>0

〈0L,θ | ĵL,θ |0L,θ 〉〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ | ĵL,θ |0L,θ 〉

×
[

1(
ω1 + ω2 − 
L,θ

n + 2iη
)(

ω1 − 
L,θ
n + iη

) + 1(
ω1 + ω2 − 
L,θ

n + 2iη
)(

ω2 − 
L,θ
n + iη

)
− 1(

ω1 + 
L,θ
n + iη

)(
ω2 − 
L,θ

n + iη
) − 1(

ω2 + 
L,θ
n + iη

)(
ω1 − 
L,θ

n + iη
)

+ 1(
ω1 + 
L,θ

n + iη
)(

ω1 + ω2 + 
L,θ
n + 2iη

) + 1(
ω2 + 
L,θ

n + iη
)(

ω1 + ω2 + 
L,θ
n + 2iη

)]
. (15)

Extracting the coefficient of π2δ(ω1)δ(ω2) term, we obtain the second-order Kohn-Drude weight

D̃L,θ
(2) ≡ 〈t̂ L,θ 〉 − 6L

∑
n>0

Re[〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ |k̂L,θ |0L,θ 〉]

L,θ

n

+ 6L2
∑

m,l>0

〈0L,θ | ĵL,θ |mL,θ 〉〈mL,θ | ĵL,θ |lL,θ 〉〈lL,θ | ĵL,θ |0L,θ 〉

L,θ

m 
L,θ
l

− 6L2
∑
n>0

〈0L,θ | ĵL,θ |0L,θ 〉 〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ | ĵL,θ |0L,θ 〉

L,θ

n 
L,θ
n

. (16)

This quantity can be written as Eq. (5) with N = 2 [22].

The above general formulas can be simplified for free
fermions. We summarize these expressions in Appendix A.
They require significantly less calculation cost and we will
use them in our numerical demonstration.

III. TWISTED BOUNDARY CONDITION AND THE
GROUND-STATE ENERGY

In this section we summarize the relation between the de-
pendence of the ground-state energy on the twisted boundary
condition and the adiabatic transport of the system.

A. General consideration

We are interested in the θ dependence of the ground-state
energy EL,θ

0 . Since eiθ may be interpreted as the phase of
twisted boundary condition, EL,θ

0 must have the period 2π as
a function of θ . The θ dependence of the ground-state energy
determines the ballistic transport property of the system. For
example, the spontaneous current density is given by

jL,θ
0 ≡ 〈 ĵL,θ 〉 = dEL,θ

0

dθ
. (17)

Higher derivatives of EL,θ
0 are related to Drude weights as we

have seen in Sec. II.
The ground-state energy EL,θ

0 can, in general, be expanded
into a power series of L:

EL,θ
0 = c+1(θ )L + c0(θ ) + c−1(θ )L−1 + o(L−1), (18)

where o(L−n) represents corrections that decay faster than
L−n in the large-L limit, which includes possible terms with
noninteger power α > 1 (α /∈ Z) and logarithmic corrections.
By definition, coefficients cp(θ ) (p = 1, 0,−1, . . . ) do not
depend on L. Note that c+1(θ ) corresponds to the energy
density ε0 in the thermodynamic limit and cannot depend
on θ .

In order to investigate the θ dependence of c0(θ ) and
c−1(θ ), let us derive a bound for the spontaneous current den-
sity jL,θ

0 following the proof of the Bloch theorem [33,34]. To
this end, we introduce the large gauge transformation operator

Û ≡ ei(2πm/L)
∑

x xn̂x , (19)

where n̂x is the number density operator at the site x. The
operator Û changes the flux θ by 2πm, hence the gauge field
A = θ/L by 2πm/L. Therefore,

Û †ĤL,θÛ − ĤL,θ

= 2πm

L

dĤL,θ

dA
+ 1

2

(
2πm

L

)2 d2ĤL,θ

dA2
+ O(L−2)

= 2πm ĵL,θ + 2π2m2L−1k̂L,θ + O(L−2). (20)

Here, O(L−n) is a quantity that decays either equally fast
with or faster than L−n. Since the variational principle implies
〈Û †ĤL,θÛ − ĤL,θ 〉 � 0, we find

m jL,θ
0 + πm2L−1〈k̂L,θ 〉 + O(L−2) � 0, (21)

and hence

m[∂θc0(θ )L + ∂θc−1(θ )] + πm2〈k̂L,θ 〉 + o(1) � 0 (22)

for any m ∈ Z. It follows that 〈k̂L,θ 〉 � 0 and c0(θ ) is θ in-
dependent. In fact, a nonzero c0(θ ) indicates the energy due
to a defect, and thus c0(θ ) generally vanishes in translation-
invariant systems. The statement c0(θ ) = 0 also follows from
the conformal mapping from the infinite plane to a cylinder
[35,36], when the translation-invariant system is described by
a conformal field theory (CFT).

On the other hand, c−1(θ ) is related to the central charge
and conformal dimensions of the CFT, and thus is expected
to be universal (see the later sections for its precise meaning).
Nonvanishing θ dependence starts at c−1(θ ). To quantify its θ
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dependence, let us look at the nth derivative:

dn(θ ) ≡ dnc−1(θ )

dθn
. (23)

These derivatives give the leading term of the sponta-
neous current density jL,θ

0 = d1(θ )L−1 + o(L−1) and the
Kohn-Drude weights D̃L,θ

(N ) = dN+1(θ )LN−1 + o(LN−1). The
inequality (22) becomes

md1(θ ) + πm2〈k̂L,θ 〉 + o(1) � 0, (24)

which implies

|d1(θ )| � π lim
L→∞

〈k̂L,θ 〉 = lim
L→∞

∫ ∞

−∞
dω σ L,θ

(1) (ω). (25)

The last equality is the frequency sum rule in Eq. (11). Fur-
thermore, Eq. (12) implies

d2(θ ) � lim
L→∞

〈k̂L,θ 〉 = 1

π
lim

L→∞

∫ ∞

−∞
dω σ L,θ

(1) (ω). (26)

When dN+1(θ ) �= 0 for an N � 2, two important conse-
quences follow immediately: (i) the N th-order Kohn-Drude
weight D̃L,θ

(N ) = dN+1(θ )LN−1 + o(LN−1) (N � 2) diverges in
the large-L limit with the power LN−1, and (ii) the linear
Kohn-Drude weight D̃L,θ

(1) = d2(θ ) + o(1) depends nontriv-
ially on θ even in the large-L limit. This means that even the
linear Kohn-Drude weight shows pathological behavior as a
bulk quantity when dn(θ ) �= 0 for an n � 3. Since a bulk quan-
tity in a sufficiently large system must be insensitive to the
boundary condition, this implies that the linear Kohn-Drude
weight defined in Eq. (5) itself becomes ill defined as a bulk
quantity when dn(θ ) �= 0 for an n � 3. We will discuss the
origin and the resolution of these behaviors in Sec. VI. On
the other hand, this suggests that dn(θ ) vanishes for all n � 3
whenever the linear Kohn-Drude weight is supposed to be a
well-defined bulk quantity independent of θ . This is expected
to be the case when the system has both U(1) symmetry and
the lattice translation symmetry, regardless of the presence or
the absence of many-body interactions. Even in this case the
nonlinear Kohn-Drude weight D̃L,θ

(N ) may still diverge but with
a power smaller than LN−1. This is the case of the XXZ model
as we discuss later.

B. Single-band tight-binding model

As an example, let us consider a single-band tight-binding
model of spinless electrons in one dimension:

ĤL,θ
0 ≡ −t0

L/2∑
x=−L/2+1

(ĉ†
x+1e−iθ/Lĉx + H.c.). (27)

We set the lattice constant one and consider the PBC. We
assume that the system size is L = 4�′ + 2 and the number
of electrons is Nel = 2� + 1 (�, �′ ∈ N). The Hamiltonian
can be diagonalized by the Fourier transformation ĉ†

kn
≡

L−1/2 ∑
x ĉ†

xeiknx. We get ĤL,θ
0 = ∑L

n=1 εkn (θ )ĉ†
kn

ĉkn with kn ≡
2πn/L and εkn (θ ) = −2t0 cos(kn + θ/L). For the range |θ | <

π , the ground-state energy is given by

EL,θ
0 =

�∑
n=−�

εkn (θ ) = − vF

sin(π/L)
cos(θ/L). (28)

FIG. 1. (a) c−1(θ ) for the tight-binding model (t0 = 1) with sin-
gle impurity potential w = 1 (red solid line) and w = 0 (gray dotted
line) at the half-filling. For comparison, we also plot c−1(θ ) for the
XXZ model with J = 2 and 
 = 0.8 (blue dashed line). (b)–(d) The
same as (a) but for dn(θ ). n = 1 for (b), n = 2 for (c), and n = 3
for (d).

Here the Fermi velocity vF is defined by

vF ≡ 2t0 sin kF , kF ≡ πNel/L. (29)

Therefore,

c+1(θ ) = −vF

π
, (30)

c0(θ ) = 0, (31)

c−1(θ ) = vF

2π
[arccos(cos θ )]2 − πvF

6
. (32)

This expression of c−1(θ ) respects the period 2π of EL,θ
0 and

is valid for any θ ∈ R. Our convention of arccosine is the
standard one, satisfying 0 � arccos(x) � π , arccos(−1) = π ,
and arccos(+1) = 0. Thus, arccos(cos θ ) = |θ | for |θ | < π .
We plot c−1(θ ) and its derivative dn(θ ) (n = 1, 2, 3) of this
model in Fig. 1.

