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High harmonic generation in solids: Real versus virtual transition channels
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A closed-form formalism for modeling high harmonic generation (HHG) in solids is derived; its validity is
tested for one-dimensional two-band inversion symmetric model solids; excellent agreement with the exact von
Neumann equation is found. From the closed-form expressions, a diagnostic method is developed that allows one
to separate resonant from nonresonant processes in nonlinear optics. This opens a deeper view into the dominant
laser- and material-dependent mechanisms of high harmonic generation in solids. Midinfrared-driven HHG in
semiconductors is dominated by the resonant interband current. As a result of the dynamic Stark shift, virtual
processes gain in importance in near-infrared-driven HHG in dielectrics. Finally, comparison to experiments
indicates the potential importance of little-explored processes, such as dephasing of the strong-field dynamics
from coupling to the many-body environment of solids.
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I. INTRODUCTION

Since its first demonstration a decade ago [1], high har-
monic generation (HHG) in solids has opened novel avenues
to probe material properties, such as the crystal momentum-
dependent band gap [2–6], Berry phase [7,8], and valence
potential [9]; further, the sensitivity of HHG to lattice asym-
metry [10], to topological properties, and correlation of
materials [11–21] has been explored.

HHG research can be distinguished by material and laser
wavelength: semiconductors exposed to (i) far-infrared (far-ir)
[6,22–24] and (ii) mid-ir [1,25–31] lasers, and (iii) dielectrics
driven by near-ir lasers [3,4,9].

Quantitative numerical modeling of HHG experiments in
solids is challenging, and it is even more challenging to extract
insight into physical mechanisms from numerical analysis.
Therefore, there is still considerable uncertainty about the
various dominant mechanisms in the three experimental set-
tings, impeding further development of HHG technology. The
prevalent assumption is that HHG is driven by real (resonant)
transitions. Simple model analysis suggests the following pic-
ture. Laser-induced electron-hole pair creation is followed by
HHG via interband polarization buildup in (ii) [25,27,32–37]
or via the intraband nonlinearity of individual bands in (iii)
[3,4]. Why different mechanisms dominate different experi-
mental setups remains a central, open question.

The contribution of virtual (nonresonant) nonlinear pro-
cesses to HHG in solids, and to extreme nonlinear optics
(NLO) in general, has been disregarded so far, despite their
ubiquitous importance in perturbative NLO [38]. Recent
mid-ir semiconductor HHG experiments have indicated the
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importance of virtual processes for below minimum band-gap
harmonics [39]; further, light field control of real and virtual
carriers has recently been demonstrated [40]. As such, the role
of resonant versus virtual processes needs to be clarified for
a more complete understanding of extreme nonlinear optics
in general and for HHG in particular. Real (resonant) and
virtual (nonresonant) transitions are depicted in the schematic
in Fig. 1(a). While resonant and virtual processes can be
separated in perturbative NLO, this has not been possible in
extreme NLO to date and presents uncharted territory; see the
schematic in Fig. 1(b).

Here, closed-form expressions for resonant and virtual
nonlinear processes are obtained that are valid from the pertur-
bative to the extreme realms of NLO, thus allowing a unified
description of resonant and virtual NLO.

Our approach builds on the adiabatic following approach
[38] of perturbative NLO, which accounts only for virtual
transitions in under-resonant laser fields. In the intense field
limit, virtual and real transitions become relevant, which are
both captured by the strong-field adiabatic following (SFAF)
approach. This is achieved by an exact solution of the von
Neumann equation for an electron-hole pair, followed by an
expansion into a Dyson series. The zero-order contribution
reproduces the conventional adiabatic following approach.
The first- and second-order expansion terms thus yield closed-
form equations for real and virtual interband and intraband
currents, allowing a more fine-grained characterization of
mechanisms driving HHG in solids. The validity of the SFAF
method is tested using one-dimensional (1D), two-band mod-
els for semiconductors and dielectrics. Excellent agreement
between the exact von Neumann and the SFAF equations is
found. By contrast, another commonly used approximation,
the frozen valence band (FVB) approach [41], is found to
work well for mid-ir-driven semiconductors, but fails for near-
ir-driven dielectrics due to the increasing importance of the
dynamic Stark shift.
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FIG. 1. (a) Real (resonant) vs virtual (nonresonant) processes.
Real transitions (full circles) happen at crystal momenta k for
which the laser dressed band gap λ0 (full line) is bridged by n
photons, ensuring energy conservation. Virtual transitions (empty
circles) do not fulfill energy conservation and return to the ground
state after the laser pulse. For finite laser pulses, photon ener-
gies are slightly varying, blurring the sharp transition requirement
(shaded area). (b) Perturbative vs strong-field NLO; in perturbative
NLO, only the lowest-order absorption channel (full arrows up)
dominates, making virtual (left) and real (right) transitions readily
distinguishable. In intense fields, a large number of higher-order,
net-zero-photon processes (dashed arrows) become important, com-
plicating the separation.

