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Spatial symmetry modulation of planar Hall effect in Weyl semimetals

Yi-Wen Wei ,1,2,3 Ji Feng,4,5,6,* and Hongming Weng 1,2,7,†

1Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

3School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
4International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

5Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
6CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

7School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 1 August 2022; revised 5 December 2022; accepted 31 January 2023; published 13 February 2023)

The planar Hall effect in Weyl semimetals has been proposed as a key feature of chiral anomaly and nontrivial
Berry curvature, while the effect of fundamental spatial symmetry remains to be explored. Here, we show
with general symmetry analysis and lattice model calculations that the planar Hall effect can be significantly
modulated by a certain class of spatial symmetry operations. The odd terms of conductivity with respect to
magnetic field, including the linear terms, vanish in the plane perpendicular to the axis of twofold rotation
(C2) or the C2 combined symmetry operations (mirror, twofold screw rotation, glide plane). When applying the
magnetic field perpendicular to the glide plane, we find that the planar Hall conductivity in bulk forbidden by
glide symmetry becomes nonzero in its quasi-two-dimensional counterpart with broken glide symmetry. It is
further clarified that the nonzero planar Hall conductivity comes from surface states. This signature can be used
to distinguish bulk and surface transport in Weyl semimetals.
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I. INTRODUCTION

Weyl semimetals [1–11] host linear energy dispersions
through the Weyl points in electronic band structure and
exhibit remarkable chiral anomaly effect [12–14] of Weyl
fermions. The chiral anomaly effect can induce a negative lon-
gitudinal resistance [14–19], under a magnetic field parallel to
the electric field which is associated with the nontrivial Berry
curvature in the semiclassical regime. Recently, the chiral
anomaly has been proposed to give rise to a kind of trans-
verse transport phenomenon in Weyl semimetals besides the
negative longitudinal resistance [20–23], which is commonly
called planar Hall effect (PHE) in subsequent studies [24–33].
By convention, the PHE [24,25,34–39] refers to the produc-
tion of nonzero transverse voltage coplanar with the applied
electric and magnetic fields. The transverse conductivity in
PHE does not necessarily change its sign as that in the normal
Hall effect when the magnetic field is reversed. It is not a
true Hall response if the transverse conductivity is quadratic
in magnetic field [28].

PHE does not solely originate from the chiral anomaly or
the Berry curvature effect in Weyl semimetals. It can also be
induced by the conventional anisotropic orbital magnetoresis-
tance [40–43]. These two different origins of the PHE cannot
always be clearly distinguished in experiments, because
the experimentally observed quadratic magnetoresistance
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supports both kinds of mechanisms [26,27,44–46]. It is worth
noting that the Berry curvature could contribute to an ad-
ditional linear magnetoresistance if the Weyl cone is tilted
[23,24,47]. This linear magnetoresistance can thus be re-
garded as an indicator of the PHE induced by Berry curvature
[33,45]. For the linear magnetoconductivity in Weyl semimet-
als, the previous theoretical analyses discussed the effects
of band bending [48], band tilting [23,24,47,49–51], and the
associated effect between spin-orbit coupling and momentum-
dependent ferromagnetic exchange interaction [52]. Little
attention has been paid to the role of spatial symmetry [53],
which is a more fundamental and straightforward feature of
crystals than band structures and usually brings strict con-
straints on the transport coefficients. Therefore, an aim of
the present work is to investigate the influence of spatial
symmetry on the emergence of linear magnetoconductivity in
the PHE.

