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Magnetic barrier and electric field effects on exciton-polaron relaxation
and transport properties in transition metal dichalcogenide monolayers
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The relaxation of excitonic polaron and the transport properties in two-dimensional monolayers of transition
metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WSe2, and WS2 are investigated under the influence of a
magnetic barrier and an electric field using the relaxation-time approximation and the Kubo formula. We find that
the presence of magnetic barrier strengthens the electron-hole interaction and stabilizes the exciton-polaron while
the electric field alters this stability. In addition, exciton-polaron is more relaxed as the electric field increases but
due to the magnetic barrier it quickly returns into its equilibrium. Moreover, the electrical conductivity of TMDCs
is favored by the electric field and a barrier of high magnetic lengths. MoSe2 is the compound that presents the
highest relaxation time and electrical conductivity. The result indicates that the electrical conductivity grows
when the system is relaxed. The thermoelectric power of TMDCs falls when the electric field increases, whereas
it does not present a monotonic behavior in the magnetic barrier. It globally decreases for weak values of the
magnetic length and enhances for high values. The highest thermoelectricity is obtained in MoSe2. A high optical
conductivity is observed in TMDCs. The result shows that optical transitions rise as the magnetic strength of
the barrier increases, but the electric field presents an opposite effect. The probability of absorb energy h̄ω by
the exciton-polaron steps up when the magnetic length and electric field increase. The highest value of optical
conductivity and oscillator strength is observed for MoS2. We demonstrate that the magnetic barrier and electric
field are suitable parameters which can be used to improve the performance of TMDCs materials.
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I. INTRODUCTION

Due to their structures and different applications, tran-
sition metal dichalcogenides (TMDCs) are suitable two-
dimensional (2D) materials with formula MX2, where the
transition metal atoms M are sandwiched between two layers
of chalcogen atoms X, and the MX2 layers are coupled to
each other by van der Waals interactions. Their semiconductor
characteristics presenting high stability and flexibility [1–3]
makes them highly interesting in many areas [4–6]. Their
optical and electronic properties [7,8] reveal applications in
valleytronics and spintronics [9,10], as well as in photolumi-
nescence experiments [11].

An exciton-polaron is a quasiparticle resulting from the
interaction of exciton (pair of electron-hole) with phonons,
which are present in TMDCs [12,13]. Some authors have
developed excitonic polaron systems where diagonalization
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techniques are needed for suitable energy spectra and prop-
erties in 2D materials [14–16]. Excitonic systems are limited
by the process of dressing with phonons [17–19], which itself
can be understood through the relaxation phenomenon. The
relaxation time is a good concept to study these systems due to
the fact that exciton generation and recombination, and optical
excitation depend on it [20,21]. Experimentally, it is found
that the relaxation-time range is around femtosecond (fs) and
picosecond (ps) [22–24]. The relaxation and the exciton gen-
eration are studied in PbS quantum dots [25]. It is seen that
the confinement has an important role in these processes [26],
and also in optical conductivity [27]. The appearance of an
excitonic signal in the optical conductivity response has been
demonstrated in ZnO [28] and graphene [29], revealing that
exciton effects play an important role in the optical spectra.
In semiconductors GaAs [30,31], the excitonic signal is ob-
served for energies below the gap, by a peak in the absorption
spectra. Above the gap, a renormalization of the band and the
increase of the optical conductivity occur due to the scattering
between electrons and holes. In addition, Peres et al. [32]
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proved that an excitonic resonance in graphene is responsible
for the measured midinfrared response, the broadening of the
absorption at the threshold, the increase of the conductivity
beyond the universal value above the Fermi blocked regime,
and the reduction of the conductivity at high frequencies.

Yang et al. [33] studied the layer dependence on electri-
cal and optoelectronic properties in ReSe2. It is shown that
the number of layers considerably influences these proper-
ties. For example, the band gap increases when the number
of layers decreases, and a single layer provides best per-
formance for mobility. Chen et al. [34] demonstrated the
increase of electrical conductivity with the decrease in thick-
ness layer. This implies the probable surface dominance of
electrical conduction in TMDC layers resulting from either
the intrinsic high surface conductivity or the anisotropic con-
ductivity. Qin et al. [35] studied the in-plane effect of electron
(hole) concentration at 300 K on the transport coefficients.
Anisotropic behavior is observed for the thermopower and
electrical conductivity. The electrical conductivity enhances
when the carrier concentration increases, whereas the Seebeck
coefficient decreases. They found that the Seebeck coefficient
presents a lower asymmetry for n-type doping than for p-
type doping. High amplitudes for the Seebeck coefficient are
seen and a peak is observed at a carrier concentration of
1.25 × 1011cm−2. In addition, recently Ge et al. [36] have
combined first-principles calculations and Boltzmann theory
to demonstrate the high performance for the carrier transport
in TMDCs. High Seebeck coefficient at low temperature and
low electrical conductivity at high temperature are observed.
They showed that the carrier transport can be due to the mod-
est carrier effective mass and the weak electron (hole)-phonon
coupling. It is clear that these properties are crucial in the
study of charge-carrier transport in TMDC materials. It is well
known that the behavior of quasiparticles such as polaron and
exciton is considerably influenced by its environment, which
can be an external magnetic field [37,38] or an electric field
[39,40].

