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Coherent heavy charge carriers in an organic conductor near
the bandwidth-controlled Mott transition
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The physics of the Mott metal-insulator transition (MIT) has attracted huge interest in the last decades.
However, despite broad efforts, some key theoretical predictions are still lacking experimental confirmation.
In particular, it is not clear whether the large coherent Fermi surface survives in immediate proximity to the
bandwidth-controlled first-order MIT. A quantitative experimental verification of the predicted behavior of
the quasiparticle effective mass, renormalized by many-body interactions, is also missing. Here we address
these issues by employing organic κ-type salts as exemplary quasi-two-dimensional bandwidth-controlled Mott
insulators and gaining direct access to their charge-carrier properties via magnetic quantum oscillations. We
trace the evolution of the effective cyclotron mass as the conduction bandwidth is tuned very close to the MIT by
means of precisely controlled external pressure. We find that the sensitivity of the mass renormalization to tiny
changes of the bandwidth is significantly stronger than theoretically predicted and is even further enhanced upon
entering the transition region where the metallic and insulating phases coexist. On the other hand, even on the
very edge of its existence, the metallic ground state preserves a large coherent Fermi surface with no significant
enhancement of scattering.
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I. INTRODUCTION

Most of the popular “bad metals” exhibiting a Mott-
insulating ground state are rather complex materials with
more than one conduction band and various competing elec-
tronic and structural instabilities of the normal state [1–3].
This renders an explicit quantitative comparison between
experimental data and theory extremely difficult if not impos-
sible. Moreover, in most materials it is very difficult to effi-
ciently and controllably tune the electronic correlations within
one and the same sample. In this context layered organic con-
ductors [4,5] have several decisive advantages. First, they have
simple quasi-two-dimensional (quasi-2D) electronic band
structures. Second, the involved relatively low energy scales
and high compressibility allow us to access different regions
of the phase diagram with a single sample by applying mod-
erate pressure in the 1 GPa range, sometimes even below
100 MPa. Third, the single crystals of organic conductors are
usually intrinsically clean and homogeneous, which is partic-
ularly important for studies on the border of phase stability.

The salts κ-(BEDT-TTF)2X [where BEDT-TTF is the
organic donor molecule bis(ethylenedithio)tetrathiafulvalene
and X − a monovalent anion] are materials with an effectively
half-filled conduction band and anisotropic triangular lattices.
They have long been known as model systems for studying
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the bandwidth-controlled quasi-2D Mott instability and other
closely related fascinating phenomena such as unconventional
superconductivity, quantum spin-liquid or valence-bond-solid
states [6–16]. The salt with X = Cu[N(CN)2]Cl (hereafter
κ-Cl) exhibits an antiferromagnetic Mott-insulating (AFI)
ground state. The material is very sensitive to pressure: al-
ready at pressures between 20 and 40 MPa it undergoes a
hysteretic first-order transition from the AFI [or, at T > 20 K,
from the paramagnetic insulating (PI)] state to the normal
metallic (NM) and superconducting (SC) states [6,7] (see
Fig. 1). A similar result can be achieved by minor chemi-
cal modifications, which are generally supposed to affect the
conduction bandwidth and therefore are often regarded as
“chemical pressure” [8–10,17–20]. As opposed to κ-Cl, the
salts with X = Cu(NCS)2 and Cu[N(CN)2]Br (abbreviated
as κ-NCS and κ-Br, respectively) are metallic and super-
conducting already at ambient pressure. The metallic state
is characterized by the 2D Fermi surface shown in the inset
in Fig. 1 (thick black lines) along with the first Brillouin
zone (gray rectangle). The colored dashed lines and arrows
in the inset indicate cyclotron orbits in a strong magnetic field
[21,22]: a classical orbit α (blue) on the pocket centered on the
border of the Brillouin zone and a magnetic-breakdown orbit
β (red), which encompasses the entire Fermi surface, with the
area equal to the Brillouin zone area.