Another essential property of Weyl semimetals is the Fermi
arc surface states [2,4,8]. However, it is challenging to sep-
arate the contribution of surface states from bulk states in
transport [54–56]. In view of symmetry, the spatial sym-
metry of a plane in quasi-two-dimensional structure can be
lower than that in bulk for nonsymmorphic lattices. The re-
duced symmetry in quasi-two-dimensional structure puts less
constraints [56] on PHE, therefore probably brings differ-
ent features compared with bulk. This inspires us that PHE
could be used to separate surface transport from bulk. There-
fore, a second aim of this work is to study the PHE in the
quasi-two-dimensional structure and find a possible scenario
to distinguish the bulk and surface transport. In this paper,
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we studied the constraints of spatial symmetries on linear
magnetoconductivity in PHE. Some spatial symmetry opera-
tions can reverse the sign of the magnetic-field components,
thereby suppressing the appearance of linear magnetocon-
ductivity. Specifically, the sign of the magnetic field can be
flipped by twofold rotation (C2) and C2 combined operations;
that is, mirror plane C2P , twofold screw rotation {C2|t}, and
the glide plane {C2P|t}, where P represents the spatial in-
version and t is a fractional translation of a Bravais lattice
vector. Our symmetry analyses showed that the linear terms
of magnetoconductivity are absent in the plane perpendicular
to the C2 rotation axis, which is consistent with the linear
magnetoconductivity observed in magnetic Weyl semimetal
Co3Sn2S2 [57]. The symmetry analyses were then verified
by our numerical calculations based on a lattice model pre-
serving glide symmetry but breaking time-reversal symmetry.
Finally, if the glide symmetry in bulk is destroyed in its
quasi-two-dimensional counterpart, the planar Hall conduc-
tivity forbidden by glide symmetry becomes nonzero. In this
situation, the planar Hall conductivity is entirely contributed
by the surface states. This signature can be used to character-
ize the transport of surface states in Weyl semimetals.

II. SPATIAL SYMMETRY ANALYSIS

In the framework of linear-response theory, the conductiv-
ity as a rank-2 tensor is related to the electric field E and
the electron current J through the equation J = σE. When an
external magnetic field B is applied, the series expression of
conductivity in the magnetic field can be categorized into odd
and even order terms for the purpose of symmetry analysis.
It is well known that the magnetic field is a pseudovector
which is invariant under inversion. In point-group operations,
C2 and improper C2 can change the sign of the magnetic
field components, where the latter is equivalent to a reflection
perpendicular to the rotation axis. Under C2, the magnetic-
field vector remains unchanged along the rotation axis and is
reversed along the direction perpendicular to the rotation axis.

The planes vertical and parallel to C2 axis are considered
separately. In the plane vertical to the C2 axis, J, E, and
B all change signs and the equation Ji = σi j (B)Ej becomes
−Ji = σi j (−B)(−Ej ). i, j are the direction axes vertical to
rotation axis. Therefore, it can be found that the odd-order
terms of conductivity, including the linear part, are absent in
the plane perpendicular to the (im)proper C2 rotation axis. In
this case, the second-order terms of the conductivity on the
magnetic field may become dominant. In the plane parallel to
the C2 rotation axis, the linear terms of magnetoconductivity
are allowed but still restricted by C2 rotation. Under C2x op-
eration, Jy = σyx(Bx, By)Ex becomes −Jy = σyx(Bx,−By )Ex,
which guarantees that σyx only contains the odd order terms on
By and σyx = 0 at By = 0. In essence, the zero σyx is protected
by C2 rotation after applying the magnetic field parallel to the
rotation axis [44]. Once the C2x related symmetry is destroyed
by the surface in nonsymmorphic lattice [56], σyx is allowed
to be nonzero.

The above spatial symmetry-based analyses are performed
without any approximation, and thus apply in general. How-
ever, it should be noted that the time-reversal symmetry also
restricts the microscopic dynamics of electrons, as revealed

TABLE I. Symmetry analysis of PHE when the C2 rotation axis
is vertical or parallel to the observed xy plane. All the symmetry-
allowed linear terms of conductivity on the magnetic field B or
magnetization M are listed below.

Axis Conductivity Linear terms ∝
C2z σxx , σyx Mz

C2x σxx Bx , Mx , BxMx

σyx By, ByMx

by the famous Onsager reciprocal relation [58,59] where
σxx(B) = σxx(−B) and σxy(B) = σyx(−B). These constraints
required by time-reversal symmetry always work, regardless
of the direction of magnetic field and thus are naturally suit-
able for the PHE where the magnetic field is coplanar with the
electric field and the Hall voltage.