It has been shown that the applying of magnetic field on
TMDCs leads to the increase of exciton binding energy with
the magnetic strength [41]. Nam et al. [42] proved that the
role of external magnetic field is minor on the electrical con-
ductivity for very strong magnetic strength, and it becomes
relatively significant for temperatures less than 200 K. Das
et al. [43] showed a reduction of the Seebeck coefficient
with an applied magnetic field and it enhances globally when
the chemical potential and temperature increase. Tahir et al.
[44] showed that the magneto-optical transport properties in
monolayer (1L) 2D phosphorene are very influenced by a
magnetic field. It is found that the optical conductivity has an
oscillatory dependence on the magnetic field and the strength
of optical transitions is a function of the xy−plane momentum
operator. The magneto-optical response in TMDCs can be
tuned in the visible, in the range of microwave to terahertz,
contrary to graphene or a 2D electron gas, which are limited
to the terahertz range. Reference [45] revealed that the real
part of the optical conductivity is an increasing function of the
temperature for WTe2. In TMDCs [46], the attractive branch
of excitonic polaron is not influenced enough by the magnetic
strength, while the repulsive ones exhibit magnetic peaks and
oscillations reflecting combined exciton-cyclotron resonance.

In 2D materials, the anomalous transport of exciton in re-
sponse to an in-plane electric field is studied [47]. It is shown
that during a very short time, there is a regime in which the
velocities of electron and hole (which constitute the exciton)
are in the same direction. The electron and hole initially move
in separate directions until reaching an equilibrium, in which
the Coulomb interaction is closer to the force of the elec-
tric field. In addition, applying an electric field considerably
increases the relaxation time [48] and reduces the optical
absorption [49] in GaAs quantum wells. The exciton binding
energy decreases with the increase of the electric field and
quantum-dot radius [50].

In this paper, we theoretically investigate the transport
properties in typical 1L TMDCs: MoSe2, WS2, WSe2, and
MoS2. The paper organization is as follows: the second sec-
tion is the model and calculations in which we derive the
analytical expressions of the ground-state (GS) energy, the
relaxation time, the electrical conductivity, the optical conduc-
tivity, the Seebeck coefficient, and the oscillator strength. In
Sec. III, we present the results and discussion of the magnetic
barrier and in-plane electric field effects on these properties,
whereas the conclusion summarizes in the last section.

II. MODEL AND CALCULATIONS

The system is taken as an exciton under the influence
of a magnetic barrier and an electric field, interacting with
longitudinal optical (LO) phonons in a 1L TMDC. The total
Hamiltonian is written as

Ĥ = Ĥ2D
ex + Ĥph + Ĥ2D

ex−ph. (1)

Here, Ĥ2D
ex represents the Hamiltonian of the exciton

(electron-hole) [49,51] in the TMDC xy plane, including the
magnetic barrier and the electric field as

Ĥ2D
ex =

(
P2

e,x + P2
e,y

)
2me

− eEel ye +
(
P2

h,x + P2
h,y

)
2mh

+ eEel yh

+ e2A2
y

2μ
− e2

ε|ρe − ρh| . (2)

where �Ph( �Pe) is the hole (electron)-momentum vector, ρe(ρh)
represents the electron (hole) coordinate in the TMDC xy
plane, and Eel is the electric field along the y direction. me(mh)
is the effective mass of electron (hole), μ is the effective
reduced mass of the exciton (1/μ) = (1/me) + (1/mh), e(−e)
is the hole (electron) charge, and ε is the TMDC permittivity.

The magnetic barrier is characterized by the magnetic
strength [52] �B(0, 0, Bz ), with Bz(x) = B0lB[δ(x) − δ(x−L)].
The width of the barrier is denoted by L taken at 150 nm,
and lB is the magnetic length related to a standard magnetic
field given by B0 = h̄/(el2

B). From the Dirac delta function,
the magnetic field can also take the form

Bz(x) =
⎧⎨
⎩

B0 lB; if x = 0
−B0 lB; if x = L
0; otherwise

. (3)

Such magnetic barrier can be constructed as shown by
Ghosh et al. [53]. Figure 1 illustrates the present case where
two long narrow magnetic stripes are placed perpendicular
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FIG. 1. Schematic of a TMDC system (light-brown 2D plane)
under a magnetic barrier using two long narrow magnetic stripes with
a magnetic field B (red arrows) along the z axis, and an electric field
Eel along the y axis (blue arrow).

to the TMDC layer, respectively, at x = 0 (with B0lB) and
x = L (with −B0lB). The magnetic vector potential �A(0, Ay, 0)
is given by

Ay(x) = B0 lB [�(x) − �(x − L)]

=
{

A; 0 < x < L
0; otherwise , (4)

where A = h̄/(elB) and � is the Heaviside function.
The phonon’s Hamiltonian appears as Ĥph =∑
q h̄ω0 b+

q bq. h̄ω0 denotes the phonon’s energy while bq

and b+
q are, respectively, the annihilation and creation phonon

operators, q is the phonon wave vector. The third term
of Eq. (1) denotes the Hamiltonian of the exciton-phonon
interaction taken as [54,55]

Ĥ2D
ex−ph =

∑
K,q

�op (q)C+
K+qCK (bq + b+

−q), (5)

where C+
K (CK ) denotes the creation (annihilation) operator of

an exciton, and K is the 2D wave vector of the exciton. The
exciton-optical phonon-coupling function is given by

�op (q) = (
Dop

c − Dop
v

)√
h̄q

2Sηu
. (6)

S represents the area of the TMDC layer, η denotes the area
mass density, and u is the sound velocity. The deformation
potential constant is Dop

v (Dop
c ) for hole (electron)–LO phonon

coupling at some critical points (K ′, K ) inside the valence
(conduction) band.

