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Magnetic impurities in a charge-ordered background

Sebastião dos Anjos Sousa-Júnior ,* Raimundo R. dos Santos , and Natanael C. Costa
Instituto de Física, Universidade Federal do Rio de Janeiro Cx.P. 68.528, 21941-972 Rio de Janeiro RJ, Brazil

(Received 9 September 2022; accepted 7 February 2023; published 21 February 2023)

We investigate how magnetic impurities may affect a system exhibiting a charge-density wave (CDW) in
its ground state. We consider a disordered Hubbard-Holstein model with a homogeneous electron-phonon
interaction but with a (randomly chosen) fraction of sites displaying a nonzero Coulomb repulsion U and
perform state-of-the-art finite-temperature quantum Monte Carlo simulations. For a single magnetic impurity,
charge-charge correlations hamper the spin-spin ones around the repulsive site, thus requiring a strong enough
value of U to create nonnegligible antiferromagnetic (AFM) correlations. As the number of magnetic impurities
increases, these AFM correlations become deleterious to CDW order and its features. First, the critical temper-
ature is drastically reduced and seems to vanish ∼40% of impurities (for fixed U/λ = 2), which we correlate
with the classical percolation threshold. We also notice that just a small amount of disorder suffices to create a
bad insulating state, with the suppression of both Peierls and spin gaps, even within the charge-ordered phase.
Finally, we have also found that pairing correlations are enhanced at large doping, driven by the competition
between CDW and AFM tendencies.
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I. INTRODUCTION

Over the past decades, much interest has been given to
unveil the nature and interplay between long-range ordered
phases in transition metal dichalcogenides (TMDs) [1–3].
Great experimental effort through different scenarios has
been invested to understand the occurrence of a charge-
density wave (CDW) and superconductivity (SC) in these
compounds—from gate-induced [4] and hydrostatic pres-
sure [5] to chemical doping [6] and substitutional disor-
der [7]—even though the emergence and competition between
these phases are still open issues. Interestingly, the phase dia-
grams of TMDs [5] resemble those of doped high-temperature
cuprate superconductors, which has raised the possibility of
investigating pseudogap phenomena in the former to further
understand the latter [8]. However, a remaining open question
about TMDs, and more generally about the nature of the
charge [9] and pairing interplay, is how spin-spin correlations
may affect this competition, in other words, how repulsive
electron-electron (e-e) and retarded electron-phonon (e-ph)
interactions affect the ground state and thermodynamic prop-
erties of such compounds.

Within this context, TMDs provide odd opportunities to
investigate this interplay. For instance, most of the 1T poly-
types [5,10] exhibit flat bands, a feature that renders both
e-e and e-ph interactions nonnegligible. Beyond this case, the
effects of spin-spin correlations on CDW and SC phases may
be investigated by systematically intercalating magnetic ions,
such as Fe atoms, between layers of a given TMD. As a direct
consequence of such a procedure, it has been established that
a small amount of doping/intercalation is already enough to
suppress the CDW order and change the SC critical temper-
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ature [11,12]. In addition, the effects on transport properties
have been examined, e.g., for NbSe2 intercalated by Fe ions
[13], providing evidence that electric current could be used to
adjust the magnetic orientation of the spins, which can make
this material suitable for spintronic devices. Other important
features, such as the occurrence of the Kondo effect and its
relevance to transport properties, are still under intense debate
[14–16].

To investigate fundamental properties of such interacting
compounds, one should examine the features of simplified
effective Hamiltonians. In this framework, the single-band
Hubbard-Holstein model (HHM) [17] considers the Coulomb
repulsion between electrons as well as an indirect retarded
electronic interaction due to an e-ph coupling. The inclu-
sion of these interactions may lead to electronic instabilities,
with the enhancement of strong charge, spin, and/or pairing
correlations, therefore capturing the interplay between CDW,
antiferromagnetic (AFM), and/or SC phases. For instance,
the ground state of the pure Holstein model on a half-filled
square lattice has been extensively scrutinized [18–22], ex-
hibiting a CDW for any e-ph interaction [23]. However, this
ordered phase is unstable under external parameters, with
the enhancement of (conventional) pairing correlations when
doping [24,25], pressure or strain [26,27], nonlinear e-ph cou-
plings [28–30], Anderson disorder [31], or phonon dispersion
[32] take place. The addition of a repulsive Hubbard-like term
to the Holstein model leads to similar behavior: The e-e in-
teraction suppresses double occupation, destroying the CDW
phase, while enhancing AFM or pairing correlations [23,33].