For a nonmagnetic system with time-reversal symmetry,
the Onsager reciprocal relation indicates that the longitudi-
nal conductivity σxx(B) contains only even powers of the
magnetic field, whereas the Hall conductivity σyx(B) allows
both even and odd contributions from B in principle. For
a magnetic system without time-reversal symmetry, the On-
sager relation is destroyed and we only need to consider
the restrictions of spatial symmetry. For instance, when the
magnetization is not parallel to the z axis, the C2z rotation or
C2z combined symmetry (mirror or glide plane perpendicular
to z; screw axis along z direction) of the lattice is broken if the
magnetization is considered. In this case, the odd terms of B
are retained in both σxx(B) and σyx(B). The vertical or in-plane
C2 rotation allowed linear terms of conductivity are listed in
Table I. These features can be easily verified in experiments by
changing the direction of magnetic field and magnetization.
On the basis of these analyses, we can conclude that the
conductivity of the PHE has the following characteristics: (i)
the odd terms of σxx(B) exist only in a time-reversal breaking
system that has no C2z rotation or C2z combined symmetry. (ii)
The odd terms of σyx(B) are allowed if there is no C2z or C2z

combined symmetry, regardless of whether the time-reversal
symmetry is broken.

To gain insight into the modulation of spatial symmetry
on Berry curvature effect, we then review the semiclassical
theory of the PHE for Weyl semimetals and present detailed
symmetry-based considerations about the linear magnetocon-
ductivity. The Berry curvature effect has been involved in
the equations of motion for Bloch electrons [60] and then
in the Boltzmann equation [22,24,47,61]. By the relaxation-
time approximation and ignoring high-order contributions,
the longitudinal and Hall conductivity under an electric field
along the x axis E = Ex̂ and a magnetic field in xy plane
B = Bcosθ x̂ + Bsinθ ŷ are given by

σxx = e2τ

(2π )3

∫
d3kD

(
−∂ feq

∂εk

)[
vx

k + e

h̄
B cos θ (vk · �k)

]2
,

(1)

σyx = e2τ

(2π )3

∫
d3kD

(
−∂ feq

∂εk

)[
vx

k + e

h̄
B cos θ (vk · �k)

]

×
[
v

y
k + e

h̄
B sin θ (vk · �k)

]
+ e2

h̄

∫
d3k�z

k feq, (2)
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TABLE II. Symmetry modulations of the magnetoconductivity with a glide (or mirror) plane in the xy plane or twofold rotation (or screw)
axis along the z direction. Because the spatial orientations x and y are equivalent in view of symmetry, we only present the analytic results of
the magnetic field in the xy and xz planes.

Magnetic field Conductivity Order Dominant terms

B = B cos θ x̂ + B sin θ ŷ σxx 2 e2B2

h̄2

(
v

y
k�

y
k cos θ − vx

k�
y
k sin θ + vz

k�
z
k cos θ

)2

σyy 2 e2B2

h̄2

(
vx

k�
x
k sin θ − v

y
k�

x
k cos θ + vz

k�
z
k sin θ

)2

σyx 2 e2B2

h̄2

(
v

y
k�

y
k cos θ − vx

k�
y
k sin θ + vz

k�
z
k cos θ

)(
vx

k�
x
k sin θ − v

y
k�

x
k cos θ + vz

k�
z
k sin θ

)

B = B cos θ x̂ + B sin θ ẑ σxx 1 − eB
h̄ sin θ�z

k

(
vx

k

)2

σzz 1 − eB
h̄ sin θ�z

k

(
vz

k

)2 + 2eB
h̄ sin θvz

k(vk · �k )

σzx 1 − eB
h̄ cos θ�x

kv
x
kv

z
k + eB

h̄ cos θvz
k(vk · �k )

where D = [1 + e/h̄(B · �k )]−1. �k and vk are the Berry
curvature and the group velocity at the wave vector k, re-
spectively. feq is the equilibrium Fermi-Dirac distribution
function with the energy dispersion εk. τ is the relaxation
time, and e is the positive electron charge. The last term in
Eq. (2) is the intrinsic anomalous Hall conductivity in terms
of Berry curvature and is independent of B. To clarify the
dependence of conductivity on the magnetic field, we use the
second-order Taylor expansion of the phase factor with D =
1 − e/h̄(B · �k ) + (e/h̄)2(B · �k )2. The linear and quadratic
terms in Eqs. (1) and (2), expanded in magnetic field, are
subsequently obtained. In reciprocal space, the mirror and
C2 rotation operations can change the signs of momentum k,
group velocity vk, and the Berry curvature �k along certain
directions. Therefore, it is possible to make the linear terms
vanish from the perspective of Brillouin-zone integration. The
glide plane and the twofold screw rotation are expected to
have the same effect as the mirror and C2 rotation, because the
additional fractional translation operation does not influence
the above discussions about vk and �k.