Presently, we possess ample information on the phase di-
agram as well as on the properties of the individual phases
of the κ salts [4–29]. What is missing, however, is the
understanding of how the metallic ground state is changing
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FIG. 1. Pressure-temperature phase diagram of κ-Cl based on
the data from Refs. [6,7]. Black squares are the SC transition tem-
peratures obtained from our zero-field resistive measurements [see
inset in Fig. 2(b)]. Inset: 2D Fermi surface (thick solid lines) of
κ-Cl in the NM state; the gray rectangle is the first Brillouin zone.
Dashed lines indicate the classical cyclotron orbit α (blue) and the
magnetic-breakdown orbit β (red) in a strong magnetic field [21,22]
(see text).

in the very vicinity of the Mott metal-insulator transition
(MIT). For example, some theoretical works proposed a pseu-
dogap formation in the κ salts [30–33], whereas others argued
against the pseudogap formation in exactly half-filled band
systems [34,35] such as our materials. Moreover, a dra-
matic increase of the scattering rate to values comparable
to the nearest-neighbor hopping rate was predicted for the
transitional region of the phase diagram where the metallic
phase coexists with the insulating one [36]. In this situation,
the very existence of coherent Landau quasiparticles with a
well-defined Fermi surface comes into question. From the
experimental side, some indirect hints toward a pseudogap
formation were found in the NMR and Nernst-effect studies of
the κ-Br salt located on the metallic side near the MIT [37,38].
However, a decisive test probing the evolution of the Fermi
surface at a controlled variation of the correlation strength has
been lacking.

Another important unsolved issue concerns the behavior
of the effective mass m of the charge carriers. The specific
heat measurements on the partially deuterated κ-Br samples
[39] suggested a significant decrease of the effective mass
at approaching the MIT. This result apparently conflicts with
theoretical predictions about the interaction-induced enhance-
ment of the mass [40,41]. On the other hand, in qualitative
agreement with the theory, infrared experiments on mixed
κ-Cl/Br crystals [18] revealed a higher mass for the crystal
with the higher Cl content, hence closer to the insulating state.
However, a quantitative comparison cannot be done due to
the restricted amount of data (only two compositions have
been analyzed) and uncertainty in the location on the phase
diagram.

Here we address the above issues by studying the
Shubnikov–de Haas (SdH) oscillations in the pressurized κ-Cl
salt. Magnetic quantum oscillations have proved extremely
useful for characterizing the conduction system of layered

organic metals [42,43] as well as in other correlated-electron
materials of topical interest such as cuprate [44–46] and
iron-based [47–49] superconductors, topological conductors
[50–52], and heavy-fermion compounds [53–55]. In contrast
to most thermodynamic methods collecting an integrated in-
formation from the whole bulk of the sample, SdH oscillations
are a selective probe of the metallic state. This is particularly
important for exploring the inhomogeneous region of the first-
order MIT, where the metallic phase is intertwined with the
insulating one.

II. METHODS

A. Experiment

The samples studied in this work are single crystals of
κ-Cl and κ-NCS, grown electrochemically according to lit-
erature [4,56,57], with a lateral size of about 0.5 × 0.5 mm2

and thickness (along the least conducting direction) of 0.05–
0.3 mm. Several batches were screened to select high-quality
samples, by measuring T - and B-dependent resistance (see the
Supplemental Material [58] for details).

The interlayer resistance of the samples was measured
using the standard four-probe low-frequency ac technique, in
magnetic fields of up to 15 T applied perpendicular to the
layers. The samples were attached to 20 µm-thick annealed
Pt wires serving as electrical leads [see Fig. 2(a)] in a small
piston-cylinder cell made of pure BeCu. The silicone oil
GKZh [59] was used as a pressure medium. Pressure was
applied at room temperature and monitored by measuring the
resistance of a calibrated pressure sensor placed side by side
with the samples (see Fig. 2(a) and the Supplemental Material
[58]). For precise determination of pressures below 100 MPa,
an n-doped InSb sensor [60] was adapted with the sensitivity
1
R

dR
dP ≈ 0.35 GPa−1. With this, we were able to measure pres-

sure with an accuracy of ±2 MPa. The P values given in the
text are those measured at T = 15 K.