The SFAF approach is applied to analyzing (ii) mid-ir
semiconductor and (iii) near-ir dielectric HHG. We identify
the dominant mechanisms driving HHG in the two experi-
mental settings and make progress in understanding the source
of their different behavior. The results for (ii) agree with and
expand on previous findings. Resonant/nonresonant interband
HHG dominate above/below the band gap, and intraband
HHG is negligible. In the near-ir dielectric model system (iii),
real and virtual HHG channels become more comparable, as
real transitions are weakened due to a more pronounced role
of the dynamic Stark shift. Beyond that, comparison of our re-
sults to experiments in (iii) indicates the potential importance
of additional processes, such as dephasing of the strong-field
dynamics in the many-body condensed-matter environment.
This charts the way towards a more complete understanding
of the physical mechanisms driving HHG in solids.

II. STRONG-FIELD ADIABATIC
FOLLOWING FORMALISM

Our analysis starts from the von Neumann (one-body semi-
conductor Bloch) equation for density matrix ρ,

i∂tρ(K, t ) = [H (Kt , t ), ρ(K, t )], (1)

derived in the moving crystal momentum frame Kt = K +
A(t ), with crystal momentum K defined in the shifted first
Brillouin zone, BZ = BZ − A(t ). The vector potential is A(t )
and the electric field F(t ) = −∂t A(t ). Electron-hole inter-
action is neglected. We use atomic units, unless specified

otherwise. The Hamilton operator H is given by [42]

H (Kt , t ) = 1

2

[
ε(Kt ) �(Kt , t )

�(Kt , t ) −ε(Kt )

]
, (2)

with �(Kt , t ) = 2F(t )dvc(Kt ) the Rabi frequency and dvc the
transition dipole element between the valence and conduction
bands. We confine our analysis to inversion symmetric ma-
terials with a purely real or imaginary transition dipole; we
use the gauge freedom of the Bloch eigenfunctions to choose
a real dipole, dvc = dcv = d. The band gap ε(K) = Ec(K) −
Ev (K) is the difference between the conduction and valence
energy bands Ec, Ev , respectively. The density operator and
Hamiltonian are defined with respect to the Bloch basis func-
tions |v〉(Kt ), |c〉(Kt ), for the valence and conduction bands,
respectively; e.g., H11 refers to basis |c〉〈c|.

In the limit of laser frequency much smaller than the mini-
mum band gap, the electron dynamics dominantly follows the
laser field and the adiabatic following approximation can be
used. This is done by first diagonalizing the Hamiltonian (2),

H̃ (Kt , t ) = V +HV = 1

2

[
λ(Kt , t ) 0

0 −λ(Kt , t )

]
, (3)

with λ(Kt , t ) =
√

ε2(Kt ) + |�(Kt , t )|2 and unitary matrix

V (Kt , t ) = 1√
2

⎡⎣ √
λ+ε√
λ

− �√
λ
√

λ+ε

�√
λ
√

λ+ε

√
λ+ε√
λ

⎤⎦. (4)

By multiplying the von Neumann equation with V +,V
from the left and right, inserting VV + = 1 and defining ρ̃ =
V +ρV yields the transformed but still exact equation

i∂t ρ̃ = [H̃, ρ̃] + i(∂tV
+)V ρ̃ + iρ̃V +(∂tV ). (5)

The integration of Eq. (5) and transformation back to ρ yields

ρ(K, t ) = X +(K, t )ρ(K, t = −∞)X (K, t ),

X (K, t ) = (
T̂ e

∫ t

−∞ dτW (K,τ ))+
ei

∫ t

−∞ dτ H̃ (Kτ )V +(Kt ),

W (K, t ) = ei
∫ t

−∞ dτ H̃ (Kτ )(∂tV
+(Kt ))V (Kt )e

−i
∫ t

−∞ dτ H̃ (Kτ )
.