The N th-order Kohn-Drude weight in this model re-
mains finite in the thermodynamic limit, which is given
by limL→∞ D̃L,θ

(N ) = (−1)(N−1)/2vF /π when N is odd and

limL→∞ D̃L,θ
(N ) = 0 when N is even. More generally, all non-

linear Kohn-Drude weights remain finite if the ground-state
energy takes the form

EL,θ
0 = LεL

0 (θ/L) (33)

with a function εL
0 (A) whose large-L limit ε0(A) is a smooth

function of A. In the above tight-binding model, ε0(A) =
−(vF /π ) cos A. In such a case, cp(θ ) (p = 1, 0,−1, . . . )
is a polynomial of θ with the maximal power θ1−p and
limL→∞ D̃L,θ

(N ) = dN+1ε0(A)/dAN+1|A=0.

C. Tomonaga-Luttinger liquids

For Tomonaga-Luttinger liquids (TLLs) with the Luttinger
parameter K and the velocity parameter v, the finite-size
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scaling of the ground-state energy is known to be [37]

c+1(θ ) = ε0, (34)

c0(θ ) = 0, (35)

c−1(θ ) = Kv

2π
[arccos(cos θ )]2 − πv

6
. (36)

For example, in the case of the spin- 1
2 XXZ Heisenberg spin

chain

ĤL,θ
XXZ = J

L∑
x=1

(
1

2
ŝ+

x+1e−iθ/Lŝ−
x + H.c. + 
ŝz

x+1ŝz
x

)
(37)

with −1 < 
 � 1, the parameters ε0, K , and v are given by
[16,38,39]

ε0 = J

4
cos γ − J

2
sin γ

∫ ∞

−∞
dx

sinh[(π − γ )x]

sinh(πx) cosh(γ x)
, (38)

v = J
π sin γ

2γ
, K = π

2(π − γ )
, (39)

where γ ≡ arccos 
. This model with J = 2t0 and 
 = 0 can
be exactly mapped to the above tight-binding model at the
half-filling Nel = L/2. We plot c−1(θ ) and its derivative dn(θ )
(n = 1, 2, 3) in Fig. 1.

Although TLLs satisfy dn = 0 for n � 3, nonlinear Kohn-
Drude weights diverge in the thermodynamic limit in the
XXZ chain as studied in Refs. [22,24,26]. This is due to
the irrelevant perturbation to the CFT and not captured in
the unperturbed TLLs [24]. We emphasize that this fact does
not contradict our statement because the divergence of the
N th-order Kohn-Drude weight in the XXZ chain is with a
power smaller than LN−1.

We observe that c−1(θ ) in Eq. (36) is written completely
in terms of the parameters of the low-energy effective the-
ory and is universal in that sense. In particular, the constant
term −πv/6 follows from the central charge 1 of the TLL.
The Luttinger parameter K only affects the coefficient of
θ2 but never generates higher power terms of θ in c−1(θ ).
Reflecting the level crossing of many-body energy levels at
θ = (2m − 1)π (m ∈ Z), the slope of c−1(θ ) is discontinuous
at these points. The level crossing is protected by the lattice
translation symmetry; that is, the two many-body energy lev-
els crossing at these points have distinct momenta (0 and 2kF )
and they cannot repel each other. This observation motivates
us to investigate translation-breaking perturbations.

IV. TIGHT-BINDING MODEL WITH A SINGLE DEFECT

Let us introduce a defect V̂ to the tight-binding model
ĤL,θ

0 in Sec. III B. The defect induces a level repulsion at
θ = (2m − 1)π and EL,θ

0 becomes a smooth periodic func-
tion of θ . As a consequence, the θ dependence of c−1(θ ) is
fundamentally modified, as we shall see in Sec. IV C.

A. Single-defect scattering

We consider a defect V̂ localized around the site x = 0.
Examples include a single impurity potential

V̂ = wĉ†
0ĉ0 (40)

and a single bond disorder

V̂ = −(veiδ − t0)ĉ†
1e−iθ/Lĉ0 + H.c., (41)

but our discussion below is not restricted to these cases. The
only assumptions are that V̂ is written in terms of operators
near the origin and is a bilinear of ĉ†

x and ĉx′ .
To solve the eigenvalue equation (ĤL,θ

0 + V̂ )|k〉 = εk|k〉,
we postulate the following form of the wave function:

ψk (x) ≡ ψ̃+
k eikx + ψ̃−

k e−i(k+2θ/L)x (42)

for 1 − L/2 � x 
 −1 and

ψk (x) ≡ ψ+
k eikx + ψ−

k e−i(k+2θ/L)x (43)

for 1 
 x � L/2. We may assume 0 < k + θ/L < π . The
energy eigenvalue is still given by εk = −2t0 cos(k + θ/L) as
in the defect-free case, but the quantization condition imposed
on k is modified, as we will see below.

The defect V̂ can be characterized by the scattering matrix

Sq ≡
(

T +
q R−

q
R+

q T −
q

)
, (44)

where T ±
q and R±

q are the transmission and the reflection
coefficients. It maps the incoming components (ψ̃+

k and ψ−
k )

to the outgoing components (ψ+
k and ψ̃−

k ):(
ψ+

k
ψ̃−

k

)
= Sk+θ/L

(
ψ̃+

k
ψ−

k

)
. (45)

For example, for the single impurity potential (40),

T ±
q = 2t0 sin q

2t0 sin q + iw
, R±

q = − iw

2t0 sin q + iw
. (46)

For the single bond disorder (41),

T ±
q = e±iδ 2t0v sin q(

t2
0 + v2

)
sin q + i

(
t2
0 − v2

)
cos q

, (47)

R±
q = −e±iq i

(
t2
0 − v2

)
(
t2
0 + v2

)
sin q + i

(
t2
0 − v2

)
cos q

. (48)

The conservation of the probability current implies that
the S matrix is unitary for any q. Furthermore, it is also
constrained by the symmetries of the system. For example,
the time-reversal invariance implies(

ψ+
k

ψ̃−
k

)
= σ1

(
ψ̃+

k

ψ−
k

)∗
, (49)

where σi (i = 1, 2, 3) is the Pauli matrix. Together with the
unitarity, we find σ1S∗

qσ1 = S†
q , which is reduced to T +

q = T −
q

[40]. Likewise, the spatial inversion about x = x0 requires(
ψ̃+

k

ψ−
k

)
= σ1e2ix0qσ3

(
ψ̃+

k

ψ−
k

)
, (50)

(
ψ+

k

ψ̃−
k

)
= σ1e2ix0qσ3

(
ψ+

k

ψ̃−
k

)
, (51)

implying Sq = e−2iqx0σ3σ1Sqσ1e2iqx0σ3 . In terms of the matrix
elements, this is equivalent to T +

q = T −
q and R−

q = e−4iqx0 R+
q .

For example, the impurity potential (40) has the site inversion
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symmetry (x0 = 0) and the bond disorder (41) has the bond
inversion symmetry (x0 = 1

2 ) when δ = 0. Note that our dis-
cussions below do not assume any of these symmetries.

B. Quantization condition

Now we impose the PBC:(
ψ̃+

k

ψ̃−
k

)
=

(
ψ+

k eikL

ψ−
k e−i(k+2θ/L)L

)
. (52)

We demand the existence of nonvanishing solutions to
Eqs. (45) and (52), which leads to the quantization condition
of q ≡ k + θ/L. Such a condition can be most easily imple-
mented (see Ref. [41] for a related discussion on Majorana
fermions) by parametrizing the scattering matrix as

Sq = eiϕq

(
Tqeiδq −Rqe−iηq

+Rqeiηq Tqe−iδq

)
, (53)

where Tq ≡ |T ±
q | and Rq ≡ |R±

q | are the transmission and the
refection amplitude. The phase ϕq is related to the determinant
of the scattering matrix as det Sq = T +

q /(T −
q )∗ = e2iϕq . In the

presence of either the time-reversal symmetry or the inversion
symmetry, δq = 0. With these definitions, the quantization
condition reads as

cos(qL + ϕq) = Tq cos(θ − δq), 0 < q < π. (54)

The parametrization (53) and the quantization condition
(54) are invariant under the simultaneous shift ϕq → ϕq + π ,
δq → δq + π , and ηq → ηq + π . To fix the ambiguity, here we
assume the absence of bound states below the band bottom
ε = −2t0. We choose a branch of ϕq in such a way that
limq→+0 ϕq = −π/2 [40] and is continuous as a function of
q. See Sec. IV D for the case when bound states appear below
−2t0.

In the defect-free case (i.e., Tq = 1 and ϕq = δq = 0), the
solutions to Eq. (54) can be written as

q±
n = kn ± |θ |

L

(
kn ≡ 2πn

L

)
, (55)

where n = 0, 1, . . . , L/2 − 1 for q+
n and n = 1, 2, . . . , L/2

for q−
n . Even for a general V̂ �= 0, Eq. (54) can be expressed

in a form similar to Eq. (55):

q±
n = kn + φ±(q±

n )

L
, (56)

φ±(q) ≡ ± arccos[Tq cos(θ − δq)] − ϕq. (57)

Since the phase shift φ±(q±
n ) in Eq. (56) depends on q±

n , it still
needs to be solved self-consistently. In practice, however, one
can solve it iteratively. Namely, the first approximation is to
replace q±

n on the right-hand side by kn, which gives q±
n with

an error O(L−2). For our purpose of determining c−1(θ ), one
needs to repeat this step once again to determine q±

n to the L−2

accuracy. We find

q±
n = kn + φ±(kn)

L
+ 1

2L2

d[φ±(kn)]2

dkn
+ O(L−3). (58)

C. Ground-state energy

Using Eq. (58) and performing the Taylor expansion in a
series of L−n, we evaluate the ground-state energy as

EL,θ
0 = −2t0

�∑
n=0

cos(q+
n ) − 2t0

�∑
n=1

cos(q−
n )

= c̃L
+1(θ )L + c̃L,θ

0 (θ ) + c̃L
−1(θ )L−1 + O(L−2). (59)

Here, the coefficients c̃L
p(θ ) are given by

c̃L
+1(θ ) ≡ −2t0

L

�∑
n=−�

cos kn = −vF

π
− πvF

6L2
+ O(L−4), (60)

c̃L
0 (θ ) ≡ 2t0

L

�∑
n=1

sin kn[φ+(kn) + φ−(kn)]

= −2t0
π

∫ kF

0
dk sin k ϕk + O(L−2), (61)

and

c̃L
−1(θ ) ≡ t0

L

�∑
n=0

d

dkn
[sin(kn)φ+(kn)2]

+ t0
L

�∑
n=1

d

dkn
[sin(kn)φ−(kn)2]

= vF

4π
[φ+(kF )2 + φ−(kF )2] + O(L−1). (62)

Combining these results with Eq. (57), we find

c+1(θ ) = −vF

π
, (63)

c0(θ ) = −2t0
π

∫ kF

0
dk sin k ϕk, (64)

c−1(θ ) = vF

2π
{arccos [TF cos(θ − δF )]}2 + vF

2π
ϕ2

F − πvF

6
.