In this paper, we examine a case interpolating between the
pure Holstein model and the HHM, in the sense that an e-e
interaction is only considered on a fraction of sites/orbitals,
i.e., when a percentage of sites are treated as e-e interact-
ing. Such a dilute-to-dense crossover may be a rough model
for intercalated magnetic impurities on TMDs, with the e-e
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interacting sites playing the role of an intercalated magnetic
site. Although most TMD polytypes exhibit geometries that
may lead to frustration effects, here, we avoid these features,
which would further increase the degree of complexity of
our analysis [27,34]. Spin frustration would occur only at
much higher concentrations of impurities (i.e., way beyond
xc), which is not the main goal of this paper. Therefore, to sim-
plify our model, we investigate the stability of the well-known
staggered CDW phase on the half-filled square lattice as the
number of impurity sites increases. To this end, we perform
unbiased quantum Monte Carlo (QMC) simulations aiming to
analyze three main aspects: The behavior of charge and spin
correlations (i) in the dilute regime—one or two magnetic
impurities—and (ii) in the dense regime, as well as (iii) the
behavior of thermodynamic quantities. Within such analyses,
we expect to provide further insights about the nature of the
charge ordered phase in the HHM. The paper is organized as
follows: The model and methodology are outlined in the next
section, while our results are presented in Secs. III and IV.
Our final remarks are given in Sec. V.

II. MODEL AND METHODS

The HHM describes electrons on a lattice interacting with
each other through both a direct on-site Coulomb repulsion
and a coupling with phononic degrees of freedom. In the stan-
dard second quantization formalism, the Hamiltonian reads

H = −t
∑
〈ij〉,σ

(c†
iσ cjσ + H.c.) − μ

∑
i,σ

niσ +
∑

i

Uini↑ni↓

+
∑

i

(
P̂2

i

2M
+ Mω2

0X̂ 2
i

2

)
− g

∑
i,σ

niσ X̂i, (1)

where c†
iσ (ciσ ) are creation (annihilation) operators of elec-

trons with spin σ at a given site i, while niσ ≡ c†
iσ ciσ are

number operators. Here, the sums run over a two-dimensional
square lattice under periodic boundary conditions, with 〈ij〉
denoting nearest-neighbor sites. The first two terms on the
right-hand side of Eq. (1) correspond to the kinetic energy
of electrons and their chemical potential μ term, respectively,
while the on-site Coulomb repulsion between electrons is in-
cluded through the third term. Notice that we have introduced
a site dependence on the interaction strength Ui, which is
described in detail below. The phonon degrees of freedom
appear in the fourth term as quantum harmonic oscillators
with frequency ω0 (as an Einstein model), with P̂i and X̂i be-
ing conjugate momentum and position operators, respectively.
The last term corresponds to the electron-ion coupling, whose
strength is g. Hereafter, we define the mass of the ions M and
the lattice and Boltzmann constants as unity, while using the
hopping integral t to define the scale of energy.

At this point, it is important to recall that the electron-
phonon coupling leads to polarons, i.e., quasiparticles formed
by electrons dressed by a cloud of phonons, whose character-
istic energy scale is λ = g2/ω2

0. Therefore, it is convenient to
adopt λ/t as the strength of the e-ph interaction. In addition,
we also define ω0/t as the adiabaticity ratio. Throughout this
paper, we have fixed λ/t = 2 and ω0/t = 1, while varying

the Coulomb strength U/t and the fraction x of magnetic
impurities.