(6)

Equation (6) is exact. For the sake of brevity, we omit the
explicit time dependence in V,V +, H̃ ,�, and λ from Eq. (6)
onward. Here, X (K, t ) and W (K, t ) are matrix operators in-
troduced to simplify the presentation of Eq. (6), and T̂ refers
to the time-ordering operator, which numerically is evalu-

ated as T̂ e
∫ t

−∞ dτW (K,τ ) = �n
j=0eW (K,t j )dτ on a time window

between t0 and tn with step size dτ → 0 small enough to
converge. The time-ordered operator can be expanded into a
Dyson series [43]; keeping terms up to second order yields

T̂ e
∫ t

−∞ dτW (K,τ ) ≈ 1 +
∫ t

−∞
dt ′ W (K, t ′) +

∫ t

−∞
dt ′ W (K, t ′)

×
∫ t ′

−∞
dt ′′ W (K, t ′′). (7)

Inserting Eq. (7) in the second of Eqs. (6) and keeping terms
up to second order yields

ρ(K, t ) ≈ ρ0(K, t ) + ρ1(K, t ) + ρ2(K, t ), (8)
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where the zero-order term represents the generalization of the
adiabatic following solution from atomic systems to solids,

ρ0(K, t ) = X +
0 (K, t )ρi(K)X0(K, t ),

X0(K, t ) = ei
∫ t

−∞ dτ H̃ (Kτ )V +(Kt ), (9)

where ρi(K) = ρ(K, t = −∞). Two-level adiabatic follow-
ing models are tailored to perturbative NLO in atomic systems
which are dominated by virtual processes [38]. We are inter-
ested in nonperturbative dynamics, where real transitions need
to be accounted for as well. As such, the inclusion of higher-
order Dyson terms is essential. The first- and second-order
contributions are

ρ1(K, t ) = X +
1 (K, t )ρi(K)X0(K, t ) + H.c., (10)

ρ2(K, t ) = 1
2 X +

1 (K, t )ρi(K)X1(K, t )

+ X +
2 (K, t )ρi(K)X0(K, t ) + H.c., (11)

where H.c. stands for Hermitian conjugate, and

X1(K, t ) =
∫ t

−∞
dt ′W +(K, t ′)X0(K, t ),

X2(K, t ) =
∫ t

−∞
dt ′W +(K, t ′)

∫ t ′

−∞
dt ′′W +(K, t ′′) X0(K, t ).

(12)

Inserting Eqs. (3), (4), (12), and the third equation of (6) into
Eqs. (9)–(11) yields

ρ0(K, t ) = 1

2

[
λ−ε
λ

−�
λ

−�
λ

λ+ε
λ

]
Kt

, (13a)

ρ1(K, t ) =
[

�
λ

Re[u] − ε
λ

Re[u] − iIm[u]

− ε
λ

Re[u] + iIm[u] −�
λ

Re[u]

]
K,t

,

(13b)

ρ2(K, t ) =
[

ε
λ
|u|2 �

λ
|u|2

�
λ
|u|2 − ε

λ
|u|2

]
K,t

, (13c)

with

u(K, t ) = − 1

2

∫ t

−∞
dt ′

[
−�(ε̇λ − ελ̇)