(65)

In these expressions, vF and kF are defined in Eq. (29).
In the derivation, we used the Euler-Maclaurin for-
mula

∑m
n=1 f (kn) = L/(2π )

∫ km+1

k1
dk f (k) − (1/2)[ f (km+1) −

f (k1)] + O(L−1) for the error estimate. The subscript F refers
to the value at the Fermi point k = kF . The effect of δF merely
shifts the origin of θ .

We note that the present result is consistent with the earlier
general observation. The “defect energy” c0(θ ) is nonvanish-
ing only in the presence of the localized defect. On the other
hand, c−1(θ ) is written completely in terms of the parameters
of the low-energy effective theory, including the transmission
amplitude TF at the Fermi point. The constant term −πvF /6
is again the consequence of the central charge 1 of the cor-
responding CFT (TLL). In this sense c−1(θ ) is universal. For
more detail, see Appendix B.

D. Bound states

Some of eigenstates of ĤL,θ
0 + V̂ are exponentially local-

ized to the defect. These bound states have energy eigenvalues
lower than −2t0 or higher than +2t0. The number of plane-
wave states in Eqs. (42) and (43) is reduced by the number
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of the bound states. For example, the impurity potential in
Eq. (40) has a bound state when |w|L > 1 − cos θ . The energy
eigenvalue can be approximated by sign(w)

√
(2t0)2 + w2 in

a sufficiently large system.1

Let us assume that there are Nb bound states below
ε = −2t0. We write their energy eigenvalues as εb

m (m =
1, 2, . . . , Nb). In this situation, we find it useful to define

ϕ̃q ≡ ϕq − Nbπ. (66)

The Levinson theorem states limq→+0 ϕ̃q = −π/2 [40]. Our
results in Eqs. (64) and (65) are modified as

c0(θ ) = −2t0
π

∫ kF

0
dk sin k (ϕ̃k + Nbπ ) +

Nb∑
m=1

(
εb

m + 2t0
)

= −2t0
π

∫ kF

0
dk sin k ϕ̃k +

Nb∑
m=1

(
εb

m − εF
)
, (67)

c−1(θ ) = vF

2π
{arccos [TF cos(θ − δF )]}2

+ vF

2π
(ϕ̃F + Nbπ )2 − πvF

6
. (68)

The first term of c−1(θ ), which governs the θ dependence, is
independent of the bound states away from the Fermi level.
The second term weakly depends on them through the choice
of the branch of ϕq. This is in contrast to the nonuniversal
defect energy c0(θ ), which explicitly depends on the bound-
state energy εb

m.

E. Derivatives of the ground-state energy

Given the fully general expression of c−1(θ ) in Eq. (65),
we can readily compute the derivatives of c−1(θ ) in Eq. (23).
For example,

d1(θ ) = vF sin θ ′ arccos(TF cos θ ′)

π

√
sin2 θ ′ + r2

F

, (69)

d2(θ ) = vF

π

sin2 θ ′

sin2 θ ′ + r2
F

+ d1(θ )
r2

F cot θ ′

sin2 θ ′ + r2
F

, (70)

and

d3(θ ) = vF

2π

3r2
F sin 2θ ′(

sin2 θ ′ + r2
F

)2 − d1(θ )
r2

F

(
2 + cos 2θ ′ + r2

F

)
(

sin2 θ ′ + r2
F

)2 ,

(71)

where θ ′ ≡ θ − δF and rF ≡ RF /TF . Note that Eqs. (65) and
(69) were previously derived in Ref. [42] for the special case
of an impurity potential in a continuum model. Here we red-
erived it in a more general setting on the lattice model without
specifying the form of the impurity V̂ . Possible time-reversal
symmetry breaking by V̂ results in nonzero δF in our setting.
We plot these functions in Fig. 1 for the example of the
single impurity potential at the half-filling, for which we have
rF = |w|/vF and vF = 2t0. We see that dn(θ ) generally does

1More precisely, one needs to find λ > 0 by solving 2t0(cosh Lλ −
cos θ ) sinh λ/ sinh Lλ = |w|. The energy eigenvalue is given by
sign(w)2t0 cosh λ.

not vanish, implying the divergence of DL,θ
(n−1) in the ther-

modynamic limit, except for several special values of θ . For
example, the time-reversal symmetry implies d2n−1(θ ) = 0
for θ = 0 and π , but d1(θ ), d3(θ ) �= 0 except for these points.
Despite this divergence, |d1(θ )|, which is the leading term in
the adiabatic current jL,θ

0 = d1(θ )L−1 + o(L−1), is a mono-
tonically decreasing function of rF for a fixed θ . In fact, for the
present model, the frequency sum of the optical conductivity
σ L,θ

(1) (ω) in Eq. (25) is given by

π〈k̂L,θ 〉 = −π

L
〈ĤL,θ 〉 + O(L−1) = vF + O(L−1), (72)

implying that |d1(θ )| � vF regardless of θ or V̂ [see Eq. (25)].
The bound is saturated at θ = ±π , in the absence of the
defect. Therefore, at least in this class of models, the diverg-
ing Kohn-Drude weights do not imply any larger adiabatic
current.

The θ dependence of dn(θ ) may be related to the singularity
around θ ′ = θ − δF = π and rF = 0:

d2(π + δF ) = d2(δF ) − vF

rF
, (73)

d4(π + δF ) = d4(δF ) + vF

(
3

r3
F

+ 1

rF

)
, (74)

which diverges in the rF = 0 limit. This divergence originates
from the degeneracy of the single-particle levels of ĤL,θ

0 at
θ = π as we show in Appendix C. It is interesting to observe
that the absolute value of the linear Kohn-Drude weight can
become arbitrarily large without contradicting with the bound
d2(θ ) � vF /π that follows from Eq. (26).

F. Response theory and divergence

We have seen the divergence of the Kohn-Drude weights
using the Kohn formula. Here, we show that the diver-
gence can also be explained by the response theory formulas
[Eqs. (9) and (16)].

For this purpose, we use the expressions of the Kohn-Drude
weights for tight-binding models given in Appendix A. The
linear and second-order Kohn-Drude weights are given by

D̃L,θ
(1) = 1

L

∑
n<0

KL,θ
nn − 2

L

∑
n<0,
m>0

∣∣JL,θ
mn

∣∣2

εL,θ
mn

, (75)

D̃L,θ
(2) = 1

L

∑
n<0

T L,θ
nn − 6

L

∑
n<0,
m>0

Re
[
AL,θ

mn

]
εL,θ

mn

+ 6

L

∑
n,n′<0,
m,m′>0

BL,θ
mm′nn′

εL,θ
mn εL,θ

m′n′
,

(76)

where we wrote the matrix elements of ĵL,θ , k̂L,θ , and k̂L,θ

among single-particle states as JL,θ
mn /L, KL,θ

mn /L, and T L,θ
mn /L,

respectively, and we defined AL,θ
mn ≡ JL,θ

nm KL,θ
mn and BL,θ

mm′nn′ ≡
JL,θ

nm (JL,θ
mm′δnn′ − JL,θ

n′n δmm′ )JL,θ
m′n′ . As shown in Appendix D, JL,θ

mn ,
KL,θ

mn , and T L,θ
mn are O(1). In contrast, the energy difference

of the two single-particle states εL,θ
mn ≡ εL,θ

m − εL,θ
n can be

O(1/L). Using these properties, and counting the orders,
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FIG. 2. (a) |JL,θ
mn |2 for θ = 1.57 and L = 22. (b) Re[Amn] for θ = 2.34. (c) −Bmm′nn′ for θ = 2.34 and L = 22. We plot all the combination

of (m, m′, n, n′) for m, m′ > 0 and n, n′ < 0. The horizontal axis Nind denotes the Nindth largest value of Bmm′nn′ . The data from the largest to
the 10th largest one are shown in the inset. We set t0 = w = 1.

we find that there is no divergent term at the linear order
[Eq. (75)]. At the second order, the third term in Eq. (76) is
proportional to L and diverges in the large-L limit due to the
two factors of εL,θ

mn in the denominator. More generally, εL,θ
mn

appears N times in the denominator at the N th order and D̃L,θ
(N )

is proportional to LN−1. These observations are consistent
with our results based on the Kohn formulas.