B. Evaluation of mc and TD

The cyclotron mass mc was evaluated from the temperature
dependence of the SdH amplitude by fitting the latter with the
standard Lifshitz-Kosevich temperature damping factor [61]
RT = KmcT/B

sinh(KmcT/B) , where K = 2π2kB/h̄e with kB being the
Boltzmann constant and e the elementary charge. The mass
was determined for κ-Cl samples 1 and 2 studied in the T
intervals 0.1–0.8 K and 0.45–1.0 K, respectively, and for the
κ-NCS crystal studied simultaneously with κ-Cl sample 1.
Details of evaluations are given in Secs. S-III and S-IV of the
Supplemental Material [58].

The Dingle temperature is commonly extracted from the
field dependence of the SdH amplitude described by the Din-
gle factor, RD = exp(−KmcTD/B). In our case, a potential
complication might arise due the magnetic-breakdown origin
of the oscillations analyzed in this work (see Sec. III A for
the description of the oscillations). However, our estimation
of the breakdown field yields a very low value, B0 � 1 T [58].
Therefore, for our field range of interest, 12 � B � 15 T, the
corresponding magnetic-breakdown factor in the oscillation
amplitude is RMB = exp(−2B0/B) � 1 and its variation with
field (�2.5%) can be neglected in comparison to that of RD.
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FIG. 2. (a) Crystals of κ-Cl (sample 1) and κ-NCS crystals along
with the InSb pressure sensor mounted for resistive measurements in
the pressure cell, before loading into the cell. The samples are aligned
for measurements in a magnetic field B perpendicular to the layers.
(b) Examples of the field-dependent resistivity of κ-Cl sample 1 at
different pressures, at T = 100 mK. Pressures P � 33 MPa corre-
spond to the NM-AFI coexistence region of the phase diagram. The
curves for P = 27 and 21 MPa are scaled down by factors of 6 and
20 000, respectively. The inset shows the temperature dependence
of the zero-field resistivity at the same pressures. For P = 21 MPa,
the solid and dashed lines correspond to the down and up T sweeps,
respectively, revealing a strong hysteresis in the phase-coexistence
regime. In addition, a T sweep up under a magnetic field of 15 T,
suppressing the SC transition, is shown for this pressure (dotted line).

Another complication in the field dependence comes from
a low-frequency beating of the oscillations. Beats of quan-
tum oscillations are often observed in the layered organics
and associated with a weak warping of the Fermi surface
cylinder [42,43]. Our analysis of the field dependence taking
into account the beats and yielding the Dingle temperature is
presented in detail in Sec. S-V of the Supplemental Material
[58].

III. RESULTS AND DISCUSSION

A. Resistive behavior and Fermi surface near and at the MIT

The overall behavior of the interlayer resistivity of pres-
surized κ-Cl is illustrated in Fig. 2. The displayed pressure
range, 20–100 MPa, includes both the purely metallic region
of the phase diagram and the transitional region, where the

FIG. 3. (a) Oscillatory component of resistivity ρosc(B) ≡
ρ(B) − ρbg(B) in κ-Cl, normalized to the nonoscillating resistivity
background ρbg(B); data obtained at different pressures, at T =
100 mK. The curves are vertically shifted for clarity. (b) FFT spectra
for three curves from panel (a). The dominant peak originates from
the magnetic-breakdown orbit β encircling the entire Fermi surface
(see inset in Fig. 1). Its persistence at the lowest pressure indicates
that the large Fermi surface survives, without a significant change,
inside the coexistence region, even very close to the purely insulating
region of the phase diagram.

metallic and insulating phases coexist. The phase-coexistence
regime is readily detected due to a strong enhancement of the
resistivity at temperatures between 25 K and the SC transition
temperature Tc � 12.5 K (inset in Fig. 2). At lower temper-
atures this enhancement is hidden by the SC transition but
becomes obvious when superconductivity is suppressed by
magnetic field.

The SdH oscillations are found at all pressures, at B > 10 T
and T � 1 K. Examples of the oscillatory component of the
resistivity are shown in Fig. 3(a).

Note that sizable oscillations are observed even at P very
close to Pc1 � 20 MPa, the lower border of the coexistence
region. This is surprising: at this pressure the metallic phase
occupies only a tiny fraction of the sample. In fact, this
fraction is far below the standard percolation limit, as in-
ferred from the NMR measurements [6] and reflected in a
dramatic five-order-of-magnitude increase of the measured
normal-state resistivity (see Fig. 2). Keeping in mind that SdH
oscillations are a fingerprint of a well-defined Fermi surface,
our observation provides firm evidence of a narrow continuous
path for coherent charge transport even at the very edge of the
existence of the metallic phase.