λ2(λ + ε)
+ d

dt ′

(
�

λ

)]
Kt ′

× e−i
∫ t

t ′ λ(Kτ )dτ , (14)

where the dot denotes the time derivative. The first term in
the square bracket of Eq. (14) is of O[(|�|/ε)3] and can be
neglected for |�|2/ε2 � 1. The integral in Eq. (14) can then
be reworked by using integration by parts into

u(K, t ) = − �

2λ
+ u(K, t), (15)

with

u(K, t ) = i

2

∫ t

−∞
dt ′�e−i

∫ t
t ′ λ(Kτ )dτ . (16)

Next, the nonintegral parts from u in ρ1 and ρ2 in Eq. (15)
are pulled into ρ0. Further, terms of order u and |u|2 are rear-
ranged and collected in ρ1 and ρ2, respectively. The resulting

density matrix is ρ = ∑2
j=0 ρ j , where ρ0 and ρ1, ρ2 contain

nonintegral and integral parts, respectively,

ρ0(K, t ) = 1

2

[
ε(ε−λ)

λ2 −�(λ−ε)
λ2

−�(λ−ε)
λ2 2 − ε(ε−λ)

λ2

]
Kt

, (17a)

ρ1(K, t ) =
[

�
λ

Re[u] λ−ε
λ

Re[u] − u

λ−ε
λ

Re[u] − u∗ −�
λ

Re[u]

]
K,t

, (17b)

ρ2(K, t ) =
[

ε
λ
|u|2 �

λ
|u|2

�
λ
|u|2 − ε

λ
|u|2

]
K,t

. (17c)

It can be immediately verified from Eqs. (17) that the trace
Tr(ρ) = 1 and that ρ is Hermitian. Finally, in the limit of in-
tense laser fields, the dynamics is dominated by the exponent
in u. As a result, preexponential factors of order (|�|/ε) and
higher are of secondary significance and are neglected. This
results in

ρ(K, t ) ≈
[

0 0
0 1

]
+

[
0 −u

−u∗ 0

]
K,t

+
[|u|2 0

0 −|u|2
]

K,t

, with

u(K, t ) = i

2

∫ t

−∞
dt ′�(Kt ′ )e−i

∫ t
t ′ λ(Kτ )dτ . (18)

HHG is determined by the absolute square of the Fourier
transform (FT) of the expectation value of the current,
|FT{〈j〉(t )}|2; the current expectation value is given by
〈j〉(K, t ) = ∫

BZ d3K Tr[ρ(K, t )j(Kt )].
The current operator is represented by j jl = −i〈 j|∇|l〉,

with | j〉, |l〉 = |c〉(Kt ), |v〉(Kt ). Here, the diagonal elements
j j j = ∇KEj = v j (K) represent the band velocities and the
band-gap velocity is defined as v(K) = vc(K) − vv (K). The
off-diagonal terms j jlρl j = (d/dt )d jl (Kt )ρl j (K, t ) are ex-
pressed in terms of the interband dipole moment d jl .

The current expectation value can be decomposed
into contributions coming from the various density
matrix expansion orders, 〈j〉 = ∑2

j=0〈j j〉, where 〈j j〉 =∫
BZ d3K Tr[ρ j (K, t )j(Kt )]. We only get HHG contributions

from 〈j1〉 and 〈j2〉. Replacing 〈j1〉 → 〈jer〉 and 〈j2〉 → 〈jra〉,
we obtain interband and intraband currents,

〈jer〉 ≈ − d

dt

∫
BZ

d3K d(Kt ) u(K, t) + c.c., (19a)

〈jra〉 ≈
∫

BZ
d3Kv(Kt )nc(K, t ). (19b)

Here, nc(K, t ) = |u(K, t)|2 and nc(t ) = ∫
BZ d3Knc(K, t ) is

the conduction band population. In the limit of small Rabi fre-
quency, λ → ε in the exponent of Eq. (18), Eqs. (19) go over
into the FVB solution [32,41]. The main difference between
the SFAF and FVB solutions is the dynamic Stark shift.