To see the behavior of D̃L,θ
(1) and D̃L,θ

(2) in more de-
tail, we study the structure of the matrix elements JL,θ

mn ,
AL,θ

mn , and BL,θ
mm′nn′ . As shown in Fig. 2, the matrix ele-

ments have peak structures. JL,θ
mn , AL,θ

mn and BL,θ
mm′nn′ take peaks

at (m, n) = (1,−1), (m, n) = (1,−1), and (m, m′, n, n′) =
(1, 1,−1,−1), respectively. Thus, we can approximate the
Kohn-Drude weights as

D̃L,θ
(1) � 〈k̂L,θ 〉 − 2c

∣∣JL,θ
1,−1

∣∣2
, (77)

D̃L,θ
(2) � 〈t̂ L,θ 〉 − 6c Re

[
AL,θ

1,−1

] + 6Lc2BL,θ
1,1,−1,−1, (78)

where an order-one constant c is defined as εL,θ
1,−1 = c/L. This

clearly shows D̃L,θ
(2) ∝ L for large L. If the defect potential is

absent (w = 0), JL,θ
mn , AL,θ

mn and BL,θ
mm′nn′ become zero for m > 0

and n < 0 and thus the Kohn-Drude weights take the f -sum
values such as 〈k̂L,θ 〉 and 〈t̂ L,θ 〉 [22].

V. REAL-TIME DYNAMICS

While the optical conductivity and Drude weight have been
mostly discussed in the frequency space, it is also useful
to formulate the optical conductivity in terms of real-time
response to the AB flux insertion [22,30,31,43]. To clarify
the physical implication of the divergent behavior of Kohn-
Drude weights, we perform a numerical calculation on the
tight-binding model considered in the previous section. We
directly simulate the real-time dynamics under a static electric
field. Thanks to the simplicity of the model, we can study the
real-time dynamics accurately in much detail.

We consider the dynamics driven by the time-dependent
Hamiltonian

ĤL,θ (t ) = −t0

L/2∑
x=−L/2+1

(
ĉ†

x+1e−iθ (t )/Lĉx + H.c.
) + wĉ†

0ĉ0.

(79)

The systems size L and the number of electrons is Nel are set
to be 4� + 2 and 2� + 1, respectively. Here, we use the single
potential disorder (40) as an example. Our results should be
independent of the detail of the defect as discussed in Sec. III.
In Appendix E, we examine the bond disorder (41) and indeed
obtain essentially the same result. The flux θ (t ) is set to

θ (t )

L
=

{A0
T t (0 � t < T ),
A0 (T � t ).

(80)

This flux insertion corresponds to the application of
the static electric field E = A0/T within 0 � t � T .
For convenience, we call T the ramp time. The ini-
tial state |ψini〉 is set to the many-body ground state
of ĤL,0. For numerical calculation, we discretize the
time-evolution operator as Û (t ) ≡ 
ÛNt . . . 
Û2
Û1 where

Ûn = exp[−iĤL,θ (tn+
t/2)
t], 
t = t/Nt , and tn = (n −
1)
t . The integer Nt is taken to be large enough to make the
result independent of it. The observable we focus on is the
time-dependent current density jL(t ) given by the expectation
value of the current operator

jL(t ) = 〈Û (t )† ĵL,θ (t )Û (t )〉. (81)

We are interested in the adiabatic transport which is dom-
inated by the Kohn-Drude weights. To this end, we simulate
the dynamics for various ramp times. There are two energy
scales in this system: the energy gap induced by the defect

V ≡ vF rF /L in the many-body spectrum [Fig. 3(i)] and the
energy scale of the flux insertion 
θ ≡ 2π/T . The adiabatic
condition is given by 
θ 
 
V . This is satisfied with the
sufficiently large T . Under this condition, the current den-
sity jL(t ) should be governed by jL,θ

0 in Eq. (17) which is
directly related to the Kohn-Drude weights. On the other hand,

θ � 
V corresponds to the sudden quench.

The current density jL(t ) is shown in Figs. 3(a)–3(h).
Figures 2(a) and 2(e) are near the quench limit. They show
the usual Bloch oscillation with the period TB = 2π/E =
(2π/A0)T . The behavior is almost the same as the rF = 0
case which is jL(t ) = (2t0/π ) sin[θ (t )/L] denoted by the blue
dashed curve. For longer ramp time, the current amplitude is
suppressed [Figs. 2(b) and 2(f)] and the profile approaches
the different oscillational modes [Figs. 2(c) and 2(g)]. Fi-
nally, it reaches a qualitatively different periodic oscillation
profile which has a smaller amplitude and shorter period
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FIG. 3. (a)–(d) [(e)–(f)] Real-time evolution of the current density jL (t ) (red curve) for L = 6 (L = 30) driven by the time-dependent
Hamiltonian with a single impurity potential (79). The ramp time is set to T = 10−1/t0, 10/t0, 103/t0, and 105/t0 in (a)–(d) [(e)–(h)],
respectively. The total flux A0 is 2π and the defect energy w is t0. The blue and green dashed curves represent the adiabatic current density for
w = 0 and w �= 0. (i) Many-body energy levels of the Hamiltonian (27) with a defect potential (40) for w = t0 and L = 6. The red curve is the
ground-state energy density. The blue curve denotes the adiabatic energy spectrum connected to the ground state without flux when w = 0.
The unit in the vertical axis is t0 for all the panels.

T ′
B = TB/L [Figs. 2(d) and 2(h)]. This profile converges to

the leading term of the adiabatic current with the defect,
i.e., jL(t ) ∼ d1(θ (t ))/L. Therefore, this dynamics reaches the
adiabatic limit for the given system size L. As shown in the
previous section, the functional form of the d1(θ ) implies the
divergence of the nonlinear Kohn-Drude weight and this real-
time dynamics reflects the divergence. However, the current
response is not enhanced with increasing the system size.
This shows that the divergence does not necessarily imply a
large current response. This observation is consistent with the
argument from the analytical results in Sec. III E.

The result of our real-time simulation suggests a way to
experimentally measure the nonlinear Kohn-Drude weights
through an experiment on the persistent current. For exam-
ple, both the flux insertion and the transport measurement
have been realized in ultracold atomic systems [44–48]. The
mesoscopic systems like a metallic ring can also be a realis-
tic platform where the persistent current has been accurately
measured [49,50]. Nonlinear transport in mesoscopic systems
is theoretically studied recently [51,52] and we expect that it
provides useful information for the nonlinear Drude weights
in finite systems.

Finally, we comment on the crossoverlike behavior of the
induced current jL(t ), which can be understood from the
many-body adiabatic spectrum shown in Fig. 3(i). In the
quench limit, the defect energy scale 
V is much smaller than
the flux insertion one 
θ , implying that the defect is irrelevant.
In the absence of the defect, the momentum of each electron is
conserved and the adiabatic spectrum is 2π periodic in terms
of θ/L [the blue dashed curve in Fig. 3(i)]. This periodicity
appears as the Bloch oscillation in the quench limit. Even

with the defect, almost perfect nonadiabatic transitions occur
at every gap induced by the defect and then the 2π -periodic
behavior appears as shown in Fig. 3(a) and 3(e). On the
other side, when 
V � 
θ , such nonadiabatic transitions are
absent and the time-dependent state keeps sitting on the in-
stantaneous ground state. Such a trajectory is shown in the red
curve in Fig. 3(i) and this corresponds to the small oscillation
with the period T ′

B in the adiabatic limit [Figs. 3(d) and 3(h)].
In the intermediate scale, nonadiabatic transitions occur in
a very complex way and there also appear interferences in
the spectrum. Note that a similar crossover behavior and the
interference effect appear in the flux insertion in the Hubbard
model [43,53] and the XXZ model [27] in one dimension.
This kind of behavior is expected to appear typically in the
many-body quantum systems.

VI. BULK DRUDE WEIGHTS

As we reviewed in Sec. II, the Kohn-Drude weight is
defined in the adiabatic limit of a finite system. While it is
a perfectly well-defined quantity for the finite-size system,
it shows pathological behaviors in the thermodynamic limit:
(i) the twist-angle dependence and (ii) the divergence in the
large-size limit. Both of them are critical issues for finding a
quantity to characterize the transport property of the bulk. For
this purpose, we need to take the thermodynamic limit first,
which is then followed by the zero-frequency limit. While
this “order of limits” issue has been discussed [21,30–32]
for the linear Drude weight, to clarify the issue we call the
Drude weight, including nonlinear ones, defined by taking
the thermodynamic limit first as bulk Drude weight. In this
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(a) θ = 0.0 (b) θ = 0.0

(c) θ = 1.57 (d) θ = 1.57

FIG. 4. Linear optical conductivity σ L,θ
(1) (ω) for the single-defect model [the Hamiltonian (27) with a defect potential (40)] with the different

system sizes L = 22, 42, 62. We set w/t0 = 1 and η/t0 = 0.01 in these plots. The panels (a) and (b) are for θ = 0 and (c) and (d) are for
θ = 1.57 ∼ π/2. The panels (b) and (d) are the same as (a) and (c), respectively, but the scale of the vertical axis is expanded. The yellow
shaded region in (a) [(c)] is shown in (b) [(d)].

section, for the simple single-defect system we demonstrate
that low but nonzero-frequency weights in finite-size systems
contribute to the bulk Drude weight, in which the pathological
behaviors disappear.

A. Linear Drude weight

To see the importance of low-frequency contributions, let
us calculate the optical conductivity σ L,θ

(1) (ω) for our single-
defect model [Hamiltonian (27) with a defect potential (40)].
We assume that the systems size is L = 4� + 2 (� ∈ Z) and
the particle number is 2� + 1. The results for different values
of θ and L are shown in Fig. 4. In addition to the Drude peak at
ω = 0, there appear several peaks at finite frequencies. These
peaks approach zero frequency with increasing the system
size. Indeed, the excitation energy corresponding to these
peaks is proportional to 1/L. These peaks contribute to the
low-frequency response in the thermodynamic limit and need
to be taken into account to form a well-defined bulk quantity.