Figure 3(b) shows examples of the fast Fourier trans-
form (FFT) of the oscillatory signal. The dominant peak
at frequency Fβ ≈ 3850 T is associated with the large
magnetic-breakdown orbit β encompassing the entire 2D
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Fermi surface and having an area equal to that of the first
Brillouin zone (see inset in Fig. 1). Importantly, this peak,
found earlier at high pressures in the purely NM state [21,22],
persists without a notable shift in the coexistence region.
This means that the Fermi surface of the metallic phase
remains largely unchanged upon entering the metastable
phase-coexistence regime.

In addition to the main frequency Fβ and its weak second
harmonic, a low SdH frequency Fα ≈ 540 T, originating from
the classical orbit α [21,22] on the closed Fermi pocket cen-
tered at the Brillouin zone boundary (blue loop in the inset
to Fig. 1), is detected in Fig. 3. The dominant contribution of
the magnetic-breakdown oscillations β implies that there is
only a small gap between the open and closed portions of the
Fermi surface, �MB � 1 meV [58]. This is consistent with the
theoretical estimation [62]. In the following we focus on these
β oscillations, which probe the properties of the entire Fermi
surface.

B. Effective cyclotron mass

Further insight into the conduction system is gained from
the Lifshitz-Kosevich analysis of the SdH amplitude, which
yields the effective cyclotron mass mc of the charge carriers
from the temperature damping factor RT [61]. The ratio of
the mc to the band cyclotron mass mc,band, obtained from
one-electron band-structure calculations, is determined by
many-body interactions. In the vicinity of the MIT, it provides
a quantitative measure of the electronic interaction strength
[40,41]: the inverse renormalization factor, mc,band/mc, is usu-
ally equated to the quasiparticle residue Z , a key parameter of
the Fermi-liquid theory. In Fig. 4 we plot our results on the
pressure-dependent cyclotron mass; solid symbols represent
two κ-Cl samples (see the Supplemental Material (SM) [58]
for details of the data analysis).

In order to better elucidate the role of the proximity to
the MIT, we confront the κ-Cl salt with the sister compound
κ-NCS. To this end, we have measured SdH oscillations on
a κ-NCS crystal simultaneously with the κ-Cl sample 1, un-
der the same conditions. Both materials have very similar
quasi-2D electronic band structures and Fermi surfaces. In
particular, the sizes of the β orbit differ by less than 1% [58].
The essential difference, however, is that κ-NCS is metallic
and superconducting already at ambient pressure. Although
the amplitude of the β oscillations in κ-NCS is relatively weak
due to a larger (than in κ-Cl) magnetic-breakdown gap, we
succeeded in evaluating the relevant effective mass at all pres-
sures applied (see the Supplemental Material [58] for details).
The results are presented in Fig. 4 with open circles.

Two important observations can be drawn immediately
from a glance at the data in Fig. 4. First, both materials show a
significant increase of the cyclotron mass at decreasing P—a
clear manifestation of the growing electronic correlations in
the vicinity of the MIT. Second, the masses of the two salts
are practically indistinguishable at P > 40 MPa, but start to
diverge from each other at lower pressures, where κ-Cl enters
the NM-AFI coexistence region (shaded area in Fig. 4).

To further elaborate on the first observation, we note that
within the homogeneous NM part of the phase diagram, the
experimental pressure dependence of the mass is well de-

FIG. 4. Pressure-dependent effective cyclotron mass of κ-Cl
samples 1 (solid circles) and 2 (triangles) along with the mass ob-
tained for the κ-NCS crystal (open circles) measured in parallel with
κ-Cl sample 1. Note that κ-NCS remains metallic down to ambient
pressure; the corresponding mass value at P = 0 (diamond) is taken
from Ref. [63]. The left scale is given in units of the free electron
mass m0, the right scale in units of the band cyclotron mass mc,band =
2.8m0 [64,65]. Both materials exhibit the same inverse-linear pres-
sure dependence in the homogeneous NM state; the dashed line is the
fit to Eq. (1). The hatched rectangle shows the phase coexistence re-
gion for the κ-Cl salt. Inset: Inverse renormalization factor mc,band/mc

demonstrating the P-linear dependence in the purely metallic state
and the deviation of κ-Cl from this behavior in the coexistence
region. The top-axis scale shows the U/t ratio estimated based on
the band-structure calculations [66] (see text).