The density matrix in Eq. (18) fulfills ρ = ρ2 to order
O(|u|2), which is consistent with the order of the Dyson
expansion. As such, it is reasonable to expect that it will
reproduce strong-field dynamics up to the damage threshold
of materials which is in the percent range of conduction band
excitation. By comparison, the FVB approximation violates
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FIG. 2. (a),(b) Interband (blue full line) and intraband (full red
line) HHG as obtained from the numerical solution of Eq. (1) are
compared to interband (blue diamond) and intraband (red asterisk)
HHG from SFAF Eqs. (19). The dotted line in (b) represents the
FVB solution (λ → ε) in Eq. (18). (a) Model semiconductor: Eg =
0.129, 	1 = 0.17, d0 = 3.64, a = 5.3; mid-ir laser: F0 = 0.002
(1.2 × 1011 W/cm2), ω0 = 0.015 (3.04 μm), τ0 = 6T0. (b) Model
dielectric: Eg = 0.32, 	1 = 0.06, 	2 = −0.0035, 	3 = −0.001,
	4 = −0.0007, d0 = 6.5, and a = 9.45; near-ir laser: F0 = 0.012
(4.3 × 1012 W/cm2), ω0 = 0.06 (0.76 μm), τ0 = 6T0.

population conservation and it is not clear whether it is ac-
curate at all. If anything, it is expected to hold only for much
smaller conduction band populations than the SFAF approach.
This is explored next.

The validity of Eqs. (19) is verified by using a two-
band, 1D model solid driven by a laser pulse F (t ) =
F0 exp[−(t/τ0)2] sin(ω0t ). Here, F0 is the peak electric field
strength, ω0 is the laser frequency (related to the laser period
T0 as ω0 = 2π/T0), and τ0 is the Gaussian half width. The
band gap is given by ε(K ) = Eg + ∑n

j=1 	n[1 − cos(nKa)],
where a is the length of the atomic unit cell, Eg is the
minimum band gap, and the half width of the band gap is
mainly determined by 	1. The dipole moment in the K · p
approximation is given by d = d0ε(K = 0)/ε(K ) for inver-
sion symmetric materials [44]. Here, the gauge freedom of the
Bloch functions has been used to chose the dipole moment to
be real. We investigate two model systems representative of
mid-ir semiconductor and near-ir dielectric experiments with
	1/ω0 
 1,∼ 1, respectively. For parameters, see Fig. 2.

In Fig. 2, interband HHG (blue line) and intraband HHG
(red line), as determined by a numerical solution of Eq. (1) for
the model semiconductor Fig. 2(a) and dielectric [Fig. 2(b)],
are compared to the harmonic spectra obtained from the cur-
rents given by Eqs. (19a) (blue diamonds) and (19b) (red
asterisks). The blue dotted line in Fig. 2(b) represents FVB
interband HHG. It is not shown in Fig. 2(a), as it overlaps

with the exact numerical solution. Interband HHG is dominant
over the whole spectrum in Fig. 2(a). By contrast, there is a
difference of up to two orders between the SFAF and FVB
results for interband HHG; FVB intraband HHG is not shown,
but displays similar disagreement. The greater importance of
the dynamic Stark effect in dielectrics can be attributed to
larger dipole moments and to higher applicable intensities due
to higher damage thresholds and ultrashort laser pulses [3].
Finally, for higher harmonics, N � 15, the spectral intensities
of inter- and intraband contributions become comparable in
Fig. 2(b); see, also, Fig. 5.

III. SEPARATION OF REAL AND VIRTUAL DYNAMICS

Based on the SFAF given by Eqs. (19), a diagnostic method
is developed to isolate resonant and nonresonant contributions
to HHG. This is done by first splitting Eq. (18) into a proba-
bility amplitude of ionization, v, and into an exponent that is
responsible for interband HHG,

u(K, t ) = e−i
∫ t

−∞ dτλ(Kτ )
v(K, t ),

v(K, t ) = i

2

∫ t

−∞
dt ′�(Kt ′ )ei

∫ t ′
−∞ λ(Kτ )dτ . (20)