Based on this observation, we introduce the integral of the
real part of the optical conductivity

IL,θ
(1) (�) ≡ 1

π

∫ �

−�

dω Re
[
σ L,θ

(1) (ω)
]

= D̃L,θ
(1) + 2L

∑
n>0,


L,θ
n <�

|〈nL,θ | ĵL,θ |0L,θ 〉|2

L,θ

n

(82)

as a function of � > 0. In going to the second line, we
used Eq. (10). The � → ∞ limit reproduces the sum rule in
Eq. (11)

lim
�→∞

IL,θ
(1) (�) = 〈k̂L,θ 〉, (83)

while the � → +0 limit gives the linear Kohn-Drude weight,
defined in Eq. (9):

lim
�→+0

IL,θ
(1) (�) = D̃L,θ

(1) = 〈k̂L,θ 〉 − 2L
∑
n>0

|〈nL,θ | ĵL,θ |0L,θ 〉|2

L,θ

n

.

(84)

In order to take into account finite-frequency corrections, we
define the linear bulk Drude weight by

Dbulk
(1) (θ ) ≡ lim

�→+0
lim

L→∞
IL,θ
(1) (�). (85)

The order of the limit is essential; if we take � → +0 before
the L → ∞ limit, we just obtain the Kohn-Drude weight as
we stated.

We now discuss that Dbulk
(1) (θ ) behaves as a well-defined

bulk quantity by numerically investigating the single impurity
model. We compute D̃L,θ

(1) , d2(θ ), IL,θ
(1) (�), and 〈k̂L,θ 〉 using

Eqs. (A6), (70), (A8), and (A4), respectively, and compare
them in Figs. 5(a) and 5(b). As we can see, the twist-angle
dependence that appears in D̃L,θ

(1) almost vanishes in IL,θ
(1) (�).
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FIG. 5. (a), (b) Comparison of D̃L,θ
(1) , d2(θ ), IL,θ

(1) (�), and 〈k̂L,θ 〉 for the single-defect model [the Hamiltonian (27) with a defect potential
(40)]. Here, �/t0 is set to 1 in (a) and 0.5 in (b). The unit in the vertical axis is t0 in both (a) and (b). (c) Color plot of the ratio rL

(1)(�)
as a function of L and � for θ = 1.57 ∼ π/2. (d) Regions where rL

(1)(�) takes a value within certain ranges, 0.97–0.975, 0.98–0.983, and
0.99–0.991. Gray dashed lines represent L = c�−1 with c = 95, 147, and 258. For all the panels, we set w/t0 = 1.

We find that IL,θ
(1) (�) with � = t0 is almost identical to 〈k̂L,θ 〉,

suggesting that the second term in Eq. (9) is nearly canceled
by the second term in Eq. (82). To see this cancellation more
clearly, we calculate the ratio

rL
(1)(�) ≡ IL,θ

(1) (�) − D̃L,θ
(1)

〈k̂L,θ 〉 − D̃L,θ
(1)

=
∑

n>0,

L,θ
n <� |〈nL,θ | ĵL,θ |0L,θ 〉|2/
L,θ

n∑
n>0 |〈nL,θ | ĵL,θ |0L,θ 〉|2/
L,θ

n

, (86)

which takes value in the range [0,1] and becomes one when
� is sufficiently large so that the cancellation is perfect. The
ratio rL

(1)(�) is plotted for different values of L and � in
Fig. 5(c). We also plot the regions where rL

(1)(�) takes the
values near one in Fig. 5(d), which shows that the contour for
rL

(1)(�0(L)) ∼ 1 behaves like �0(L) ∝ L−1. Based on these
plots, we see that rL

(1)(�) converges to one in the � → +0
limit after the L → ∞ limit. We conclude that Dbulk

(1) (θ ) =
limL→∞〈k̂L(θ )〉 = 2t0/π and does not depend on θ in this
model.

Finally, we remark on the relation to the previous works
on the linear Drude weights in the open boundary condition
(OBC). It was shown that the Kohn-Drude weight vanishes
under the OBC in the systems where the Kohn–Drude weight
is nonzero under the PBC [54,55]. These studies have shown
that this inconsistency can be resolved by considering the 1/L
excitations in the OBC case. Similarly to our study, the peaks

move to zero frequency with increasing the system size and
form a part of Drude peak in the thermodynamic limit. The
OBC result is found to be consistent with the PBC one once
these low-frequency peaks are included. Since the OBC corre-
sponds to the infinitely strong potential barrier, i.e., a potential
defect (40) with w/t0 → ∞, their results can be regarded as
an extreme case of our results although for a more nontrivial
model with interaction. On the other hand, our analysis on
the simple model can be further extended to nonlinear Drude
weights, as we will discuss in the following subsection.

B. Second-order Drude weight

Let us perform the same analysis for the second-order
optical conductivity. We plot σ L,θ

(2) (ω1, ω2) in Fig. 6. There
appear finite-frequency peaks in addition to the Drude peak
[(ω1, ω2) = (0, 0)], and they approach the Drude peak with
increasing the system size. This behavior is similar to the
linear order and thus suggests that the bulk Drude weight can
be defined in the same way. Namely, we introduce the integral
of the optical conductivity

IL,θ
(2) (�) ≡ 1

π2

∫ �

−�

dω1

∫ �

−�

dω2σ
L,θ
(2) (ω1, ω2) (87)

and define second-order bulk Drude weight by

Dbulk
(2) ≡ lim

�→+0
lim

L→∞
IL,θ
(2) (�). (88)
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FIG. 6. Second-order optical conductivity σ L,θ
(2) (ω1, ω2) for the single-defect model [the Hamiltonian (27) with a defect potential (40)] with

the different system sizes L = 10, 22. We set w/t0 = 1 and η/t0 = 0.02 in these plots. The panels (a) and (b) are for θ = 0.78 ∼ π/4 and
(c) and (d) are for θ = 2.34 ∼ 3π/4.

Let us investigate these quantities in more details. We rewrite IL,θ
(2) (�) using Eqs. (13)–(15):

IL,θ
(2) (�) = D̃L,θ

(2) + 2L
∑
n>0

Re[〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ |k̂L,θ |0L,θ 〉]

L,θ

n

(
g1

(
L,θ
n
�

) + 2 f1
(
L,θ

n
�

))

− 2L
∑
n>0

Im[〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ |k̂L,θ |0L,θ 〉]

L,θ

n

(
g2

(
L,θ
n
�

) − 2 f2
(
L,θ

n
�

))

− 2L2
∑

m,l>0

Re[〈0L,θ | ĵL,θ |mL,θ 〉〈mL,θ | ĵL,θ |lL,θ 〉〈lL,θ | ĵL,θ |0L,θ 〉]

L,θ

m 
L,θ
l

× [
2h1

(

L,θ
l
�

,

L,θ

m
�

) + f1
(


L,θ
l
�

) + f1
(
L,θ

m
�

) − f1
(
L,θ

m
�

)
f1

(

L,θ
l
�

) − f2
(
L,θ

m
�

)
f2

(

L,θ
l
�

)]

+ 2L2
∑

m,l>0

Im[〈0L,θ | ĵL,θ |mL,θ 〉〈mL,θ | ĵL,θ |lL,θ 〉〈lL,θ | ĵL,θ |0L,θ 〉]

L,θ

m 
L,θ
l

× [
2h2

(

L,θ
l
�

,

L,θ

m
�

) + f2
(


L,θ
l
�

) − f2
(
L,θ

m
�

) − f1
(
L,θ

m
�

)
f2

(

L,θ
l
�

) + f1
(


L,θ
l
�

)
f2

(
L,θ
m
�

)]

+ 2L2
∑
n>0

〈 ĵL,θ 〉〈0L,θ | ĵL,θ |nL,θ 〉〈nL,θ | ĵL,θ |0L,θ 〉

L,θ

n 
L,θ
n

[
2h1

(
L,θ
n
�

,

L,θ

n
�

) + 2 f1
(
L,θ

n
�

) − f1
(
L,θ

n
�

)2 − f2
(
L,θ

n
�

)2]
, (89)
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FIG. 7. Plot of f1,2(x), g1,2(x), and h1,2(x, x′). The function h1,2(x, x′) is computed numerically for η/t0 = 0.005.

where D̃L,θ
(2) is given in Eq. (16) and functions f1,2(x), g1,2(x),

and h1,2(x, x′) are defined by

F (x) ≡ −1 + f1(x) + i f2(x)

x

≡ 1

π

∫ 1

−1
dy

i

y + iη′
1

y − x + iη′

= �

π

∫ �

−�

dω
i

ω + iη

1

ω − 
 + iη
, (90)

G(x) ≡ −1 + g1(x) + ig2(x)

x

≡ 1

π

∫ 1

−1
dy

i

y + iη′ F (x − y)

= �

π2

∫ �

−�

dω1

∫ �

−�

dω2
i

ω1 + iη

i

ω2 + iη

× 1

ω1 + ω2 − 
 + iη
, (91)

and

H (x, x′) ≡ −1 + h1(x, x′) + ih2(x, x′)
xx′

≡ − 1

π

∫ 1

−1
dy

i

y + iη′
1

y − x + iη′ F (x′ − y)

= −�2

π2

∫ �

−�

dω1

∫ �

−�

dω2
i

ω1 + iη

i

ω2 + iη

× 1

(ω1 − 
 + iη)(ω1 + ω2 − 
′ + 2iη)
. (92)

In these expressions, we wrote x = 
/�, x′ = 
′/�, y =
ω/�, and η′ = η/�. We find the following analytic expres-
sions for f1,2(x) and g1,2(x):

f1(x) ≡ θ (1 − |x|) = f1(−x), (93)

f2(x) ≡ 1

π
log

|1 − x|
|1 + x| = − f2(−x), (94)

g1(x) ≡ 2

π2
Re[Li2(1 + x) − Li2(−1 − x)

+ Li2(1 − x) − Li2(−1 + x)]

= g1(−x), (95)

g2(x) ≡ 2

π2
sign(x)Im[Li2(1 + x) − Li2(−1 − x)

+ Li2(1 − x) − Li2(−1 + x)]

= −g2(−x), (96)

where Lis(z) ≡ ∑∞
n=1 zn/ns is the polylogarithm function.