scribed by the simple expression

mc ∝ (P − P0)−1 (1)

with P0 = (−410 ± 20) MPa for both salts (dashed lines in
Fig. 4). This result looks fully consistent with theoretical
predictions. Indeed, both the Brinkman-Rice theory [40] and
the (single-site) dynamical mean-field theory (DMFT) [41]
predict a variation of the renormalized effective mass in the
form

mc,band

mc
= Z ≈ CZ

[
1 −

(
U/t

(U/t )0

)]
(2)

in close proximity to the MIT [67]. Here the correlation
strength is quantified by the ratio between the effective on-
site Coulomb repulsion U and the nearest-neighbor transfer
integral t and the prefactor CZ = 2 and ≈0.9 in the Brinkman-
Rice theory [40] and DMFT [41], respectively. The formal
divergence of the mass at pressure P0, determined by the
critical correlation strength ratio (U/t )0 � 12, is cut off at
the first-order MIT [41]. More advanced theories [36,68–72]
show that magnetic interactions in an anisotropic triangular
lattice may further shift the transition to considerably lower
U/t , that is, to higher pressures. However, they should not
dramatically affect the shape of the dependence Z (U/t ) ∝
1/mc(U/t ). It is easy to see that expressions (1) and (2)
are equivalent once we assume that small pressure-induced
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changes of the correlation strength are linear in P:

1 − U/t

(U/t )0
= α(P − P0) � 1. (3)

The importance of magnetic interactions is clearly manifest
in the fact that the AFI ground state of κ-Cl sets in already at
positive pressures of about 40 MPa, despite the negative P0

in Eq. (1). By contrast, the sister compound κ-NCS remains
metallic down to ambient pressure, even though it shows
practically identical mc(P) values and, hence, the same cor-
relation strength U/t at the same pressures. This is in fact a
prominent demonstration of the geometrical spin frustration in
a triangular lattice. Indeed, first-principles band-structure cal-
culations [66,73] show that the ratio between the next-nearest-
and nearest-neighbor transfer integrals, t ′/t , characterizing the
frustration (t ′/t = 1 in the fully frustrated lattice), is signif-
icantly higher in κ-NCS than in κ-Cl. A stronger frustration
is expected to weaken antiferromagnetic correlations, thereby
suppressing the insulating instability. It is the frustration ratio
t ′/t rather than the correlation strength ratio U/t which is pro-
posed to be responsible for the difference in the ground states
of the κ-NCS and κ-Cl salts [73]. Our experiment, revealing
the close similarity of the U/t values in the two salts with
different zero-pressure ground states, provides a firm support
for this theoretical prediction.

As a next step, we aim at making a more quantitative
comparison with theory by estimating the factor CZ , which
characterizes the steepness of the mc(U/t ) dependence in
Eq. (2). To this end, we use the results of ab initio band-
structure calculations performed for κ-NCS at two pressures
yielding U/t = 6.0 and 5.7 for P = 0 and 0.75 GPa, respec-
tively [66]. We further assume that the linear relationship
between U/t and P, given by Eq. (3), holds throughout this
pressure range. The top axis in the inset in Fig. 4 presents
the resulting U/t scale. The linear fit to the dependence
mc,band/mc(U/t ) yields CZ = 16.0 ± 0.4. This is an order of
magnitude larger than the theoretical values.