We investigate the properties of Eq. (1) by performing
finite-temperature determinant QMC (DQMC) simulations
[18,35–37]. The DQMC approach is an unbiased method
based on the decoupling of the noncommuting terms of
the Hamiltonian in the partition function by Trotter-Suzuki
decomposition, i.e., by discretizing the inverse temperature
into small imaginary-time steps β = M�τ . For the Hubbard-
Holstein Hamiltonian, such a procedure leads to

Z = Tr exp(−βĤ)

≈ Tr [· · · exp(−�τĤK ) exp(−�τĤph)

× exp(−�τĤe-ph) exp(−�τĤU ) · · · ], (2)

where HK , Hph, He-ph, and HU correspond to the kinetic, bare
phonon modes, e-ph coupling, and Hubbard interaction terms,
respectively. The above breakup introduces errors of O(�τ 2),
but becomes exact when �τ → 0. For the range of coupling
constants considered here, we have typically set �τ t = 0.1 to
determine the number of time slices M for each temperature.
Further, we have checked that the Trotter error O(�τ 2) does
not affect our results significantly.

To proceed, we employ a Hubbard-Stratonovich transfor-
mation to obtain the exp(−�τĤU ) operators as quadratic
forms but with the price of adding new degrees of freedom si,l :
The Hubbard-Stratonovich fields. The bosonic and fermionic
traces Tr lead to

Z ∝
∫

D{xi,l}D{si,l} exp(−�τSB)

×�σ

[
det

(
I + Bσ

MBσ
M−1 · · · Bσ

1

)]
, (3)

with xi,l being phonon degrees of freedom, and SB the bare
phonon action:

SB = ω2
0

2

∑
i

M∑
l=1

[
1

ω2
0�τ 2

(xi,l − xi,l+1)2 + x2
i,l

]
, (4)

and the matrices Bσ
l ≡ Bσ

l (xi,l , si,l ) are defined as

Bσ
l = exp(−�τĤK ) exp(−�τĤph ) exp(−�τĤe-ph)

× exp(−�τĤU ). (5)

The integrals
∫
D{xi,l}D{si,l}, i.e., the bosonic traces, are per-

formed by Monte Carlo methods. Within this approach, one
may obtain both equal-time and unequal-time Green’s func-
tions Gσ (τ, τ ′) and, therefore, any higher-order correlation
functions. Further methodological details may be found, e.g.,
in Refs. [38–40].

Given this, we investigate the magnetic properties of the
Hamiltonian in Eq. (1) through the spin-spin correlation
functions:

Cspin(i, j) = 〈(ni↑ − ni↓)(nj↑ − nj↓)〉, (6)

while its charge response is examined through the charge-
charge ones:

Ccharge(i, j) = 〈(ni↑ + ni↓)(nj↑ + nj↓)〉. (7)
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We probe the occurrence of charge instabilities through the
behavior of the charge structure factor:

Scdw(q) = 1

N

∑
i,j

exp[−iq · (i − j)]Ccharge(i, j), (8)

and its correlation ratio:

Rcdw(L) = 1 − Scdw(Q + δq)

Scdw(Q)
, (9)

with N = L×L being the number of sites, |δq| = 2π/L, and
Q = (π, π ). The crossing of Rcdw(L) for different lattice
sizes, together with their finite-sized scaling analyses, pro-
vides estimates for the location of the critical region [41–45].

Finally, we also examine the pairing response by means of
the finite-temperature pair susceptibility:

χsc(α) = 1

N

∑
i,j

∫ β

0
〈�α (i, τ )�†

α (j, 0)〉dτ, (10)

with

�α (i, τ ) = 1

2

∑
a

fα (a)ci↓(τ )ci+a↑(τ ), (11)

where ciσ (τ ) = exp(τH)ciσ exp(−τH), and fα (a) is the pair-
ing form factor for a given wave symmetry α = s or d . One
expects the dominant pairing susceptibility to diverge most
strongly as the temperature is lowered. However, as we will
see below, we were unable to reach temperatures low enough
to resolve the divergences for different pairing symmetries.
An alternative probe [23,46] is to remove the noninteracting
(vertex) contribution to the susceptibility χ sc(α) and define
the effective response as

χ eff
sc = χsc(α) − χ sc(α). (12)

With this, a positive (negative) value of χ eff
sc corresponds to an

enhancement (weakening) of an attractive pair channel for the
α symmetry.

To describe the effects of magnetic impurities in a CDW
environment, here, we deal with the half-filled square lattice,
which is known to exhibit a charge-ordered ground state for
any finite e-ph coupling, λ/t > 0. We model the impurities by
allowing for random distributions of Ui > 0 on the lattice, for
a given fraction x of the sites, as

Ui =
{

U with probability x;
0 with probability (1 − x). (13)

To ease the discussion, in what follows, we present the results
for the dilute regime (i.e., one and two impurities) separate
from those for the dense regime of many impurities. All
results for the dense limit were obtained by averaging the
quantities over 100–200 disorder configurations.