While we do not have an analytic expression for H (x, x′), it
can be numerically calculated using F (x). These functions are
plotted in Fig. 7.

Using these expressions, let us study the behaviors of
IL,θ
(2) (�). For example, the � → ∞ limit gives the generalized

frequency sum rule [22]

lim
�→∞

IL,θ
(2) (�) = 〈t̂ L,θ 〉 (97)

since f1(x), g1(x), and h1(x, x′) become 1 and f2(x), g2(x),
and h2(x, x′) become 0 in the |x|, |x′| → 0 limit. On the other
hand, the � → +0 limit gives the Kohn-Drude weight

lim
�→+0

IL,θ
(2) (�) = D̃L,θ

(2) (98)
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FIG. 8. (a), (b) Comparison of D̃L,θ
(2) , d3(θ ), IL,θ

(2) (�), and 〈t̂ L,θ 〉 for the single-defect model [the Hamiltonian (27) with a defect potential
(40)]. Here, �/t0 is set to 1 in (a) and 0.5 in (b). Note that the plotted values except for d3(θ ) are divided by L. (c) Color plot of the ratio
IL,θ
2 (�) as a function of L and � for θ = 2.34 ∼ 3π/4. (d) The expanded panel (c) with logarithmic scale. We also plot L = c�−1 (c = 56, 68,

and 81) as a guide by colored dashed lines. We set η/t0 = 0.005 in these plots. For all the panels, we set w/t0 = 1.

since f1,2(x), g1,2(x), and h1,2(x, x′) all become 0 in the
|x|, |x′| → ∞ limit.

To demonstrate the well-definedness of the bulk Drude
weight Dbulk

(2) , we compute D̃L,θ
(2) , d3(θ ), and IL,θ

(2) (�) using
Eqs. (A13), (71), and (A12), respectively. We plot them in
Figs. 8(a) and 8(b). As shown in these figures, IL,θ

(2) (�) is
almost zero for any twist angle θ , implying that the bulk
Drude weight Dbulk

(2) (θ ) vanishes. This is expected because the
second-order response is prohibited by the spatial-inversion
symmetry when θ = 0 and Dbulk

(2) (θ ) should not depend on θ .

To confirm this, we calculate |IL,θ
(2) (�)| for different L and �.

The results are shown in Fig. 8(c). This figure is qualitatively
similar to the linear-order one [Fig. 5(c)] while there is an
additional oscillation not existing in the linear one. Thus,
as discussed in the previous subsection, this suggests that
IL,θ
(2) (�) becomes zero in the � → +0 limit after the L → ∞

limit. We also show the expanded version of this figure with
logarithmic scale in Fig. 8(d). The region where |IL,θ

(2) (�)|
approaches zero has the shape like the line L ∝ �−1 that
is plotted as a guide in Fig. 8(d). Thus, we conclude that
Dbulk

(2) (θ ) = lim�→+0 limL→∞ IL,θ
(2) (�) = 0 in this model.

VII. DISCUSSION

We have shown that the pathological behaviors of the
Kohn-Drude weights in the presence of a single defect are
resolved by considering the bulk Drude weight that contains
additional contributions from the regular part. While we have
only provided explicit calculations for the linear and the

second-order responses, we expect that similar phenomena
occur in the higher orders. We define the N th-order bulk
Drude weight as

Dbulk
(N ) ≡ lim

�→+0
lim

L→∞
IL,θ
(N ) (�), (99)

IL,θ
(N ) (�) ≡ 1

πN

∫ �

−�

dω1

2π
· · ·

∫ �

−�

dωN

2π
σ L,θ

(N ) (ω1, . . . , ωN ),

(100)

where σ L,θ
(N ) (ω1, . . . , ωN ) is the N th-order optical conductivity

with the system size L and the twist angle θ . Dbulk
(N ) should

work as a well-defined bulk quantity, as we have shown for
N = 1, 2. We leave the rigorous proof as a future work.

Although we have discussed only the single-defect model
in this work, our conclusion should be applicable more gen-
erally because the essential ingredient for our argument was
merely the presence of 1/L excitations. For example, the spin-
1
2 XXZ chain is known to show the divergence of the nonlinear
Drude weight [22,24–26] and the discontinuous change with
respect to the anisotropy [25,27]. Since the XXZ spin chain
also shows the 1/L excitation in the gapless regime, our ap-
proach is expected to be applicable to this case.

Here we point out an important universal relation among
the linear Kohn-Drude and bulk Drude weights, and f -sum:

lim
L→∞

D̃L,θ
(1) � Dbulk

(1) � lim
L→∞

1

π

∫ ∞

−∞
dω σ L,θ

(1) (ω). (101)
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This is a simple consequence of the non-negativity of the
optical conductivity

σ L,θ
(1) (ω) � 0, (102)

which is apparent from Eq. (10). That is, while the Kohn-
Drude weight only reflects the delta-function peak strictly at
zero frequency in finite-size systems, the bulk Drude weight
also includes the conductivities at nonzero but small frequen-
cies in finite-size systems. Finally, the f -sum contains the
conductivities over the entire frequency range. Because of
the non-negativity, these quantities must be in the ascend-
ing order. Therefore, even though the (linear) Kohn-Drude
weight is defined in a “wrong” order for characterizing the
bulk property, it can still serve as a lower bound for the
bulk Drude weight. The Mazur bound for the Kohn-Drude
weight, which is based only on charges exactly conserved in
finite-size systems, also works as a lower bound for the bulk
Drude weight as well (although it is generally weaker than
the Mazur bound for the bulk Drude weight including the
quasiconserved charges). Although we mostly focus on the
zero-temperature limit in this paper, the non-negativity (102)
and thus the inequality (101) are valid for any temperature.

On the other hand, the nonlinear AC conductivities are
in general not subject to the non-negativity constraint, and
become indeed negative at some frequencies even in simple
tight-binding models [23]. This implies that the naive nonlin-
ear generalization of Eq. (101) on the Kohn-Drude weight,
the bulk Drude weight, and f -sum do not generally hold. The
general relation among these three quantities for nonlinear
conductivities will be discussed in a separate publication [56].

For the special case of the single-band tight-binding model
we have studied in this paper, the relation (101) can be further
simplified. First let us consider the periodic boundary condi-
tion without a defect. The single-particle energy eigenstates
are then given by plane waves. The insertion of the AB flux
effectively shifts the momentum of the each plane-wave state.
In the single-band model, there is a unique energy eigenstate
for each quantized momentum. Therefore, the final state after
the AB flux insertion is completely determined by the final
amount of the AB flux, and does not depend on the schedule
(including the speed) of the flux insertion. This means that the
generic AB flux insertion is equivalent to the adiabatic limit,
implying that σ L,θ

(1) (ω) consists only of the delta-function peak
at ω = 0. Therefore, in the single-band tight-binding model
with the periodic boundary condition,

lim
L→∞

D̃L,θ
(1) = Dbulk

(1) = lim
L→∞

1

π

∫ ∞

−∞
dω σ L,θ

(1) (ω). (103)

Even for general boundary conditions, the second equality
should hold since the bulk Drude weight must be indepen-
dent of the boundary condition, although the first equality is
reduced to the inequality as in Eq. (101).

The same argument also applies to nonlinear conduc-
tivities. For a single-band tight-binding model with the
periodic boundary condition, the generic AB flux inser-
tion is equivalent to the adiabatic limit at any order. Thus,
the straightforward generalization of Eq. (103) holds for
the nonlinear conductivity at every order, under the peri-
odic boundary condition. The second equality between the
bulk Drude weight and the f -sum still holds under general

boundary conditions, while the first equality is lost in general.
We stress that this is a special property of the single-band
model. In a multiband model, even if the system is nonin-
teracting, a nonadiabatic AB flux insertion generally causes
interband transitions and is inequivalent to the adiabatic AB
flux insertion.

VIII. SUMMARY AND OUTLOOK

In this work, we clarified the dependence of the ground-
state energy on the twisted boundary condition in 1D systems
in general. We derived a general upper bound (25) of the
adiabatic current density in terms of the frequency sum of the
optical conductivity, which may be regarded as a refined ver-
sion of the Bloch theorem. As an illuminating toy model, we
discussed a single-band tight-binding model in the presence
of a single defect. Our study on the simple model illustrates
the importance of the order of limits [21,30–32] in defining the
Drude weight, especially the nonlinear ones. In order to clarify
the issue, we call the thermodynamic limit of the coefficient
of the zero-frequency delta function in the AC conductivity
of finite-size systems as Kohn-Drude weight, whereas bulk
Drude weight is defined by taking the thermodynamic limit
before the zero-frequency limit.

We found that the linear Kohn-Drude weight DL,θ
(1) in the

large-L limit depends nontrivially on the twist angle θ due
to the presence of the defect. We also found that N th-order
Kohn-Drude weights D̃L,θ

(N ) (N � 2) in our model exhibits a
strong divergence proportional to LN−1 in the large-L limit.
Then, we studied the physical implication of the divergence
through the direct numerical simulation which is relatively
easy since this model is noninteracting. Furthermore, we
showed how the finite but small frequency components in
the finite-size systems contribute to the bulk Drude weight.
There are low-energy (which scales as 1/L for the system size
L) excitations, which appear in the AC conductivity at finite
[O(1/L)] frequencies in the finite-size systems. By taking the
thermodynamic limit first, these components are merged into
the delta-function peak at zero frequency, thus contributing to
the bulk Drude weight. This also eliminates various patholog-
ical behaviors, especially the divergence, of the Kohn-Drude
weight which should be absent in the bulk.