Of course, our estimation, based on a two-point linear
interpolation of the U/t (P) dependence in a rather large pres-
sure range, is not very precise. An additional uncertainty
stems from the band-structure calculations whose results are
quite sensitive to the model and calculation method used (cf.
Refs. [66,73–75]). A detailed targeted calculation for our salts
in the pressure range below 100 MPa, especially taking into
account the many-body effects, would be very helpful for
reducing the error bar. Further on, magnetic interactions, a
variation of the frustration ratio t ′/t (P), and electron-phonon
coupling may contribute to the variation of the mass renor-
malization. For example, one may consider scattering on spin
fluctuations as a source of additional mass renormalization.
Such an effect is observed near antiferromagnetic quantum
phase transitions in some heavy-fermion materials [76–78]
as well as in pnictide [79] and possibly cuprate [45,80] su-
perconductors. A critical increase of scattering suppresses the
quasiparticle spectral weight Z around the “hot spots” of the
Fermi surface connected by the antiferromagnetic wave vec-
tor, thereby inducing a pseudogap [31,32,76] and leading to a
divergence of the effective mass [81]. This happens, however,
only in narrow areas around the hot spots while the rest of the
Fermi surface is unaffected. Therefore, the cyclotron mass,

an integral characteristic of the entire cyclotron orbit on the
Fermi surface, is only moderately increased. By contrast to the
above-mentioned materials exhibiting an antiferromagnetic
quantum criticality, our compounds undergo a first-order tran-
sition driven by electronic correlations. Magnetic interactions
are a secondary effect. They shift the transition to lower U/t ,
but are not expected to change the behavior of Z (U/t ) in
the metallic phase [36,82,83]. As shown in Sec. III C, the
pseudogap associated with scattering on spin fluctuations, if it
exists, does not exceed few meV. Therefore, a significant con-
tribution of magnetic interactions to the mass enhancement
is unlikely. In general, any significant contribution, besides
the electron-electron correlations, to the mass renormalization
would lead to a violation of the simple relationship in Eq. (2),
which is obviously not the case. Thus, it is highly unlikely that
the mentioned factors might account for the drastic, order-of-
magnitude enhancement of CZ .

Due to the lack of other systematic experimental data,
it is difficult to judge whether the observed dramatic quan-
titative discrepancy is specific to our compounds or has a
more universal and fundamental origin. The few relevant ex-
periments we are aware of are very recent infrared studies
of two organic charge-transfer salts, β ′-EtMe3Sb[Pd(dmit)2]2

[84] and κ-[(BEDT-STF)x(BEDT-TTF)1−x]2Cu2(CN)3 [85],
and the early heat-capacity experiment on one of the best-
studied inorganic Mott compounds, V2O3 [86]. A closer look
at these data (Sec. S-V of the Supplemental Material [58])
seems to point towards a general character of the present re-
sult. However, more work is needed for a decisive conclusion.

As noted above, the mc(P) curves in Fig. 4 diverge from
each other at low P: for the fully metallic κ-NCS the data
perfectly obey Eq. (1) down to ambient pressure, whereas
κ-Cl displays a much steeper increase of mc at P < 40 MPa.
This threshold remarkably coincides with the nucleation of
the insulating phase upon entering the transition region of the
phase diagram. It is therefore tempting to link the steepening
of mc(P) with the coexistence of the NM and AFI phases. A
trivial mechanism, which might alter the P-dependent mass
in an inhomogeneous phase-separated environment, is due to
internal strains. However, the formation of a domain with
the lower-pressure and, hence, lower-density AFI phase upon
approaching the MIT from the metallic side can only increase
the effective internal pressure in the adjacent NM domain.
This should lead to an apparent flattening of the P depen-
dence, contrary to the experimentally observed acceleration.
This acceleration resembles to some extent the sharp enhance-
ment of the T -dependent effective mass in vanadium dioxide
in the phase-coexistence region of the thermally driven first-
order MIT inferred from optical conductivity measurements
[87]. In that compound it was associated with a prominent,
≈1000 cm−1, pseudogap caused by fluctuating charge order.
As argued above, it is highly unlikely that a fluctuating order
leads to a noticeable contribution to the mass renormalization
in our compounds. An interesting scenario, which may be rel-
evant to the observed behavior, is the formation of unusually
thick domain walls at the first-order MIT, as was very recently
proposed for a strongly frustrated half-filled Mott-Hubbard
system [88]. Such walls were argued to host poorly devel-
oped “resilient” quasiparticles with a spectral weight rapidly
decreasing towards T = 0 [89]. The effective mass of these
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FIG. 5. Dingle temperature of κ-Cl versus pressure. No signifi-
cant increase of TD and, hence, no enhancement of scattering occurs
upon entering the NM-AFI coexistence region (hatched zone). The
dashed line is a linear fit to the data between 27 and 83 MPa sug-
gesting a weak gradual decrease of TD at increasing pressure. The
right-hand axis shows rescaling of the Dingle temperature to the
scattering rate.