In order to simplify the calculations, we can do a useful
transformation for the exciton Hamiltonian term in Eq. (2) as

Ĥ2D
ex =

∑
K

λC+
K CK . (7)

We use the relative coordinate (�ρ = �ρe − �ρh), the cen-
ter of mass ( �R = me

M �ρe + mh
M �ρh), and the 2D wave function


2D = exp(i �K∗. �R)
√

2
π

1
a exp(− ρ

a ), with �K∗ = �K − e
h̄

�A, a the
exciton Bohr radius [51,56]. Then, the eigenenergy λ for the
2D exciton is obtained as

λ(K, lB, Eel ) = Eg + h̄2 K2

2M
− Eb + ξB − ξel . (8)

The exciton energy is then quantified. Eg stands for the gap
energy of the 1L MX2, the second term of Eq. (8) is the kinetic
energy with the exciton effective mass M = me + mh, Eb is
the free-exciton binding energy, while ξel and ξB represent,
respectively, the electric and magnetic parameters appearing
as

ξB = h̄2

l2
B

(
1

2M
+ 1

2μ

)
; ξel = 2eaEel/π. (9)

In the latest equation, the terms h̄2

2M and h̄2

2μ
refer, re-

spectively, to the kinetic and binding energies. The magnetic
barrier contributes both in the kinetic and binding energies
of exciton, whereas the electric field which is directly linked
to the charge (e) modifies the Coulomb interaction of the
electron-hole pair. The barrier acts as an effective potential for
the exciton motion and modifies the kinetic-energy operator.
Moreover, the field is along the z direction confining the
particles in the plane; then, electron and hole can acquire great
kinetic energy.

We use an approximate method to diagonalize the full
Hamiltonian (see Appendix A). The transformed Hamilto-
nian (̂) is averaged with the GS wave function |
0〉 =
C+

K |0〉k|0〉ph to obtain the energy as

EK =
(

h̄2 K2

2M

)
(1 − Gex2) − Gex1 + Eg − Eb + ξB − ξel .

(10)
One can see that the magnetic barrier and electric field

modify the GS energy of excitonic polaron.

A. Relaxation time

The dynamic of polaronic systems is related to the fact
that the time of optical phonons is approximately constant
and finite. The presence of both electric and magnetic fields
perturbs the excitonic states and the behavior of the system.
The relaxation time (τ ) of the exciton-polaron can take the
form [37]

1

τ
= 2π

h̄

∑
q

{|� (q)|2{[nB + f (EK+q)]δ(EK − EK+q + h̄ω0)

+ [1 + nB − f (EK+q)]δ(EK − EK+q − h̄ω0)}, (11)

where nB is the Bose-Einstein function and f is the Fermi-
Dirac distribution with the Fermi energy (EF ),

nB = [exp(βEK ) − 1]−1

f (EK+q) = [1 + exp β(EK+q − EF )]−1. (12)

β denotes the inverse of the temperature. We develop the
Dirac delta functions to obtain suitable forms for calculations
(see Appendix B). Then, converting the summation of Eq. (11)
into an integration, and integrating over q, one gets

1

τ
= M

(
Dop

c − Dop
v

)2

πηu(1 − Gex2)h̄2 K{[nB + f (EK + h̄ω0)] I+
K

+ [1 + nB − f (EK − h̄ω0)] I−
K }, (13)
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where the integrals I+
K and I−

K are given by

I+
K =

∫ 2π

0
dθ

cos2θ + Mh̄ω0

h̄2 K2(1−Gex2 )√
cos2θ + 2Mh̄ω0

h̄2 K2(1−Gex2 )

, (14)

I−
K =

∫ 2π

0
dθ

cos2θ − Mh̄ω0

h̄2 K2(1−Gex2 )√
cos2θ − 2Mh̄ω0

h̄2K2(1−Gex2 )

. (15)

These integrals are solved using the elliptic integrals of the
first and second kind. This leads to

I+
K ≈ π

[√
h̄2 K2(1 − Gex2) + 2Mh̄ω0

h̄K
√

1 − Gex2

+ h̄3 K3(1 − Gex2)3/2 + Mh̄ω0 h̄K
√

1 − Gex2

2(h̄2 K2(1 − Gex2) + 2Mh̄ω0)
3/2

]
, (16)

I−
K ≈ π

[
2h̄2 K2(1 − Gex2) − 2Mh̄ω0

h̄2 K2(1 − Gex2)

+ 2(Mh̄ω0)2 − Mh̄ω0h̄2 K2(1 − Gex2)

2h̄4 K4(1 − Gex2)2

]
. (17)

Therefore, the relaxation time for the exciton-polaron is
obtained since I+

K and I−
K are determined analytically accord-

ing to Eq. (13).

B. Electrical conductivity and Seebeck coefficient

The electrical conductivity evaluates the motion of charge
carriers in TMDC materials responsible for the current. As
for each semiconductor, applying an external field modifies
this property. Based on the relaxation-time approximation, the
electrical conductivity is given by [57]

σel = e2
∫

�(E )

(
− ∂ f

∂E

)
dE , (18)

where �(E ) is the transport function taken as

�(E ) = 1

S

∑
K

v2
g τ δ(E − EK ). (19)

vg corresponds to the group velocity [58] obtained as

vg = h̄K (1 − Gex2)

M
. (20)

After the integration over K , one gets

� = (1 − Gex2)K2
0

2πM
{ τ (K0) − τ (−K0)}, (21)

with

K0 =
√

2Md

h̄
√

1 − Gex2
;

d = E + Eb + Gex1 − Eg − ξB + ξel . (22)

Then, substituting the latest relations in Eq. (18), the elec-
trical conductivity reads