Detailed expressions of the aforementioned arguments are
presented here. The mirror or glide plane with respect to the xy
plane connects the momentum k to k′, satisfying kx(y) = k′

x(y)

and kz = −k′
z. The components of the group velocity and the

Berry curvature obey the relations v
x(y)
k′ = v

x(y)
k , vz

k′ = −vz
k,

�
x(y)
k′ = −�

x(y)
k , and �z

k′ = �z
k. Similarly, C2 or the twofold

screw axis along the z direction leads to v
x(y)
k′ = −v

x(y)
k ,

vz
k′ = vz

k, �
x(y)
k′ = −�

x(y)
k , and �z

k′ = �z
k with the momentum

relations kx(y) = −k′
x(y) and kz = k′

z. By applying these sym-
metry considerations to the Brillouin-zone integration of the
conductivity in Eqs. (1) and (2), the leading terms of the mag-
netoconductivity for different planes are formally analyzed
in Table II. When the mirror (or glide) is in the xy plane or
the twofold rotation (or screw) axis lies along the z direction,
the linear terms of the longitudinal and Hall conductivities
vanish in the xy plane as required by our general symmetry
analysis on the vertical C2 axis. In the xz plane, some linear
terms of conductivities survive. σxx and σzz are in proportion
to Bz, and σzx is in proportion to Bx. The results are consistent
with our general symmetry analysis and can be extended to
other directions if the corresponding symmetry operations are
present.

On the other hand, the time-reversal symmetry requires
that �−k = −�k and v−k = −vk, which counteracts all the
linear terms of B in Eqs. (1) and (2). Therefore, to observe
any significant linear magnetoconductivity induced by the
chiral anomaly and Berry curvature effect, a time-reversal-
breaking system with a suitable measured plane is needed.
However, if the band structure, group velocity, and the Berry
curvature are significantly affected by the external magnetic
field, the semiclassical approach becomes inapplicable. It
would become meaningless to only discuss the linear parts
because the magnetoconductivity may be present beyond per-
turbation theory [53,62]. We now apply above analyses to
the recently observed PHE in Co3Sn2S2, wherein the lin-
ear magnetoconductivity is attributed to the chiral anomaly
[57]. Co3Sn2S2 [63,64] has a rhombohedral structure with
the space group of R-3m (No. 166), and the magnetization is
approximately parallel to the threefold rotation axis along the
z direction. The linear magnetoconductivity was observed in
the xy plane, which conforms to our symmetry-based analysis
because there is no twofold rotation (screw) axis along the
z direction or mirror (glide) on the xy plane. In fact, PHE
has also been observed in a series of nonmagnetic systems
(TaAs [46], GdPbBi [26,28], Na3Bi [28], Cd3As2 [30,31],
VAl3 [29], WTe2 [45], MoTe2 [32,40], NiTe2 [41], and ZrTe5

[33,65]). However, the applied magnetic field in experiments
is not always strictly lying in the expected plane, which
brings a component of the magnetic field perpendicular to
that plane. In this case, the symmetry constraints on Hall
conductivity are broken down, and the antisymmetric part
of the measured Hall conductivity can be nonzero owing
to the normal Hall effect and the Berry curvature effect.
Thus, to investigate the pure in-plane transport, one should
be careful to reasonably remove the effect of misalignment
and precisely control the direction of the magnetic and electric
fields.

III. LATTICE MODEL CALCULATIONS

To numerically show the modulation of spatial symmetry
on the PHE, we perform magnetoconductivity calculations
for a Weyl semimetal based on a time-reversal-symmetry-
breaking cubic lattice model with glide plane symmetry
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FIG. 1. The energy dispersion of the lattice model of the Weyl
semimetal with glide symmetry, described by Eq. (3). Panels (a) and
(b) show band structures with kx = 0.84 and ky = 0, respectively.
Panels (c) and (d) show the band structures of the (100) and (010)
slabs, respectively. A pair of Weyl nodes are marked by red dots, and
the Fermi arcs are plotted in cyan.