resilient quasiparticles is expected to diverge at the lower
critical pressure (the border to the purely insulating state).
While the theory [88,89] has been done for an ideally frus-
trated lattice, one may expect that some traces of this effect
persist in moderately frustrated systems like our materials.
Still, there is a question how this should be reflected in the
quantum oscillations as the latter would be then probing both
the “good” quasiparticles in the purely metallic domains and
the resilient quasiparticles in the domain walls. More work on
materials with different degrees of frustration should be done
for clarifying this problem.

C. Scattering near the MIT: What can we learn
from the SdH oscillations?

Magnetic quantum oscillations, being critically sensitive to
scattering, may be very helpful for testing the quasiparticle
coherence and the presence of a pseudogap near the MIT.
Qualitatively, the observation of the β oscillations even deep
inside the NM-AFI coexistence region appears to be by itself a
signature of a large coherent Fermi surface. On a quantitative
level, the effect of a finite quasiparticle lifetime τ on the
oscillation amplitude is usually described in terms of the Din-
gle factor [61], RD = exp(−2π2kBTD/h̄ωc), where kB is the
Boltzmann constant, ωc = eB/mc is the cyclotron frequency
on the β orbit, e the elementary charge, and the Dingle temper-
ature TD = h̄/2πkBτ . A pseudogap, arising from the enhanced
scattering of quasiparticles on short-range antiferromagnetic
fluctuations, should effectively increase TD.

In Fig. 5, we plot the Dingle temperature for κ-Cl sample
1 evaluated from the B-dependent SdH amplitude at differ-
ent pressures (see the Supplemental Material [58] for details
of the evaluation). The obtained values, TD � 1 K (that is,
τ � 10−12 s) are typical for clean crystals of organic metals
[42,43]. The sharp drop of TD near 100 MPa was not repro-

duced in our additional test run (see the SM [58]), hence we
disregard it as a spurious effect. Taking the rest of the data
in Fig. 5, the Dingle temperature does not show a significant
variation. In particular, it is insensitive to the nucleation of the
insulating phase below 40 MPa. This excludes any percepti-
ble enhancement of scattering upon entering the coexistence
regime, which one might expect based, e.g., on the cluster
DMFT calculations [36].

As a general trend, the data in Fig. 5 seem to show slight
enhancement of scattering at decreasing pressure although the
total change does not exceed the error bar of our evaluation.
An overall variation �TD ≈ 0.2 K within our pressure range
corresponds to the change in scattering rate δ(1/τ ) ≈ 1.6 ×
1011 s−1 or 0.1 meV in energy units. This is a vanishingly
small value as compared to the relevant energies near the
MIT; in particular, it is two orders of magnitude smaller than
the anticipated pseudogap scale, δPG ∼ 20 meV [32]. It is
important to note, however, that the standard Dingle model
employed above ignores the strong momentum dependence
of scattering associated with the possible pseudogap forma-
tion. As an opposite limiting case for the estimations, one
may use an analogy with magnetic breakdown: the electrons,
traveling on the cyclotron orbit β tunnel through two pairs
of “hot spots” determined by the antiferromagnetic wave
vector. The corresponding damping factor for the oscillation
amplitude, RMB = exp(−2B0/B), with a characteristic field
B0 � (mcδPG/h̄e)2/Fβ , has the same form of B dependence
as the Dingle factor. A straightforward rescaling of the TD

variation in Fig. 5 yields a much larger upper estimate for
the pseudogap, δPG � 4 meV. This value is still small but
already closer to the theoretical predictions for the antiferro-
magnetic pseudogap. However, one has to keep in mind that
the magnetic-breakdown scenario implies a full gap localized
in a very narrow region of k space near the Fermi surface,
whereas the pseudogap means a finite, though suppressed,
quasiparticle density, spread over a relatively broad k-space
interval. Obviously, the true value of δPG lies between the
above two estimates. For a more accurate evaluation we need
an explicit inclusion of a pseudogap into the theoretical de-
scription of the oscillations. With such a theory at hand, the
SdH oscillations will provide a powerful tool for accurate
determination of the pseudogap.