III. RESULTS FOR THE DILUTE CASE

A. Single impurity

We start with the investigation of the single-impurity case.
For the sake of comparison, we recall that, when a mag-
netic impurity is placed in a metallic environment (λ = 0),
AFM correlations are enhanced around it, whose strength

FIG. 1. Spin-spin correlation functions between the impurity site
and the three nearest neighbors, as a function of U .

decays with distance; in addition, as the number of impuri-
ties increases, this AFM cloud evolves toward a long-range
ordered configuration [47,48]. In a CDW background, on the
other hand, such staggered spin-spin correlations are drasti-
cally suppressed or even destroyed, as displayed in Fig. 1.
Notice that, for small values of U , first-, second-, and third-
neighbor spin-spin correlations exhibit negative responses, in
stark contrast with the previous picture of an AFM cloud in
the metallic case. To understand this difference, note that the
effects brought about by a single U impurity in a charge-
ordered background start with the broken twofold degeneracy
of the CDW ground state on a square lattice: If the impurity
is located on, say, the α sublattice, the CDW is stabilized on
the β sublattice. The very weak spin correlations between the
impurity site and its second and third neighbors is accounted
for by the fact these sites belong to the α sublattice, hence
with a very small local moment when U is small. More robust
spin correlations with sites on the β sublattice, on the other
hand, indicate a redistribution of the spin cloud surrounding
the impurity. As U increases, nearest-neighbor correlations
are first strengthened and then weakened [49], which is ac-
companied by a reversal of the sign of c(1, 1) (blue circles
in Fig. 1): This indicates a new redistribution such that AFM
correlations become dominant locally, with the creation of
an AFM cloud around the impurity. That is, in the presence
of a CDW background, a large U is needed to generate an
AFM cloud around the impurity; such a critical value of U
has a strong dependence on the e-ph coupling strength (not
shown). The occurrence of this AFM cloud is what leads to the
emergence of long-range order for the many-impurity case,
discussed below.

B. Two impurities

Let us now consider the case of two impurities and examine
how the relative position between the Ui �= 0 centers affects
the overall properties. Figure 2 shows the spin-spin correlation
functions between two impurity sites on the same sublattice
as a function of their distance. Like the single-impurity case,
the profile of correlations is very sensitive to the magnitude
of U . For U = 2 and when the impurity sites are nearest
neighbors within the same sublattice (NNα), the impurity
spins are weakly antiferromagnetically correlated, while for
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FIG. 2. Spin-spin correlation functions between two impurities
on the same sublattice, as a function of the distance |r2 − r1| between
them and for different values of U/t .

U = 4, they are already ferromagnetically correlated. As U
is increased further, the profile changes considerably, in the
sense that the period of oscillation seems to decrease.

The first row of Fig. 3 shows the profile of double occu-
pancy:

Di ≡ 〈ni↑ni↓〉, (14)

with Di ∈ [0, 1
2 ] at half-filling, for different values of U ; the

impurity sites are placed on the same sublattice, at (x, y) =
(0, 0) and (x, y) = (2, 2). As expected, the sublattice symme-
try is broken, with Di always being larger on the sublattice
not containing the impurities. Further, as U increases, Di on
the impurity sites decreases steadily. The middle row of Fig. 3
shows the local moment:〈

m2
i

〉 ≡ 〈(ni↑ − ni↓)2〉 = [〈ni〉 − 2Di], (15)

with 1
N

∑
i〈ni〉 = n = 1 at half-filling, for different values of

U . It is clear that the local moment is suppressed on all sites,
except on the impurity ones. We may thus conclude that there
is an increasing tendency to occupy the impurity sites with a
single spin.

The bottom row of Fig. 3 shows the spin correlations be-
tween an impurity site (placed at the origin) and sites with
coordinates r ≡ (x, y), in the presence of the second impurity
at (x, y) = (2, 2). If U is small, the sites surrounding the
impurity tend to align antiferromagnetically with it, which in-
cludes, although less intense, the other impurity; in view of the
analysis of the single-impurity case, the presence of a second
impurity strengthens the AFM correlations around the impu-
rities. However, for increasing values of U , the correlations
along the diagonal display oscillations with U . Further, the
period of oscillation depends on the relative position between
the sites, reminiscent of an RKKY-like interaction, but having
in mind that this occurs in the presence of a CDW background.