σel = 32ηuh̄4(1 − Gex2)3

πM3
(
Dop

c − Dop
v

)4 βe2
∫ ∞

0
dE

(d − h̄ω0)
√

d

γ 2 − χ2
f (E ),

(23)

where

γ = [nB + f (E + h̄ω0)]

(
8d2 + 9h̄ω0d + 4(h̄ω0)2

(d + h̄ω0)3/2

)

+ 2 [1 + nB − f (E − h̄ω0)]

(
5d − h̄ω0√

d − h̄ω0

)
, (24)

and

χ = 4 [1 + nB − f (E − h̄ω0)]

(
h̄ω0 − d√

d

)
. (25)

Since the electrical conductivity depends on temperature, it
is convenient to explore the Seebeck effect (or thermoelectric
power) which evaluates the electric current generated by a
gradient of temperature. The Seebeck coefficient takes the
form [59]

S = β

e

C1

C2
, (26)

where

C1 =
∫ ∞

0
dE

(d − h̄ω0)
√

d

γ 2 − χ2
f (E )(E − EF )

C2 =
∫ ∞

0
dE

(d − h̄ω0)
√

d

γ 2 − χ2
f (E ). (27)

C. Optical conductivity and oscillator strength

The optical conductivity represents the optical response of
the TMDC materials and it can be expressed through the Kubo
formula [60] at zero temperature by

σ(ω) = i
2e2

SMω
+ 1

Sh̄ω

∫ ∞

0
dt eiωt 〈[J (t ), J (0)]〉. (28)

J is the total current operator. Taking into account the
electron- and hole-current operators [61], σ(ω) becomes

σ(ω) = i
2e2

SMω
+ 1

Sh̄ω

∫ ∞

0
dt eiω t

〈
e2

m2
h

[ph(t ), ph(0)]

+ e2

m2
e

[pe(t ), pe(0)]

〉
. (29)

After integrating by parts [60], one gets

σ(ω) = i
2e2

SMω
− e2

Sh̄ω

1

ω2

∫ ∞

0
dt eiω t

〈
1

m2
e

[Fe(t ), Fe(0)]

+ 1

m2
h

[Fh(t ), Fh(0)]

〉
. (30)

As shown in Appendix C, we evaluate the commuta-
tors of Eq. (30) and the average is done with respect
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to the ground state. We get

σ(ω) = i
2e2

SMω
+ e2

Sh̄ω

1

ω2

∫ ∞

0
dt eiω t

⎧⎨
⎩−i

∑
q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)
q� (q)( f ∗

ex − fex )

+ i
∑

q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)
q� (q)(U (t ) f ∗

ex − T (t ) fex ) +
(
m2

h + m2
e

)
m2

e m2
h

∑
q

q2�2 (q)(U (t ) − T (t ))

⎫⎬
⎭.

(31)

The imaginary part of the optical conductivity is obtained after integrating over t as

Im [σ (ω)] = 2e2

SMω
+ h̄e2

Sh̄ω

(
m2

h + m2
e

)
m2

em2
hω

2

∑
q

q2�2 (q)

(
1

λK+q − λK + h̄ω − h̄ω0
− 1

λK+q − λK + h̄ω + h̄ω0

)
. (32)

It is seen that the imaginary part represents the optical conductivity out of any field. For the present case in which we
investigate the effect of fields, we will focus on the real part. It reads

Re [σ(ω)] = e2

Sh̄ω

1

ω2

⎧⎨
⎩ 1

ω

∑
q//

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

−eEel
(
m2

h − m2
e

)
2m2

e m2
h

)
q� (q)( f ∗

ex − fex )

+ h̄
∑

q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)
q� (q)

(
fex

λK+q − λK + h̄ω + h̄ω0
− f ∗

ex

λK+q − λK + h̄ω − h̄ω0

)}
.

(33)

The final expression of the real part of optical conductivity is determined by replacing the summation into integration. It takes
the form

Re [σ (ω)] = σB(ω) − σel (ω), (34)

with

σB(ω) = e2
(
Dop

c − Dop
v

)2

16Sηuπ2 h̄ω

h̄3
(
m3

e + m3
h

)
m3

e m3
h ω2 l2

B

∫ ∞

0
dq

∫ 2π

0
dθ q3

{
1/ω

h̄2 q2

2M + h̄2

M Kq cos θ − h̄ω0

− 1/ω

h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω0

+ h̄(
h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω + h̄ω0

)(
h̄2 q2

2M + h̄2

M Kq cos θ − h̄ω0

)

− h̄(
h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω − h̄ω0

)(
h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω0

)
⎫⎪⎬
⎪⎭, (35)

and

σel (ω) = e3
(
Dop

c − Dop
v

)2

16Sηuπ2

(
m2

h − m2
e

)
m2

e m2
h ω3

Eel

∫ ∞

0
dq

∫ 2π

0
dθ q3

{
1/ω

h̄2 q2

2M + h̄2

M Kq cos θ − h̄ω0

− 1/ω

h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω0

+ h̄(
h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω + h̄ω0

)(
h̄2 q2

2M + h̄2

M Kq cos θ − h̄ω0

)

− h̄(
h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω − h̄ω0

)(
h̄2 q2

2M + h̄2

M Kq cos θ + h̄ω0

)
⎫⎪⎬
⎪⎭. (36)

Now that the optical conductivity is obtained, let us evalu-
ate the strength of optical transitions by the formula [62]

Fosc(ω) = 2πε0M

ne2ω2

1

τl
. (37)

Fosc is the oscillator strength and τl is the ground-state
exciton-polaron lifetime taken as [63]

1

τl
= 2π

h̄

∑
q

∣∣〈nq′ , K
∣∣H2D

ex−ph

∣∣K, nq
〉∣∣2

δ[λK − λK+q + h̄ω0].