Finally, it is worth noting that the data in Fig. 5 also set a
lower limit for the size of metallic domains in the coexistence
region which obviously cannot be much smaller than the elec-
tron mean free path. The latter is evaluated as � ∼ h̄kFτ/mc �√

2h̄eFβτ/mc ≈ 100 nm. This estimate is of course related to
the plane of cyclotron orbits in magnetic field, that is, the
plane of conducting layers. As to the interlayer direction, it
was already noted in Sec. III A that narrow coherent-transport
channels persist throughout the sample even at P � 20 MPa,
at the very edge of the metallic state. Thus, we conclude
that the phase separation at the first-order MIT occurs on a
macroscopic scale, exceeding the crystal lattice period by at
least two orders of magnitude in all directions.

IV. CONCLUSIONS AND OUTLOOK

The high tunability of the electronic ground state and
excellent crystal quality make the organic charge-transfer
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salts κ-(BEDT-TTF)2X a perfect testbed for experimen-
tal exploration of the bandwidth-controlled Mott instability.
These features were crucial for the success of our quantum-
oscillation experiment on the pressurized κ-Cl and κ-NCS
salts aimed at tracking the evolution of fundamental charac-
teristics of the conducting system in the immediate proximity
to the Mott-insulating state.

We have observed SdH oscillations throughout the entire
pressure range studied, including the homogeneous metallic
domain of the phase diagram close to the MIT as well as the
transitional region, where the metallic and insulating phases
coexist. At all pressures the dominant contribution to the os-
cillations comes from the magnetic-breakdown orbit β with
the area equal to that of the first Brillouin zone. This is a
direct evidence that even at the very border of the purely
insulating state, when just a minor fraction of the sample bulk
is occupied by the metallic phase, the latter still preserves the
large coherent Fermi surface, the same as far away from the
MIT (cf. Refs. [21,22]).

The analysis of the field-dependent SdH amplitude shows
that no notable enhancement of scattering occurs upon ap-
proaching the insulating phase. In particular, we find that the
pseudogap associated with antiferromagnetic fluctuations, if
it exists, does not exceed 4 meV. A more definite and precise
evaluation will be possible once a theoretical description of
quantum oscillations in the presence of strong anisotropic
scattering on magnetic fluctuations is available.

One of the main goals of this work was the precise deter-
mination of the pressure-dependent effective cyclotron mass
near the MIT. Our data provide a firm experimental basis
for an explicit quantitative test of theoretical predictions for
the many-body renormalization effects in close proximity to
the transition. In the homogeneous metallic state the inverse
effective mass is found to display a very simple P-linear
behavior. This simple functional dependence appears to be
consistent with the expected renormalization effect caused by
electron-electron interactions. However—and this is perhaps

the most intriguing result—the slope of this dependence turns
out to be an order of magnitude steeper than expected and is
even further accelerated upon entering the phase-coexistence
region. The unexpectedly steep mass enhancement seems to
be not just peculiar to the present two compounds. Verify-
ing whether it indeed has a general character is a matter of
further purposeful experiments on bandwidth-controlled Mott
insulators with different strengths of magnetic interactions
and different degrees of frustration, accompanied by rigorous
band-structure calculations involving correlation effects. If
this proves to be the case, it will demand a significant revision
of our present understanding of the Mott transition physics.

Another interesting finding of this work is that the κ-Cl
and κ-NCS salts exhibit equal mass-renormalization factors
and, hence, the same (P-dependent) U/t values in the ho-
mogeneous NM state. This finding, along with the fact that
the two compounds have different ground states at ambient
pressure, provides a clear experimental evidence for the de-
cisive role of geometrical spin frustration (ratio t ′/t), which
was predicted to be different in these salts [66,73]. In this
respect, the anion substitution, often referred to as “chemical
pressure,” acts differently from physical pressure. It would be
interesting to do similar SdH experiments on other κ salts with
different anions for elucidating the role of subtle chemical
and structural modifications on electronic correlations near
the MIT.
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