IV. THE DENSE REGIME

A. CDW transition

In the previous section, we established that AFM correla-
tions can overcome the charge order locally by increasing U
in a single impurity or in two repulsive sites. In this section,
we aim to determine the minimum concentration of U sites
required to destroy the CDW for U > λ. Since the presence
of impurity sites tends to deplete doubly occupied sites, a
decrease in the CDW critical temperature is expected to oc-
cur for increasing x = Nimp/N , where Nimp is the number of
impurity sites with U �= 0.

For the many-impurity case, we recall that the quanti-
ties of interest are obtained after performing configurational

FIG. 3. Real-space results for the double occupancies (upper panels), local moments (middle panels), and spin-spin correlation functions
(lower panels) for a system with two impurities, one in the origin and the other the coordinates (2, 2). Here, we fixed L = 12 and βt = 8.0.
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FIG. 4. The charge-density wave (CDW) correlation ratio
[Eq. (9)] for fixed ω0, λ, and U as a function of temperature, for
x = 0.2 and different lattice sizes L. The crossings provide estimates
for Tc.

averages. Figure 4 shows the configurationally averaged CDW
correlation ratio Rcdw(L) [Eq. (9)] as a function of temper-
ature, for different system sizes. The temperatures at which
two curves, Rcdw(L) and Rcdw(L − �L), intersect provides an
estimate Tc(L, L − �L). Figure 5 exhibits these crossings for
U = 4 and 6, and for fixed �L = 4, from which we may
extrapolate toward the critical temperature in the thermody-
namic limit (see, e.g., the filled symbols). By extrapolating
these estimates for 1/L → 0, we obtain the phase diagrams Tc

vs x displayed in Fig. 6, from which we see that Tc decreases
with increasing x, as expected. Further, a polynomial fitting
to the data for U = 4 provides an estimate for the critical
disorder concentration above which there is no CDW at finite
temperatures as xc = 0.41 ± 0.04. By contrast, for U = 6, the
data for Tc(x) suffer from the severe minus-sign problem in the
regime of low temperatures and large U , and we were unable
to provide an estimate for xc in this case.

Nonetheless, it is interesting to note that the U �= 0 sites
play the role of disordering agents as far as CDW order is
concerned, so that x corresponds to the concentration 1 − p
of inactive sites in ordinary percolation [50]; given that the
critical site percolation threshold for the square lattice is pc =
0.59 (see, e.g., Ref. [50]), our estimate xc = 0.41 may indicate
a major role played by geometrical constraints. This should

FIG. 5. Finite-sized scaling plots of the estimated charge-density
wave (CDW) critical temperatures as determined from intersects
such as those in Fig. 4, using �L = 4; see text. Empty symbols are
the estimates, and filled symbols are the extrapolated values.

FIG. 6. The charge-density wave (CDW) critical temperature as
a function of impurity concentration, for U/t = 4, and the same
parameters of Fig. 5. The border of the shaded region is drawn from a
polynomial fit to the data, from which the error bar around x = 0.41
is inferred. Inset: Data from simulations with U = 6; see text. In both
plots, the error bars are smaller than the data points.

be contrasted with a recent study of the Hubbard model on
a disordered Lieb lattice, which shows that the concentration
threshold for magnetism is strongly dependent on the on-site
repulsion [48]. For the present case, it is not a coincidence
that our xc is close to the geometric percolation threshold of
the square lattice. One may understand this from the results of
the single- and two-impurity cases. As discussed in Fig. 1, an
AFM cloud is not formed when U/t = 4 and λ/t = 2, requir-
ing that impurities should be sited side-by-side to have strong
spin-spin correlations. Indeed, this picture is confirmed in the
two-impurity case, where Figs. 2 and 3 show a drastic suppres-
sion of the spin-spin correlation functions for U/t � 8. That
is, due to these short-range correlations, one may expect the
CDW phase to be destroyed close to the classical geometric
percolation threshold, even at moderately large values of U/λ.
Therefore, xc should be unchanged for U/t = 6, although the
minus-sign problem prevents us from presenting numerical
data.