(38)
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TABLE I. Characteristics of each TMDC taken from Refs. [14,65].

me mh h̄ω0 Dop
c Dop

v Eb Eg

(m0) (m0) (eV) (eV) (eV) (eV) (eV)

MoSe2 0.64 0.71 0.0365 5.2 4.9 0.174 1.56
WSe2 0.39 0.51 0.0291 2.3 3.1 0.231 1.65
WS2 0.31 0.42 0.0435 3.1 2.3 0.19 2.10
MoS2 0.51 0.58 0.0443 5.8 4.6 0.313 1.87

Here we consider nq′ = nq − 1 and the summation is
transformed into integration. The integration over q, after
averaging with |
0〉, gives

1

τl
= M

(
Dop

c − Dop
v

)2

h̄3 πηu
N̄0

∫ 2π

0
dθ

(h̄2 K2cos2θ + Mh̄ω0)√
h̄2 K2cos2θ + 2Mh̄ω0

,

(39)
where N̄0 is the mean number of phonons [64] and the final
expression of the oscillator strength is determined by substi-
tuting the latest relation in Eq. (37). This leads to

Fosc = 2ε0
(
Dop

c − Dop
v

)2
M2

nηue2 h̄3

1

[exp(β EK ) − 1] ω2

×
∫ 2π

0
dθ

(h̄2 K2 cos2θ + Mh̄ω0)√
h̄2 K2 cos2θ + 2Mh̄ω0

. (40)

From Eqs. (13), (23), (26), (34), and (40) it is clear
that the relaxation time, the electrical conductivity, the See-
beck coefficient, the optical conductivity, and the oscillator
strength calculated for 1Ls TMDCs are influenced by both the
magnetic barrier and the electric field acting on the TMDC
monolayer.

III. RESULTS AND DISCUSSION

For calculations of the properties we have described above,
we use the following data showing some materials character-
istics (see Table I).

Figures 2 and 3 plot the variation of the exciton-polaron
ground-state energy for various monolayers TMDCs. Figure 2
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FIG. 2. GS energy of exciton-polaron as function of the magnetic
length for zero electric field.
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FIG. 3. GS energy of exciton-polaron vs the electric parameter
for lB = 2 nm.

shows the decrease of the exciton-polaron energy when en-
hancing the magnetic length and one can say that the energy
is sensitive to the applied magnetic barrier.

Since the magnetic strength is inversely proportional to
the magnetic length, it follows that the excitonic polaron en-
ergy increases with the enhancement of the magnetic field.
In fact, the magnetic field reduces the interparticle distance
and increases the Coulomb interaction of the electron-hole
pair [41]. This leads to the increase of the binding energy.
The excitonic polaron is then confined in the magnetic barrier
and that favors its stability. Also, for lB > 15 nm the energy
becomes constant, meaning that the magnetic barrier loses its
influence and it corresponds to weak magnetic range.

However, from the curves of Fig. 3, we observe a mono-
tonic decrease of the GS energy when the electric parameter
increases. Even if the excitonic polaron is a neutral set, it
remains a two-particle system of opposite charges and then
the presence of electric field affects the excitonic components.

In fact, the hole tends to move in the electric field direction,
whereas its corresponding electron moves against the electric
field. Because of this opposition in direction, one can say that
due to the applied electric field the binding energy is reduced
and it brings down the excitonic polaron stability. It adheres
with the work of Oukerroum et al. [66]; Ref. [50] predicts
the dissociation of exciton by electric field. The highest GS
energy is obtained in WS2 and the lowest in MoSe2.

Figures 4 and 5 show the relaxation time of the exciton-
polaron as a function of the magnetic length (lB) and the
electric parameter (ξel ) respectively. The result indicates that
the relaxation time increases as the magnetic length and elec-
tric parameter increase, and it saturates for high values of the
parameters.

The relaxation of exciton-polaron is related to the process
of phonons’ absorption-emission in TMDCs. This process
is influenced by the interaction with phonons: the less the
exciton interacts in the structure, the more it relaxes. In fact,
from the results of GS energy, it is shown that the enhance-
ment of the magnetic length leads to the reduction in exciton
binding energy. As the binding energy decreases, the inter-
play between exciton and phonon is lowered. This justifies
the increase of the relaxation time observed in Fig. 4 and it
adheres with Ref. [67]. In addition, it is observed that the
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FIG. 4. Exciton-polaron relaxation time vs the magnetic length
at T = 70 K.

saturation occurs at lB = 15 nm, meaning that the exciton-
polaron reaches its maximum relaxation time and one can say
that the phenomenon of relaxation is sensitive to the magnetic
barrier. In the same way, as the electric field is applied, it
delocalizes the hole and electron toward different directions.
This generates the decrease of exciton binding energy con-
tributing to the reduction of particle interactions. Therefore,
the electron and hole are more relaxed in the presence of an
external electric field and the exciton-polaron relaxation time
enhances as shown in Fig. 5. The lowest relaxation time is
observed in MoS2 and the highest in MoSe2. Also, Yan et al.
[68] used a spectroscopic method in WSe2 and found the
relaxation time of free exciton about 2 ps at 70 K. Here, the
relaxation time for WSe2 is about 105 ps. Thus, we predict
that the relaxation time of exciton-polaron in the presence of
electric field and magnetic barrier is 50 times larger than that
of free exciton.