Then, v = vr + vnr and, consequently, u = ur + unr are split
into resonant and nonresonant parts based on the following
argument. Whereas resonant transitions are expected to ex-
hibit a steady increase of nc over time, nonresonant transitions
are oscillatory and all of the population returns to the va-
lence band after the laser pulse. Mathematically, this translates
into the resonant filter Gr (ω) = 1 for −ω0/2 � ω � ω0/2
and Gr (ω) = 0 elsewhere; the nonresonant filter is Gnr (ω) =
1 − Gr (ω). Therefore, the resonant (nonsinusoidal) and non-
resonant (sinusoidal) transition probability amplitudes are
given by

vi(K, t ) = FT−1[Gi(ω)ṽ(K, ω)], (21)

for i = r, nr, respectively. Here, FT−1 represents the inversion
Fourier transform and ṽ is the Fourier transform of v. To sep-
arate the intraband current, nc = |v|2 = nr

c + nnr
c also needs to

be split with ni
c(t ) = ∫

BZ d3Kni
c(K, t ) (i = r, nr),

nr
c(K, t ) = |vr (K, t )|2, (22)

nnr
c (K, t ) = |vnr (K, t )|2 + [vnr (K, t )v∗

r (K, t ) + c.c.]. (23)

The various processes contained in the transition proba-
bility amplitude v are pictured in the schematic in Fig. 1(a).
Real (resonant) transitions require energy conservation of the
combined system of electron-hole pair and driving laser. As
such, for a given number of photons, real transitions must
occur at sharp K values at which the band gap (black line) and
absorbed photon energy are the same (full circles); as a result,
a resonant transition occurs when the exponent in v becomes
zero, resulting in a steady growth of the conduction band prob-
ability amplitude. For a finite pulse, a band of photon energies
exists which widens the range of allowed resonant channels
about the sharp K values (shaded area). This explains the
choice of Gr above. The population from real transitions re-
mains after the laser pulse. Virtual transitions (empty circles)
reflect the distortion of the valence band ground state by the
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FIG. 3. Model semiconductor with the same parameters as in
Fig. 2(a). HHG from jer (full blue line), jr

er (blue triangles up), and
jnr
er (blue triangles down, different shade of blue for visibility; thin

black line is a guide to the eye) are compared. Symbols are plotted
with lower resolution.

laser; the exponential in v is rapidly oscillating and integrates
to zero. This results in a temporary, oscillating population of
conduction band states which disappears after the laser pulse.

The splitting procedure in Eq. (20) can also be
rationalized mathematically. In the continuous-wave
(cw) limit, a Fourier series expansion of the integrand
of v yields limt→∞ v = ∑

n

∫ ∞
0 dt ′cnei(λ0(K) + nω0 )t ′ =∑

n cn(K){πδ[λ0(K) + nω0] + iP[1/(λ0(K) + nω0)]} =
vr + vnr with the nonsinusoidal term λ0(K) a field dressed
bandwidth [black line in Fig. 1(a)], and cn Fourier coefficients.
The δ function and principal value P represent resonant (r,
full circle) and nonresonant (nr, empty circle) transitions
for each K value in Fig. 1(a), respectively. As a result of
the Fourier series expansion, each term contains the sum
over all possible channels resulting in the absorption of n
photons; see Fig. 1(b). In going from cw to finite pulses,
the black line in Fig. 1(a) morphs into the gray shaded area.
We would like to emphasize that separating real from virtual
absorption channels would not be possible without having
the closed-form expression for the transition probability
amplitude v, given by Eq. (20). The above discussion shows
why real and virtual channels are difficult to disentangle in
intense laser fields; many channels consisting of photons with
varying energies contribute to each real and virtual transition.

With the above definitions, the resonant and nonresonant
interband and intraband currents are

〈
ji
er

〉 ≈ − d

dt

∫
BZ

d3K d(Kt ) ui(K, t) + c.c., (24)〈
ji
ra

〉 ≈
∫

BZ
d3Kv(Kt )n

i
c(K, t ) (i = r, nr). (25)

Now, Eqs. (20)–(25) are applied to the model systems
of Fig. 2 to separate resonant from nonresonant HHG. The
markers in Figs. 2–5 were chosen to reflect the relation
between HHG currents. Interband HHG: jer (diamonds) =
jr
er (triangle up) + jnr

er (triangle down); triangle up and down
combine to a diamond. Intraband HHG: jra (asterisk) =
jr
ra (cross) + jnr

ra (plus); plus and cross combine to an asterisk.
For ni

c, the same symbols are used as for ji
ra (i = r, nr). From

here on, all results shown are from SFAF calculations, as
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FIG. 4. (a),(b) Conduction population time evolution for the
model dielectric; parameters are the same as in Fig. 2(b), except
for τ0 = 3T0 and F0 = 0.02. (a) nr

c [Eq. (22), red cross] and (b) nnr
c

[Eq. (23), red plus]; thin black lines are guides to the eye.

they are practically indistinguishable from the exact numerical
results.