B. The insulating state

In a clean system (x = 0), the temperature-driven CDW
transition leads to an insulating state at half-filling, charac-
terized by a Peierls gap and absence of SC [18,22,32]. We
will now discuss how the presence of repulsive centers affects
the transition to the insulating state. To this end, we resort to
several quantities such as the double occupancy D [Eq. (14)],
the kinetic energy Ek , the compressibility κ , and the uniform
static spin susceptibility χsp. The two latter quantities are
evaluated using the fluctuation-dissipation theorem [51,52]:

n2κ = dn

dμ
= β(〈n2〉 − 〈n〉2), (16)

and

χsp = ∂m

∂h
= β

N

∑
i, j

Cspin(i, j). (17)
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FIG. 7. (a) Double occupancy, (b) kinetic energy, (c) compress-
ibility, and (d) uniform static spin susceptibility as functions of
temperature T/t . Each curve is for a given impurity concentration,
and all data are for fixed values of ω0, λ, and U .

Further analyses of these quantities may provide signatures
of the crossover into a bad-metallic phase, as discussed in
Ref. [53].

Figure 7(a) displays the behavior of the double occupancy
as a function of temperature. For a CDW ground state, one
expects a large value of D below T � Tc, while for a nonin-
teracting metallic state, one has D = 0.25. Given this, notice
that a peak in ∂D(x, T )/∂T appears for temperatures close to
critical ones (see, e.g., Fig. 6), with the exception of x = 0.4,
which presents D ≈ 0.25 at low T . This is in agreement
with our previous analysis, for the destruction of the CDW
ground state for xc ≈ 0.4. Similar observations apply to the
compressibility [Fig. 7(c)], for which the change in slope is
accompanied by a peak whose positions decrease with in-
creasing disorder.

However, the behavior of the kinetic energy, exhibited in
Fig. 7(b), is more subtle. The black square symbols show
its behavior for the clean case, where the ground state has
a well-formed Peierls gap. For such a case, notice that the
kinetic energy exhibits a slight increase for T � Tc, clearly
showing an insulating behavior. In the presence of disorder,
however, the kinetic energy still decreases within the insulat-
ing phase, although at a smaller rate than in the metallic phase.
That is, we still have an insulating phase but a bad insulator,
when compared with the Peierls one. We shall return to this
discussion below.

Finally, Fig. 7(d) shows the temperature dependence of the
uniform spin susceptibility for different impurity concentra-
tions. For the clean system, the susceptibility goes to zero
exponentially, reflecting the presence of a spin gap due to the
doubly occupied sites forming the CDW state. As discussed
before, the impurities tend to form AFM clouds around them
by depleting the doubly occupied sites. For several impurities,
however, these clouds display no long-range AFM order, so
that a uniform magnetic field may easily polarize the local
moments at the impurity sites, and a Curie-like magnetic
response sets in as x increases, explaining the disappearance
of the spin gap.

FIG. 8. Effective pairing susceptibility χ eff
sc as a function of T

for (a) s-wave, (b) sxy-wave, and (c) dx2-y2 -wave channels. Panel
(d) shows the density of states (DOS) for β/t = 12 and several
impurity concentrations. In each panel, the curves are for the given
impurity concentrations, and all data are for fixed values of ω0, λ,
and U .

C. Superconducting and spectral properties

Having established that magnetic impurities destroy the
CDW insulating state, one may wonder whether this can favor
superconducting correlations. To check this, we have calcu-
lated the effective pairing susceptibility χ eff

sc (α) for s-, sxy-,
and dx2-y2 -wave symmetries; when this quantity is positive, an
attractive channel sets in. Figures 8(a)–8(c) show the temper-
ature dependence of the effective pairing susceptibility, from
which we may rule out any pairing tendencies in the dx2-y2

symmetry [panel (c)]—notice that χ eff
sc is strongly suppressed

as the temperature is lowered for all x. For the s- and sxy-
wave channels, on the other hand, the dirty system displays
a behavior different from the clean one: χ eff

sc increases as T
decreases.