Figures 6 and 7 present the electrical conductivity for
TMDCs as a function of the magnetic length and electric
parameter, respectively. One can see from Eq. (23) that the
electrical conductivity is proportional to

√
d and according

to Eq. (22), we have
√

d = √
E + Eb + Gex1 − Eg when the

fields are zero. Then, in the absence of any field, the electrical
conductivity appears when the system’s energy overpasses the
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FIG. 5. Exciton-polaron relaxation time vs the electric parameter
at T = 70 K.

FIG. 6. Electrical conductivity vs the magnetic length at
T = 25 K.

band-gap energy, so that the electron can transit toward the
conduction band.

Now from Fig. 6, it follows that there is no electrical
conductivity for low values of the magnetic length. This result
indicates that at very high magnetic strength, there is no elec-
trical conductivity in TMDCs. Moreover, the system’s energy
should be greater than the band gap and the magnetic param-
eter since the electrical conductivity becomes proportional to√

E + Eb + Gex1 − Eg − ξB according to Eq. (22).
As the magnetic length increases, it favors the attenuation

of the magnetic strength, and the electrical conductivity be-
comes possible. This occurs when the magnetic length reaches
a value around 2.5 nm and from this value the electrical
conductivity increases as the magnetic length increases. This
enhancement of the electrical conductivity is in accordance
with Refs. [69,70]. Also, applying the magnetic field along
the z direction induces the confinement and carriers’ concen-
tration in the xy plane. Then, as lB increases, electron- and hole
interactions with phonons grow because the particles motion
increases. In Ref. [71] it is shown that the polaron motion is
fast with higher magnetic barrier lengths.

Figure 7 shows the enhancement of electrical conductiv-
ity when the electric parameter increases. Reference [50]

FIG. 7. Electrical conductivity vs the electric parameter at
T = 25 K.

075134-7



C. KENFACK-SADEM et al. PHYSICAL REVIEW B 107, 075134 (2023)

Magnetic length (nm)
0 5 10 15 20

S
ee

be
ck

 c
oe

ffi
ci

en
t (

a.
u)

0.5

1

1.5

2

2.5

MoSe2
MoS2
WSe2
WS2

Magnetic length (nm)
0 5 10 15 20

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

MoSe2
MoS2
WSe2
WS2

(a) (b)

FIG. 8. Seebeck coefficient vs the magnetic length for (a) T =
5 K and (b) T = 150 K.

demonstrated that the exciton energy level decreases when the
electric field increases. In addition, the applied electric field
induces an electric force responsible for the increase of elec-
tron’s motion in TMDCs. Thus, the electric field facilitates the
electronic transitions and it agrees with Ref. [72]. In addition,
Fig. 7 shows a very low electrical conductivity in MoS2 for
ξel = 0 (Eel = 0) at 25 K. This is a good result, adhering
with the experiment of Kim et al. [73]. The latest observed
the increase of electrical conductivity with temperature and a
weak value (close to zero) in 1L MoS2 without heterostructure
at 300 K.

Among the selected TMDCs, MoSe2 has the greatest am-
plitude and its electrical conductivity begins at a low value
(lB ≈ 2 nm), meaning that it is a suitable TMDC for studies
in high magnetic fields. This can be due to its lowest band-
gap energy which favors the electronic transition between
valence- and conduction bands. This result of MoSe2, also
suggested by Figs. 4 and 5, fits with Ref. [42], which showed
that the electrical conductivity rises when the relaxation time
increases.

The Seebeck coefficient as a function of the magnetic
length for low- and high temperatures and diverse TMDCs
is presented in Figs. 8(a) and 8(b), respectively. It is observed
that the curves do not present monotonic shapes. The Seebeck
coefficient falls until to a critical value of the magnetic length,
and above this value it increases. In fact, as the temperature
changes in TMDCs, it generates excitations and increases the
motion of particles. This leads to the appearance of a voltage
responsible for the Seebeck effect. At a fixed temperature and
for low values of the magnetic length, which means high mag-
netic field, the magnetic influence dominates. Then, electron
(hole) is more confined than subjected to thermal perturbation
and it explains the decrease of this property.

In the opposite way, above the critical value of the mag-
netic length, which means low magnetic field, the temperature
effect dominates and enhances the Seebeck coefficient. It is in
agreement with Refs. [70,74].

Also, the result shows that the magnetic effect is less
significant in high-temperature range since one can observe
the regression of the critical value range [from 5–7 nm in
Fig. 8(a) to 2.5–3.5 nm in Fig. 8(b)] and the reduction of the
Seebeck coefficient values regarding Fig. 8(a) and Fig. 8(b).
In addition, for very high values of the magnetic length (lB >

18 nm) in Fig. 8(a) and lB > 10 nm in Fig. 8(b)), the Seebeck
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FIG. 9. Seebeck coefficient vs the electric parameter at T = 25 K.

coefficient becomes constant and the magnetic barrier does
not influence this property more. At T = 5 K, the highest
amplitude is obtained for WS2 at low magnetic length and for
MoSe2 at high magnetic length.

Figure 9 presents the evolution of the Seebeck coefficient
of TMDCs in the presence of the external electric field. The
result shows the highest amplitudes of the coefficient at zero
electric field. It decreases gradually as the field increases. This
decrease of Sb is in agreement with Ref. [75] and the experi-
ment of Ref. [76]. Thus, the Seebeck effect as a thermoelectric
power property is favored by the absence of the electric field.
In this case, when the temperature changes, the electron (hole)
moves directed only by the temperature gradient from the hot
source to the cold source, and then it generates the Seebeck
voltage.