The Kohn-Drude weight, on the other hand, is a per-
fectly well-defined quantity for finite-size systems. It could be
measured experimentally in, for example, cold atoms placed
on a ring [44–48] or electrons in a metallic ring [49,50].
Furthermore, sometimes the thermodynamic limit and the
zero-frequency limit may be exchangeable. When this is the
case, Kohn-Drude weight and bulk Drude weight are identical.
Previous studies [21,31] imply that this is the case of the linear
Drude weight in the S = 1

2 XXZ chain at zero temperature.
Furthermore, as we have pointed out in Sec. VII, the two limits
are identical at all orders of linear or nonlinear Drude weights,
for the single-band tight-binding model with the periodic
boundary condition without a defect. The conditions for the
nonlinear Kohn-Drude and bulk Drude weights to be identical
in more general systems are left for future investigations.

Our results open various directions for future studies.
While we only studied a single defect, it is an attractive
problem to study the multidefect (disordered) model, which
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should be relevant to the physics of Anderson localization.
The effect of interaction in the single-defect model is also
interesting because it has been already known that the trans-
port properties of this model can be drastically changed by an
interaction [42,57–62]. It should be clarified how the patho-
logical behaviors of the Kohn-Drude weights are modified by
the interaction.

It is also important to further develop the general theory
for adiabatic transport. Our discussion in Sec. III A suggests
that the defect energy c0(θ ) vanishes and that c−1(θ ) is a
quadratic function of θ , i.e., dn(θ ) = 0 (n � 3) in any systems
with a U(1) symmetry and a lattice translation symmetry,
regardless of whether the low-energy effective theory of the
system is TLL or not. In particular, dn(θ ) = 0 (n � 3) is the
condition for the linear Drude weight to be θ independent
in the large-L limit. These statements may be rationalized
by the following argument. Let us imagine dividing the sys-
tem into M subsystems (M � 2) in such a way that each
part has the length Li � 1 and

∑M
i=1 Li = L. We decompose

θ correspondingly into θi ≡ θLi/L (i = 1, . . . , M). We ex-
pect that the ground-state energy of the ith part is given by
ELi,θi

0 = ∑
p=+1,0,−1,... cp(θi )L

p
i and that the total ground-state

energy satisfies the additivity
∑M

i=1 ELi,θi
0 = EL,θ

0 + O(L−1).
This is possible only when c0(θ ), which should be indepen-
dent of θ , vanishes. Furthermore, we demand that the leading
L−1 correction is θ independent, i.e.,

∑M
i=1[ELi,θi

0 − ELi,0
0 ] =

[EL,θ
0 − EL,0

0 ] + o(L−1), which suggests that c−1(θ ) − c−1(0)
is proportional to θ2. We leave more rigorous proof of these
conjectures to future work.

While we focused on the zero-temperature limit in this
work [except for the inequality Eq. (101)], the distinction be-
tween the Kohn–Drude and bulk Drude weights would be also
important at finite temperatures. Exploration of the problem at
finite temperatures is also left for future investigations.
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APPENDIX A: EXPRESSIONS FOR TIGHT-BINDING
MODEL

Here we derive formulas for noninteracting fermions. The
quadratic Hamiltonian ĤL,θ = ∑L/2

x,y=−L/2+1 ĉ†
xHL,θ

xy ĉy can be

diagonalized as ĤL,θ = ∑
n εL,θ

n γ̂ †
n γ̂n, where γ̂ †

n (γ̂n) is cre-
ation (annihilation) operator for the nth energy level εL,θ

n .
We arrange the index n in such a way that n < 0 (n > 0)
corresponds to occupied (unoccupied) states in the ground
state. We write εL,θ

mn ≡ εL,θ
m − εL,θ

n .
We expand operators in Eqs. (1)–(3) with γ̂n as

ĵL,θ = 1

L

∑
m,n

γ̂ †
mJL,θ

mn γ̂n, (A1)

k̂L,θ = 1

L

∑
m,n

γ̂ †
mKL,θ

mn γ̂n, (A2)

t̂ L,θ = 1

L

∑
m,n

γ̂ †
mT L,θ

mn γ̂n. (A3)

Using these matrix elements, we obtain expressions for
linear response functions:

φL,θ
(1),0(ω) = 1

L

∑
n<0

KL,θ
nn , (A4)

φL,θ
(1),1(ω) = 1

L

∑
n<0,
m>0

∣∣JL,θ
mn

∣∣2
(

1

ω − εL,θ
mn + iη

− 1

ω + εL,θ
mn + iη

)
,

(A5)

D̃L,θ
(1) = 1

L

∑
n<0

KL,θ
nn − 2

L

∑
n<0,
m>0

∣∣JL,θ
mn

∣∣2

εL,θ
mn

, (A6)

Re
[
σ L,θ

(1)reg(ω)
] = π

L

∑
n<0,
m>0

∣∣JL,θ
mn

∣∣2

εL,θ
mn

δ
(|ω| − ∣∣εL,θ

mn

∣∣), (A7)

IL,θ
(1) (�) = D̃L,θ

(1) + 2

L

∑
n<0,m>0,

εL,θ
mn <�

∣∣JL,θ
mn

∣∣2

εL,θ
mn

. (A8)

Similarly, second-order response functions are

φL,θ
(2),0 = 1

L

∑
n<0

T L,θ
nn , (A9)

φL,θ
(2),1(ω1, ω2) = 1

L

∑
n<0,
m>0

[
AL,θ

mn

{
1

ω1 + ω2 − εL,θ
mn + 2iη

− 1

ω1 − εL,θ
mn + iη

− 1

ω2 − εL,θ
mn + iη

}
− (n ↔ m)

]
, (A10)

φL,θ
(2),2(ω1, ω2) = 1

L

∑
n,n′<0,
m,m′>0

BL,θ
mm′nn′

[{
1(

ω1 + ω2 − εL,θ
mn + 2iη

)(
ω1 − εL,θ

m′n′ + iη
) + 1(

ω1 + ω2 − εL,θ
mn + 2iη

)(
ω2 − εL,θ

m′n′ + iη
)

− 1(
ω1 + εL,θ

mn + iη
)(

ω2 − εL,θ
m′n′ + iη

)}
+ (m ↔ n′, n ↔ m′)

]
, (A11)
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IL,θ
(2) (�) = D̃L,θ

(2) + 2

L

∑
n<0,
m>0

Re
[
AL,θ

mn

]
εL,θ

mn

(
g1

(
εL,θ

mn

�

)
+ 2 f1

(
εL,θ

mn

�

))
− 2

L

∑
n<0,
m>0

Im
[
AL,θ

mn

]
εL,θ

mn

(
g2

(
εL,θ

mn

�

)
− 2 f2

(
εL,θ

mn

�

))

− 2

L

∑
n,n′<0,
m,m′>0

Re
[
BL,θ

mm′nn′
]

εL,θ
mn εL,θ

m′n′

[
2h1

(
εL,θ

m′n′

�
,
εL,θ

mn

�

)
+ f1

(
εL,θ

m′n′

�

)
+ f1

(
εL,θ

mn

�

)
− f1

(
εL,θ

mn

�

)
f1

(
εL,θ

m′n′

�

)
− f2

(
εL,θ

mn

�

)
f2

(
εL,θ

m′n′

�

)]

+ 2

L

∑
n,n′<0,
m,m′>0

Im
[
BL,θ

mm′nn′
]

εL,θ
mn εL,θ

m′n′

[
2h2

(
εL,θ

m′n′

�
,
εL,θ

mn

�

)
+ f2

(
εL,θ

m′n′

�

)
− f2

(
εL,θ

mn

�

)
− f1

(
εL,θ

mn

�

)
f2

(
εL,θ

m′n′

�

)
+ f1

(
εL,θ

m′n′

�

)
f2

(
εL,θ

mn
�

)]
,

(A12)

D̃L,θ
(2) = 1

L

∑
n<0

T L,θ
nn − 6

L

∑
n<0,
m>0

Re
[
AL,θ

mn

]
εL,θ

mn

+ 6

L

∑
n,n′<0,
m,m′>0

BL,θ
mm′nn′

εL,θ
mn εL,θ

m′n′
. (A13)

APPENDIX B: RELATION TO BOUNDARY CONFORMAL
FIELD THEORY

Here we mention the relation between our results and the
boundary CFT. In fact, the first term of c−1(θ ) in Eq. (65)
which depends on TF can be interpreted in terms of the bound-
ary CFT.