Although the pairing tendency is enhanced with the pres-
ence of impurities in a CDW background, pairing correlations
cannot drive the system to a long-range superconducting or-
dered state in the regime of e-ph coupling considered here; a
much larger λ is required to unequivocally reach long-range
order. This is evidenced by the stabilization of χ eff

sc at low
temperatures, around the critical CDW temperature—long-
range order would require a divergence in χ eff

sc , which does
not seem to occur for the range of temperatures analyzed. By
contrast, in the absence of a CDW background, for x > xc,
χ eff

sc > 0 may be interpreted as favoring the formation of a
superconducting phase. Unfortunately, for x � xc, the aver-
age fermionic sign is small, thus preventing analyses at low
temperatures. At any rate, it is interesting to notice that, for
x = 0.4, the only attractive pairing channel is the sxy wave.
That is, a superconducting state emerging in this region would
display a pairing symmetry different from the standard on-site
s wave, due to the Coulomb e-e interaction, in agreement with
Refs. [23,33].

Finally, it is also worth examining the spectral properties
of the system. We compute the density of states (DOS) by
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performing an analytic continuation of the imaginary time-
dependent Green’s function, using the maximum entropy
method [54]; this amounts to inverting the integral equation:

G(ri j = 0, τ ) =
∫

dω N (ω)
exp(−ωτ )

exp(βω) + 1
, (18)

with ri j denoting the relative displacement between sites, and
N (ω) is the sought DOS. Figure 8(d) shows the evolution of
the DOS as the impurity concentration increases, for fixed
β/t = 12. We see that disorder suppresses the Peierls gap
present in the clean system, even for a small amount of im-
purities, e.g., for x = 0.10. Although it seems contradictory
with the compressibility results in Fig. 7(c), which shows an
insulating state for these values of x and T , it gives support
for the results of Fig. 7(d), which suggests the appearance
of localized states. Therefore, the scenario brought about by
these results is that magnetic impurities suppress the Peierls
gap by creating in-gap localized states, which in turn enhance
magnetic correlations while destroying the CDW background
at the percolation threshold.

V. CONCLUSIONS

We have studied the effect of magnetic impurities inter-
acting with a CDW background, stabilized by e-ph coupling
within the Holstein model scenario. The impurities are mod-
eled by assigning a repulsive Hubbard U coupling to a site,
which tends to favor the formation of a local moment, and we
have considered a square lattice with a half-filled electronic
band.

By first analyzing the dilute regime (one and two impuri-
ties), we have established that, unlike the metallic case, only
for large U , the local moment is significant, and an AFM cloud
forms around the isolated impurity site; this results from de-
pleting nearby doubly occupied sites. When two impurities are
placed on the same sublattice, spin correlations between them
oscillate with U , reminiscent of an RKKY behavior. However,
these correlations are strongly suppressed with distance, so
that only nearest or next-nearest neighbors are relevant. In
the dense regime, the impurities lower the critical temperature
for CDW formation, which vanishes at some critical impu-

rity concentration xc. Interestingly, our data for U = 4 yield
xc ≈ 0.4, consistent with the classical percolation threshold
for the square lattice (0.41). That is, due to the short-range
charge-charge correlations the destruction of the CDW phase
depends on geometrical aspects.

However, the CDW state that emerges when magnetic im-
purities are present is not a regular Peierls one. We have also
established that the Peierls and the spin gaps are both sup-
pressed by even a small amount of impurities. The occurrence
of such a bad insulating phase is due to localized states at
the Fermi level filling the gap, whose local moments, in turn,
give rise to a Curie-like magnetic response. For x � xc, these
magnetic impurities cannot suppress the CDW background
but may drastically change thermodynamic properties, such
as the average kinetic energy.

Our data also show that superconducting correlations are
enhanced in the s and sxy channels, as a result of suppres-
sion of the CDW state. This is consistent with experimental
findings [11] of an increase in the superconducting tempera-
ture with intercalation of Fe in CDW materials. For x � xc,
when magnetic impurities destroy the CDW background, we
expect that long-range order should emerge, but for nonlo-
cal (not on-site) pairs, as an effect of the e-e interaction. In
closing, we note that it has been recently suggested [31] that
Anderson-like disorder in the Holstein model also gives rise to
an enhancement of superconducting correlations at low tem-
peratures, in agreement with our overall findings that disorder
significantly disturbs the CDW state and leads to pairing.
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