[66,67]. The Hamiltonian is expressed as follows:

Hk = (m − t cos kx − t cos ky − t cos kz )σ0s3 + pσ0s1

+ t sin
kx − φ

2

(
cos

kx

2
σ1s1 + sin

kx

2
σ2s1

)

+ t sin kyσ0s2 + t sin kzσ3s1, (3)

where the parameters t = 0.1 eV, m = 2.5t , p = 0.6t , and
φ = 0.4. σ and s describe the lattice and orbital degrees of
freedom, respectively. σ0 (s0) is a 2 × 2-order identity matrix.
σi and si (i = 1, 2, 3) are Pauli matrices. The band structures
are shown in Figs. 1(a) and 1(b) with a pair of Weyl points
located at (0.84, 0,±0.59), and the surface Fermi arc states
are shown in Figs. 1(c) and 1(d) with (100) and (010) surfaces,
respectively. The energy dispersions around the Weyl points
in the kx-kz plane is slightly tilted. This feature is essential
for linear magnetoconductivity according to previous studies
[23,24,47]. The present lattice model holds the glide plane G
consisting of a mirror in the xy plane and a half-translation
along the x axis. The Hamiltonian under the glide plane G
yields the relation

GkHkG−1
k = Hk′ , (4)

where k′ = (kx, ky,−kz ) and Gk = e−ikx/2σ1s0. The re-
lated Berry curvature and group velocity satisfy �k′ =
(−�x

k,−�
y
k,�

z
k) and vk′ = (vx

k, v
y
k,−vz

k).

FIG. 2. The angular dependence of the longitudinal magnetocon-
ductivity (
σ = σ − σ(B=0)) and Hall conductivities for the lattice
model given by Eq. (3). In panels (a)–(c), the magnetic and electric
fields are in the xy, yz, and xz planes, respectively, with B = 4 T. All
conductivities are computed with the Fermi energy of EF = 0.02 eV
and are normalized by the longitudinal conductivity along the z di-
rection without a magnetic field (σ 0). Note that the nonzero intrinsic
anomalous Hall effect contribution σzx is ignored in panel (c), since
it is independent of magnetic field.

The magnetoconductivities are computed based on this
lattice model using Eqs. (1) and (2) with T = 25 K. The de-
pendence of conductivity on the magnetic field B is discussed
from two aspects: its direction and amplitude.

The longitudinal and Hall conductivity in xy, yz, and xz
planes as functions of the angle θ between the magnetic and
electric fields are calculated and plotted in Figs. 2(a)–2(c).
When the magnetic field is in the xy plane, the in-plane mag-
netoconductivity shown in Fig. 2(a) displays sine or cosine
oscillations with a period of π . The vanishing of linear terms
meets the requirements of glide symmetry. Compared with
the leading terms listed in Table II, the calculated σxx and
σyy only display a cos 2θ dependence without the sin 2θ part,
whereas the σyx only show sin 2θ dependence without the
cos 2θ part. This is guaranteed by an additional symmetry
composed of time reversal and a mirror in the yz plane. When
the magnetic field is in the yz or xz plane, both the longitudinal
conductivity and the Hall conductivity have a period of 2π , as
shown in Figs. 2(b) and 2(c). This completely conforms to the
symmetry requirements listed in Table II.

The magnetoconductivity as a function of B is shown in
Fig. 3, where the angle θ is set to be zero (or π/4) in the longi-
tudinal (or Hall) conductivity calculations as typical examples
[24]. The magnetoconductivity σyx, σyy, and σxx quadratically
depend on B, whereas σzy, σzx, and σzz show a linear depen-
dence on B. According to the symmetry analysis in the last
section, the glide plane in the xy plane eliminates all the linear
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FIG. 3. The longitudinal conductivity (B ‖ E) and the Hall con-
ductivity (θ = π/4) as functions of the magnetic-field amplitude B
for the lattice model given by Eq. (3). (a) The computed σzy, σzx , and
σyx show a linear dependence on the magnetic field B. (b) σyx , σyy,
and σxx show a quadratic dependence on B.

parts of the in-plane longitudinal and Hall magnetoconduc-
tivity. Therefore, we can see that the numerical results are in
agreement with the symmetry analysis. These semiclassical
numerical results quantitatively prove that the basic behavior
of magnetoconductivity can be successfully predicted by our
spatial symmetry analyses.