The defect in the tight-binding model we consider corre-
sponds to the barrier in a TLL studied in Refs. [57,58] at the
free-fermion point K = 1. The system studied in this paper
is a finite ring of circumference L with a single defect. Such
a system can be mapped to a problem of boundary CFT by
a folding trick [63–65]: after the folding, we have a two-
component TLL of length l = L/2 with two boundaries: one
corresponding to the defect and the other corresponding to no
defect. Although the problem at this point is a two-component
TLL (of central charge 2) with boundaries, we can decompose
the two-component TLL into even and odd combinations of
the original fields φ(x) ± φ(−x). It can be seen that the odd
component does not “feel” the defect and is always subject
to the same boundary condition. Thus, the problem is ef-
fectively reduced to the single-component TLL (of the even
field) with boundaries, although care should be taken about
“gluing condition” [63,65,66] in reconstructing the spectrum
of the original model. In the discussion of the universal part
of the ground-state energy, which is the focus of this paper,
however, the gluing condition is not important and we can
simply study the single-component TLL with boundaries. For
generic values of the Luttinger parameter K , the barrier is
either a relevant or irrelevant perturbation (in the renormal-
ization group sense), so that the defect is renormalized into an
infinitely strong barrier which completely reflects the current,
or a vanishing barrier which transmits the current perfectly.
In terms of the (even component of) “phase field” of the
TLL, the infinitely strong barrier corresponds to the Neumann
boundary condition, while the vanishing barrier corresponds
to the Dirichlet boundary condition. The free-fermion case
K = 1 corresponds to the boundary between the two phases.
Here the barrier is an exactly marginal perturbation, so that
there is a continuous family of the boundary conditions inter-
polating the vanishing barrier and the infinitely strong barrier.

This exactly corresponds to the S matrix of the defect for the
incoming free fermions.

In fact, the continuous family of the boundary conditions
at K = 1 was studied in terms of free bosons in Refs. [67,68]
and in terms of free fermions in Ref. [69]. Here we show that
our result agrees with theirs. In Refs. [67,68], the continuous
family of the boundary conditions at K = 1 is formulated in
terms of the emergent SU(2) symmetry. This SU(2) degree of
freedom indeed corresponds to the S matrix of free fermions.
In Ref. [69], the S matrix was parametrized in terms of the ef-
fective barrier parameter g (complex number). For simplicity
here we focus on the case g is real, for which the S matrix
is given as S ∼ exp (iπgσ1) and thus T ±

F = TF = cos (πg).
The phase shift in those papers, for example in Eq. (13) of
Ref. [69], then simply reads as 
 = π |g| = arccos TF .

The partition function for the boundary condition cor-
responding to the barrier strength g on one side and the
Neumann boundary condition (corresponding to the infinite
barrier) on the other side (in the even fermion number sector)
at the inverse temperature β is [69]

ZBN(q) ∼ q−1/24∏∞
m=1(1 − qm)

∞∑
k=0

q
1
2 [k+ 1

2 −(−1)k 

π ], (B1)

where q ≡ e−πβ/l . In our setup, we just consider a single
barrier, so that the other side obeys the Dirichlet boundary
condition after the folding. In this case, the partition function
is rather given by

ZBD(q) ∼ q−1/24∏∞
m=1(1 − qm)

∞∑
k=0

q
1
2 [k+(−1)k 


π ]. (B2)

We can read off the ground-state energy (relative to g = 0
case) as

π

l

1

2

(



π

)2

= 1

L


2

π
. (B3)

Because 
 = arccos TF , this agrees with our Eq. (65) with
δF = θ = ϕF = 0 and vF = 1.
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APPENDIX C: PERTURBATIVE JUSTIFICATION OF THE
MAIN RESULT

Some key aspects of c−1(θ ) derived in Sec. IV C of
the main text can be readily understood by treating V̂ as
perturbation. Here we use the single impurity potential (40)
as an example. As noted before, rF ≡ RF /TF = |w|/vF and
δF = 0 in this case. The matrix element 〈kn|V̂ |kn〉 = w/L is
independent of n and m and is inversely proportional to the
system size.

The first-order correction to the ground-state energy is∑
n:occ.

〈kn|V̂ |kn〉 = w
Nel

L
. (C1)

This is a part of the defect energy c0(θ ).
The second-order correction is given by

−
∑
n:occ.

∑
m:unocc.

〈kn|V̂ |km〉〈km|V̂ |kn〉
εkm − εkn

= −v2
F r2

F

L2

∑
n:occ.

∑
m:unocc.

1

εkm − εkn

. (C2)

To extract the most singular contributions from adjacent of
the Fermi points k = ±kF , we linearize the dispersion as εk =
±vF (k ∓ kF + θ/L). The summation in Eq. (C2) is dominated
by the scattering between k = kF and −kF :

− vF r2
F

L2

∑
kn>−kF

∑
km>kF

1

km + kn + 2θ/L

+ vF r2
F

L2

∑
kn<kF

∑
km<−kF

1

km + kn + 2θ/L

= −vF r2
F

2πL

∞∑
n,m=0

2(m + n + 1)

(m + n + 1)2 − (θ/π )2

= vF r2
F

2πL
θ cot θ + · · · . (C3)

In the last step, we regularize the summation by subtracting
the θ -independent term. This gives the correct θ dependence
of c−1(θ ) in Eq. (65) up to r2

F , and Eqs. (69)–(71) can be fully
reproduced up to this order of rF .

The above perturbation theory fails near θ = π because of
the degeneracy of the Nelth level and the (Nel + 1)th level (n =
� and −� − 1) of ĤL,θ

0 . Focusing only on these two levels, we
find (

εk�
0

0 εk−�−1

)
+ w

L

(
1 1
1 1

)
. (C4)

The smaller eigenvalue of this matrix is

w

L
+ εF cos

(
θ − π

L

)
−

√
v2

F sin2

(
θ − π

L

)
+ w2

L2
, (C5)

implying that c−1(θ ) contains

− vF

√
(θ − π )2 + r2

F

= −vF

∞∑
N=0

�
(

3
2

)
N!�

(
3
2 − N

) (θ − π )2N r1−2N
F . (C6)

Hence, the most singular term in d2N (θ = π ) (N � 1) in the
rF = +0 limit is given by

−vF
(2N )!�

(
3
2

)
N!�

(
3
2 − N

) 1

r2N−1
F

. (C7)

This reproduces our results in Eqs. (73) and (74).

APPENDIX D: FINITENESS OF MATRIX ELEMENTS

In this appendix, we prove that the matrix elements JL,θ
mn ,

KL,θ
mn , and T L,θ

mn , defined in Eqs (A1)–(A3), are O(1) quantity
in general.

Let us consider a system of noninteracting fermions de-
fined on a lattice �. The Hamiltonian is given by

Ĥ ≡
∑

x,y∈�

ĉ†
xHxyĉy = ĉ†H ĉ. (D1)

In the last expression, we regarded ĉx as a component of a
columnar vector ĉ and Hxy as matrix elements of a Hermitian
matrix H . Diagonalizing H by a unitary matrix U , we find

Ĥ =
∑

n

εnγ̂
†
n γ̂n, (D2)

where γ †
n ≡ ∑

x∈� ĉ†un and un is the nth columnar vector of
the unitary matrix U .

Now we consider an operator Ô that takes the form

Ô ≡ ĉ†Oĉ =
∑

x,y∈�

ĉ†
xOxyĉy. (D3)

We assume that Ô is finite ranged; i.e., Oxy vanishes when
|x − y| is larger than the range R. We rewrite Ô in the basis of
γ̂n:

Ô =
∑
n,m

γ̂ †
n (U †OU )nmγ̂m =

∑
n,m

γ̂ †
n Onmγ̂m. (D4)

In the following, we show that matrix elements Onm ≡ u†
nOum

can be bounded by a system-size independent constant.
Writing M ≡ maxx,y∈� |Oxy|, we have

|Onm| �
∑

x,y∈�

|un|x|Oxy||um|y

� M
∑

x,y∈�

|un|xDxy|um|y = MvT
n Dvm. (D5)

Here, we introduced normalized vectors vn by (vn)x = |un|x
and a real symmetric matrix D by

Dxy =
{

1 |x − y| � R,

0 |x − y| > R.
(D6)
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FIG. 9. (a)–(d) [(e)–(f)] Real-time evolution of the current density j(t ) (red curve) for L = 6 (L = 30) driven by the time-dependent
Hamiltonian with a bond disorder (E1). The ramp time is set to T = 10−1/t0, 10/t0, 103/t0, and 105/t0 in (a)–(d) [(e)–(h)], respectively. The
total flux A0 is 2π . The parameters for the disorder are set to v = 1.5t0 and δ = π/4. The blue and green dashed curves represent the adiabatic
current density for v = 0 and v �= 0.

The eigenvalues of D can be easily found, which are given by
εk = 1 + ∑

1�z�R 2 cos kz with k = 2π j/L. We have

|εk| � 1 + 2R. (D7)

Therefore,

|Onm| � MvT
n Dvm � M(1 + 2R). (D8)

Generalization to multiband cases is straightforward.

APPENDIX E: REAL-TIME SIMULATION FOR A BOND
DISORDER

Our main claim in this paper does not depend on the detail
of the defect. This is because the universal dependence of the
ground-state energy on the twist angle is fully characterized
by the transmission coefficient of the defect scattering as
shown in Sec. III. To support this point from the numerical
calculation, here we examine the bond disorder in (41) as our
second example.

We apply a static electric field to the tight-binding model
with the bond disorder. The time-dependent Hamiltonian is
given by

ĤL,θ (t ) = −t0

L/2∑
x=−L/2+1

(
ĉ†

x+1e−iθ (t )/Lĉx + H.c.
)

+ {−(veiδ − t0)ĉ†
1e−iθ (t )/Lĉ0 + H.c.}, (E1)

where the systems size L = 4� + 2 and the number of elec-
trons Nel = L/2. The time dependence of the flux θ (t ) is given
by Eq. (80). The time-evolution protocol and the calculation
method are the same as in Sec. V.

We calculate the current density jL(t ) defined by Eq. (81)
and the results are shown in Fig. 9. The qualitative behavior is
the same as the potential disorder case shown in Fig. 3. This
supports the validity of our analytical results in Sec. III. Also,
this result suggests that the current response is weakened by
the defect while the defect induces the divergence of nonlinear
Drude weights. A slight difference from the potential disorder
is the time-reversal symmetry breaking effect, i.e., δ �= 0. This
makes the persistent current nonvanishing even without an
electric field.
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