In the presence of the electric field, the particles’ motion is
governed by the field. As the strength of the electric field in-
creases, it overcomes the temperature gradient and the curves
of the Seebeck coefficient decrease.

Figures 10 and 11 present the real part of the optical
conductivity of TMDCs versus the magnetic length and elec-
tric field, respectively. The optical conductivity of TMDCs
presents a high amplitude and this is also observed at room
temperature by Kravets et al. [77]. The figures show that this

FIG. 10. Real part of the optical conductivity vs the magnetic
length at h̄ω = 0.1 eV and Eel = 0.
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FIG. 11. Real part of optical conductivity vs the electric field for
lB = 2 nm and h̄ω = 0.1 eV.

property decreases when the magnetic length and electric field
increase. It adheres, respectively, with Refs. [61,49]. As the
applied energy h̄ω is more than twice the phonon energy,
the exciton-polaron becomes more energetic and then optical
transitions can occur [55,78].

Moreover, the particles are well confined in the presence of
the magnetic barrier favoring the growth of their energies. The
increase of the magnetic length has the effect of reduce the
exciton-polaron energy, then decreasing the optical conductiv-
ity as pointed out in Fig. 10. The highest optical conductivity
is obtained for MoS2.

Also, the presence of the electric field modifies the
Coulomb force between electrons and holes reducing the ex-
citon binding energy. In addition, according to Eq. (10) it is
seen that the increase of the electric field leads to the decrease
of the system energy. Therefore, the electric field does not
favor the optical transitions. The negative sign in Fig. 11 is
justified by the dominance of the electric field effect against
the magnetic barrier according to Eq. (34).

Figures 12 and 13, respectively, show the evolution of the
excitonic polaron oscillator strength when the magnetic length
and the electric parameter change. The results indicate that it
increases with the magnetic length and electric field. One can
say that this property is very sensitive to low magnetic lengths

FIG. 12. Oscillator strength vs the magnetic length at T = 25 K.

FIG. 13. Oscillator strength vs the electric parameter at T = 25 K.

(high magnetic strength) due to the rapid growth observed in
Fig. 12.

From Eq. (37), it is seen that the lifetime is inversely
proportional to the oscillator strength. The curve presents a
saturation when lB > 2 nm; the oscillator strength reaches its
maximum and becomes constant. This range also corresponds
to the shortest lifetime characterizing the lowest stability of
exciton-polaron, since when the lifetime is zero it means
the death of this quasiparticle [54]. Hence, the result shows
that the less the exciton is confined, the lower its lifetime,
the greater the oscillator strength, and it joins the work of
Ref. [79]. From Fig. 13, it is seen that as the electric field in-
creases, the particles’ motions grow and the optical transition
is faster. Moreover, it is in agreement with Ref. [72] which
shows the decrease of lifetime when the electric field rises.
Among the TMDCs, the highest value of oscillator strength is
observed in MoS2.

IV. CONCLUSION

The relaxation of exciton-polaron and the transport prop-
erties under a magnetic barrier and an electric field have been
investigated in various TMDCs. The analytical study of the
relaxation time, the electrical conductivity, the Seebeck co-
efficient, the optical conductivity, and the oscillator strength
has been done. It follows that the relaxation time of the
exciton-polaron grows when the magnetic length and electric
field increase. Also, the electrical conductivity increases as
the magnetic length and electric field increase. It reaches at
different values of the magnetic length characterizing each
TMDC material. In addition, the Seebeck coefficient presents
a monotonic decrease under the electric field, whereas the
magnetic barrier changes its behavior. The low values of the
magnetic length favor the decrease of this coefficient while the
high values increase it. Moreover, the optical conductivity of
TMDCs decreases with increasing both the magnetic length
and electric field. The oscillator strength of the excitonic
polaron is an increasing function of both magnetic length
and electric field. It increases gradually as the electric field
increases. This work shows that the magnetic barrier and the
electric field can be used to adjust these transport properties
and relaxation of the exciton-polaron in TMDCs. This could
be useful to improve optical- and electronic device properties.
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APPENDIX A: DIAGONALIZATION METHOD

Let us use the unitary transformation:

Uex = exp (iSa), (A1)

with

Sa =
∑
K,q

C+
K+qCK [ f ∗

exb+
−q + fex bq]. (A2)

The fex functions are variational parameter. We apply the
unitary transformation to the full Hamiltonian and get

̂ = U −1
ex ĤUex ≈ Ĥ2D

ex + Ĥph + ̂2D
ex−ph. (A3)

The transformed Hamiltonian can be separated as

̂ = Ĥ0 + ̂2D
ex−ph, (A4)

where the free part Ĥ0 and the interacting part ̂2D
ex−ph of ̂ are

given by

Ĥ0 = Ĥ2D
ex + Ĥph, (A5)

̂2D
ex−ph =

∑
K,K ′,q

|�op (q)|2( f ∗
ex − fex )C+

K+qCKC+
K ′+qCK ′ . (A6)

Using a series expansion of (A4) and the perturbation the-
ory [14], we obtain the fex functions as

f ∗
ex = �op (q)

λ(K + q, lB, Eel ) − λ(K, lB, Eel ) + h̄ω0

fex = �op (q)

λ(K + q, lB, Eel ) − λ(K, lB, Eel ) − h̄ω0
. (A7)

Therefore, according to (A7) and Eq. (6), we evaluate the
summation over q in (A6). This leads to

̂2D
ex−ph = −

∑
K,K ′

[G̃ex2 + Gex1]C+
K+qCKC+

K ′+qCK ′ , (A8)

with

Gex1 = π
√

h̄ω0
(
Dop

c − Dop
v

)2

√
2 h̄2ηu

(me + mh)3/2, (A9)

G̃ex2 =
(

h̄2 K2

2M

)
3π

(
Dop

c − Dop
v

)2

4
√

2 h̄2 ηu

(me + mh)3/2

√
h̄ω0

=
(

h̄2 K2

2M

)
Gex2. (A10)

Thus, the Hamiltonian in its approximate diagonalized
form, taking into account Eq. (7), becomes

̂ =
∑

K

λC+
K CK + Ĥph −

∑
K,K ′

[G̃ex2 + Gex1]C+
K+qCKC+

K ′+qCK ′ .