Having discussed the PHE in bulk, we now extend the
discussion to quasi-two-dimensional transport which contains
the contribution of surface states. It is obvious that the glide
symmetry can be broken on the (100) slab by violating the
fractional transnational symmetry along the x direction. The
symmetry difference between the bulk and (100) slab remains
after applying the external magnetic field parallel to the z
direction. In this case, the magnetoconductivity in the (100)
slab is expected to have a distinct behavior compared with the
bulk transport [56]. In the bulk, the absence of σzy, shown in
Fig. 2(b), is owing to the preserved glide plane. Under the
glide plane operation, the electric current Jz changes sign and
the electric field Ey remains unchanged, which forces σzy to
be zero according to Jz = σzyEy. However, in the (100) slab,
the breaking of glide plane symmetry relaxes the constraint on
σzy, and the resultant σzy is allowed to have nonzero values at
θ = π/2 and 3π/2.

To prove our arguments and further explore the contribu-
tion of surface states, we study the planar Hall conductivity
σzy in slabs with increasing layer thickness by employing
Kubo-Streda formula [68–70], in which the interband transi-
tion could be properly taken into account. The magnetic field
is handled by the standard Peierls substitution implemented
with a magnetic supercell. The conductivities are evaluated
with a finite electron lifetime broadening approximation to
the Green’s function [71]. Figure 4(a) shows the dependence
of σzy on the number of layers n where the magnetic field is
parallel to the z direction. When the slab is thicker than 10

FIG. 4. The calculated in-plane magnetoconductivity in (100)
slab. (a) The Hall conductivity σzy and (b) the longitudinal con-
ductivity σyy as functions of the number of layers n. θ = π/2 and
θ = 3π/2 represent the magnetic field along the z and −z direc-
tions, respectively. A 1 × 100 × 1 magnetic supercell is employed to
implement the z-direction magnetic field during the magnetoconduc-
tivity calculations based on Kubo-Streda formula. The conductivities
are evaluated with Green’s functions broadened by a finite electron
lifetime τ = 6.58 × 10−14 s.

layers, σzy converges to a nonzero value, indicating that the
bulk state does not contribute to the planar Hall conductivity.
The longitudinal conductivity σyy is computed and plotted in
Fig. 4(b) for comparison. σyy increases linearly with n after
σzy has already converged. What is more, the increasing rate
of σyy on thickness exactly matches the value of conductivity
in bulk. Therefore, the linear increase of σyy originates from
the increase of bulk states, and in turn the converged σzy

should be attributed to surface contributions. In this way, glide
symmetry breaking enables a pure surface transport.

IV. CONCLUSIONS

To summarize, we have demonstrated the influence of
spatial symmetry in the PHE of Weyl semimetals. The
symmetry analysis clearly shows that the odd terms of mag-
netoconductivity, including its linear part, vanish in the plane
perpendicular to the rotation axis under C2 or C2 combined
symmetry operations including mirror, twofold screw rota-
tion, and glide plane. If the C2 or C2 combined symmetry
is absent in a time-reversal-breaking system, a significant
linear magnetoconductivity is allowed by the chiral anomaly
and Berry curvature effect. It is then examined by our nu-
merical results based on a lattice model preserving glide
symmetry.

We further studied the magnetoconductivity in the quasi-
two-dimensional slab, which contains the contribution of
surface states. When the magnetic field is perpendicular to the
glide plane, the planar Hall conductivity is found to be zero
in bulk, whereas it is nonzero in the slab with broken glide
symmetry. This distinct behavior between bulk and quasi-two-
dimensional systems provides a signature to distinguish the
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surface contributions to magnetoconductivity and paves a way
to explore the surface Fermi arc states in Weyl semimetals.
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Fedorov, R. Zhong, J. Schneeloch, G. Gu, and T. Valla, Nat.
Phys. 12, 550 (2016).