In Fig. 3, the interband harmonic spectrum from Fig. 2(a) is
split into resonant and nonresonant contributions. HHG from
the full interband current (19a) (blue full line), and from reso-
nant (blue triangles up) and nonresonant interband currents
(blue triangles down) in Eq. (24), are compared. HHG for
N = 1, 3 is nonresonant and turns resonant for N > 5; the
first above band-gap harmonic is N = 9. The above minimum
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FIG. 5. Same parameters as in Fig. 4, except for (a),(b) F0 =
0.005 and (c),(d) F0 = 0.012. Thin gray lines serve as a guide to
the eye. (a),(c) HHG from interband currents jr

er (blue triangles up)
and jnr

er (blue triangles down), HHG from total current (black full
line). (b),(d) HHG from intraband currents jr

ra (red crosses), jnr
ra (red

pluses), jx
ra (green full lines); see text.
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band-gap harmonics are resonant, in agreement with previous
theoretical [32–35,37] and experimental [25,27,45] work.

In the model dielectric of Fig. 2(b), intraband currents ji
ra

and thereby populations ni
c (i = r, nr) become relevant; nr

c
(red crosses) and nnr

c (red plus) are plotted in Figs. 4(a) and
4(b), respectively. The parameters are the same as in Fig. 2(b),
except for F0 = 0.02 and a shorter pulse duration τ = 3T0

usually used in high-intensity experiments. As required, the
resonant contribution keeps steadily growing and reaches a
constant value after the laser pulse. Usually, tunnel ionization
calculations display a subcycle, steplike increase arising from
the exponential subcycle field dependence. Our formalism
counts the steplike increase as part of the nonresonant oscil-
lations about the (cycle-averaged) resonant ionization curve
displayed in Fig. 4(b). The nonresonant, virtual contribution
nnr

c is oscillatory and goes to zero after the pulse.
HHG in the model dielectric is plotted in Fig. 5 for F0 =

0.005 [Figs. 5(a) and 5(b)] and for F0 = 0.012 [Figs. 5(c) and
5(d)]; the remaining parameters are as in Fig. 4. Figures 5(a),
5(c) and Figs. 5(b), 5(d) show interband and intraband cur-
rents, respectively. For clarity, we plot the harmonic fluence
by integrating harmonic signals over the frequency interval
|ω − Nω0| < (ω0/2). The first above minimum band-gap har-
monic is N = 7. In Figs. 5(a) and 5(b), the total harmonic
signal (black full line) is composed of a mixture of jr

er (blue
triangles up) and jnr

er (blue triangles down); intraband currents
[Fig. 5(b)] are negligible; the resonant intraband current (red
crosses) is weakest. For higher F0 [Figs. 5(c) and 5(d)], jr

er
(blue triangles up) is dominant for N > 5 and accounts for
most of the total harmonic signal (full black line) in Fig. 5(c).
For N � 11, jnr

ra (red plus) becomes comparable to jr
er , which

results in interference and a suppression of the total HHG
signal; compare triangles pointing up with black line. Again,
jr
ra (red crosses) is weakest. This explains why HHG from

jr
ra could not be observed in numerical analysis of the semi-

conductor Bloch equations [3,4]. Finally, this presents direct
identification of the relevance of virtual HHG channels. Their
greater importance in near-ir dielectric experiments can be
attributed to the dynamic Stark effect, which increases the
effective minimum band gap and thus weakens resonant tran-
sitions [41].