(A11)

APPENDIX B: DEVELOPMENT OF THE DIRAC DELTA
FUNCTION

Let us use the following relation:

δ[g(q)] =
∑

i

δ(q − qi )

|g′(qi )| , (B1)

where qi are the roots of the g functions contained in the Dirac
delta function and g′ its derivative. From Eq. (12), we consider

g1 = EK − EK+q + h̄ω0, (B2)

g2 = EK − EK+q − h̄ω0. (B3)

According to Eqs. (10) and (B1), we establish

δ(g1) = M

h̄2(1 − Gex2)

δ(q − q1) + δ(q − q2)√
K2cos2θ + 2Mh̄ω0/h̄2(1 − Gex2)

,

(B4)

δ(g2) = M

h̄2(1 − Gex2)

δ(q − q3) + δ(q − q4)√
K2cos2θ − 2Mh̄ω0/h̄2(1 − Gex2)

,

(B5)

with

q1 = −K cos θ +
√

K2cos2θ + 2Mh̄ω0/h̄2(1 − Gex2)

q2 = −K cos θ −
√

K2cos2θ + 2Mh̄ω0/h̄2(1 − Gex2), (B6)

q3 = −K cos θ +
√

K2cos2θ − 2Mh̄ω0/h̄2(1 − Gex2)

q4 = −K cos θ −
√

K2cos2θ − 2Mh̄ω0/h̄2(1 − Gex2). (B7)

These expressions (B4) and (B5) of the Dirac delta func-
tions are suitable for integration or summation.

APPENDIX C: COMMUTATOR OF FORCE OPERATORS AND AVERAGING

The force operator is defined as Fα (t ) = (i/h̄)[H, pα], with the linear momentum operator taken in the second quantization
as pα = h̄KαC+

KαCKα [60], α standing for electron (e) or hole (h).
Thus,

Fe(t ) = −i

⎧⎨
⎩

(
e2 B2

2me
− eEel

)
C+

Ke(t )CKe(t ) +
∑

q

q � (q)C+
K+q(t )CK (t ) (bq(t ) + b+

−q(t ))

⎫⎬
⎭, (C1)
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Fh(t ) = −i

⎧⎨
⎩

(
e2 B2

2mh
+ eEel

)
C+

Kh(t )CKh(t ) +
∑

q

q � (q)C+
K+q(t )CK (t ) (bq(t ) + b+

−q(t ))

⎫⎬
⎭ . (C2)

Also, the time dependence of the operators is given by

bq(t ) = e−iω0 t bq(0); b+
−q(t ) = eiω0 t b+

−q(0), (C3)

and

C+
Kα (t )CKα (t ) = e(it/ h̄)λKC+

K (0) e[(−it )/ h̄]λKCK (0)

C+
K+q(t )CK (t ) = e(it/ h̄)λK+qC+

K+q(0) e[(−it )/ h̄]λKCK (0). (C4)

After straightforward calculations made in Eq. (30), we evaluate the commutator taking into account (C1), (C2), and the time
dependence of the operators. This leads to〈

1

m2
e

[Fe(t ), Fe(0)] + 1

m2
h

[Fh(t ), Fh(0)]

〉
=

〈{∑
q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)
q� (q)C+

K+qCK (bq + b+
−q)

−
∑

q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)
q� (q)C+

K+qCK (U (t )bq + T (t )b+
−q)

−
(
m2

h + m2
e

)
m2

e m2
h

∑
q

q2 �2 (q)C+
K+qCKC+

K+qCK (U (t ) − T (t ))

}〉
, (C5)

where

T (t ) = exp
it

h̄
(λK+q − λK + h̄ω0);

U (t ) = exp
it

h̄
(λK+q − λK − h̄ω0). (C6)

We then apply the unitary transformation and obtain〈
1

m2
e

[Fe(t ), Fe(0)] + 1

m2
h

[Fh(t ), Fh(0)]

〉
=

〈{∑
q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)

× q� (q)C+
K+qCK (bq + b+

−q + iC+
K+qCK ( f ∗

ex − fex ))

−
∑

q

(
e2 B2

(
m3

e + m3
h

)
2m3

e m3
h

− eEel
(
m2

h − m2
e

)
2m2

e m2
h

)

× q� (q)C+
K+qCK (U (t )bq + T (t )b+

−q + iU (t )C+
K+qCK f ∗

ex − iT (t )C+
K+qCK fex )

−
(
m2

h + m2
e

)
m2

e m2
h

∑
q

q2 �2 (q)C+
K+qCKC+

K+qCK (U (t ) − T (t ))

}〉
. (C7)

The average is done using the ground-state wave function. We have

〈
1

m2
e

[Fe(t ), Fe(0)] + 1

m2
h

[Fh(t ), Fh(0)]

〉
=

⎧⎨
⎩i

∑
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