Beyond that, another relevant finding ensues from compar-
ison to experiments. Near-ir dielectric HHG [3,5,9] can be
explained quite well by a simple model (Bloch oscillation)
current,

jx
ra = c|FT[v(A(t ))]|2, (26)

where c is a constant. It can be obtained from Eq. (25) by as-
suming that the conduction band population is δ-function-like
around K = 0. It is represented by the green line in Figs. 4(b)
and 4(d), which has been matched to jr

ra by determining c at
harmonic N = 9. The constant is found to be of the order of
n2

c (t → ∞). The agreement between jr
ra and jx

ra is excellent in
both cases. Note that the (cycle-averaged) resonant ionization
rate does not contain harmonic terms so that resonant intra-
band HHG comes solely from the band velocity.

The negligible contribution of jr
ra to the total current in

Fig. 5 conflicts with the fact that jx
ra was successfully used

to describe near-ir experiments in dielectrics [3] and be-
low band-gap harmonics in some semiconductors [6]. The

apparent contradiction indicates that important physics is
missing in the semiconductor Bloch analysis. An impor-
tant missing element is dephasing, be it through propagation
[46–48] or through microscopic scattering processes. We
would like to note that ultrathin samples have been used in the
above experiments [3] to minimize the influence of propaga-
tion effects. Dephasing can strongly affect the oscillatory parts
of ei

∫ t
t ′ λdτ in Eq. (18), thus suppressing HHG. The presence

of dephasing should favor jr
ra, as it is the only nonoscillatory

current that changes on the timescale of the laser envelope.
Dephasing in the relaxation time approximation is a crude
approach. It introduces additional strongly dephasing time-
dependent transitions to the conduction band [49], which can
exceed regular transition channels. This makes its use ques-
tionable. Further, in previous work, it could not explain the
dominance of jr

ra, except for unreasonably short dephasing
times [3]. Therefore, more refined dephasing models will need
to be developed by coupling to the many-body reservoir of
condensed matter, for example, via a harmonic-oscillator heat
bath.

IV. CONCLUSION

We have developed the strong-field adiabatic following
(SFAF) approach that yields a closed-form solution for model-
ing strong-field processes in solids. Based on that, a diagnostic
tool has been derived that allows the separation of real
from virtual nonlinear processes. Our approach has been
tested and studied for 1D, two-band model semiconduc-
tors and dielectrics. The SFAF equations can be evaluated
very efficiently and lend themselves ideally to coupling
with Maxwell’s equations for studying macroscopic HHG
effects.

The SFAF approach can be extended to more than two
bands. For systems with a limited number of dipole-active
bands (n � 4), by-hand diagonalization of the Hamiltonian
is still possible; for larger n’s, algebraic software packages
will have to be used. Also, we have performed preliminary
3D studies with linearly polarized laser fields which show
a similarly good agreement between closed-form and exact
solutions. Studies of more realistic systems in dependence on
elliptic polarization and/or varying linear polarization direc-
tion are subject to future research.

In terms of physics, our study has confirmed the dominance
of the interband recollision model in mid-ir semiconductor
experiments. In near-ir dielectrics, due to stronger dipole
moments and higher damage thresholds, the dynamic Stark
shift becomes more pronounced and suppresses optical field
ionization. As a result, real and virtual HHG channels can
become comparable.

HHG in near-ir-driven dielectrics can be explained in terms
of the simple classical model derived from the intraband cur-
rent. This is starkly different from the interband recollision
mechanism found in mid-ir semiconductors. The physical
mechanisms responsible for this difference have remained a
mystery to date. Neither numerical ab initio calculations nor
simple models have been able to explain it.

We have identified the resonant intraband current to be
the weakest of all contributions, in contradiction to exper-
iments. Interband HHG depends on the accumulation of a
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quantum phase during the laser-driven evolution of electron-
hole pairs. By contrast, intraband HHG depends only on the
band velocity and not on phase terms. As such, one possi-
bility to explain the apparent contradiction between theory
and experiment is that dephasing suppresses the other HHG

channels and makes intraband HHG dominant. This reveals
evidence that collisional many-body processes going beyond
one-electron-hole and mean-field approaches might be impor-
tant. The method developed here lays the necessary theoretical
foundation to further pursue the above ideas.
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