[21] Q. Li and D. E. Kharzeev, Nucl. Phys. A 956, 107 (2016).
[22] S.-K. Yip, arXiv:1508.01010.
[23] V. A. Zyuzin, Phys. Rev. B 95, 245128 (2017).
[24] S. Nandy, G. Sharma, A. Taraphder, and S. Tewari, Phys. Rev.

Lett. 119, 176804 (2017).
[25] A. A. Burkov, Phys. Rev. B 96, 041110(R) (2017).

[26] N. Kumar, S. N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B
98, 041103(R) (2018).

[27] P. Li, C. H. Zhang, J. W. Zhang, Y. Wen, and X. X. Zhang, Phys.
Rev. B 98, 121108(R) (2018).

[28] S. Liang, J. Lin, S. Kushwaha, J. Xing, N. Ni, R. J. Cava, and
N. P. Ong, Phys. Rev. X 8, 031002 (2018).

[29] R. Singha, S. Roy, A. Pariari, B. Satpati, and P. Mandal, Phys.
Rev. B 98, 081103(R) (2018).

[30] M. Wu, G. Zheng, W. Chu, Y. Liu, W. Gao, H. Zhang, J. Lu,
Y. Han, J. Zhou, W. Ning, and M. Tian, Phys. Rev. B 98,
161110(R) (2018).

[31] H. Li, H.-W. Wang, H. He, J. Wang, and S.-Q. Shen, Phys. Rev.
B 97, 201110(R) (2018).

[32] F. C. Chen, X. Luo, J. Yan, Y. Sun, H. Y. Lv, W. J. Lu, C. Y.
Xi, P. Tong, Z. G. Sheng, X. B. Zhu, W. H. Song, and Y. P. Sun,
Phys. Rev. B 98, 041114(R) (2018).

[33] J. Ge, D. Ma, Y. Liu, H. Wang, Y. Li, J. Luo, T. Luo, Y. Xing,
J. Yan, D. Mandrus, H. Liu, X. C. Xie, and J. Wang, Natl. Sci.
Rev. 7, 1879 (2020).

[34] C. Goldberg and R. E. Davis, Phys. Rev. 94, 1121 (1954).
[35] V. D. Ky, Phys. Status Solidi B 26, 565 (1968).
[36] K. M. Seemann, F. Freimuth, H. Zhang, S. Blügel, Y.

Mokrousov, D. E. Bürgler, and C. M. Schneider, Phys. Rev.
Lett. 107, 086603 (2011).

[37] A. A. Taskin, H. F. Legg, F. Yang, S. Sasaki, Y. Kanai, K.
Matsumoto, A. Rosch, and Y. Ando, Nat. Commun. 8, 1340
(2017).

[38] G. Yin, J.-X. Yu, Y. Liu, R. K. Lake, J. Zang, and K. L. Wang,
Phys. Rev. Lett. 122, 106602 (2019).

[39] N. Wadehra, R. Tomar, R. M. Varma, R. K. Gopal, Y. Singh,
S. Dattagupta, and S. Chakraverty, Nat. Commun. 11, 874
(2020).

[40] D. D. Liang, Y. J. Wang, W. L. Zhen, J. Yang,
S. R. Weng, X. Yan, Y. Y. Han, W. Tong, W. K.
Zhu, L. Pi, and C. J. Zhang, AIP Adv. 9, 055015
(2019).

[41] Q. Liu, F. Fei, B. Chen, X. Bo, B. Wei, S. Zhang, M. Zhang, F.
Xie, M. Naveed, X. Wan, F. Song, and B. Wang, Phys. Rev. B
99, 155119 (2019).

[42] J. Yang, W. L. Zhen, D. D. Liang, Y. J. Wang, X. Yan, S. R.
Weng, J. R. Wang, W. Tong, L. Pi, W. K. Zhu, and C. J. Zhang,
Phys. Rev. Mater. 3, 014201 (2019).

[43] J. Meng, H. Xue, M. Liu, W. Jiang, Z. Zhang, J. Ling, L. He,
R. Dou, C. Xiong, and J. Nie, J. Phys.: Condens. Matter 32,
015702 (2020).

[44] D. Rakhmilevich, F. Wang, W. Zhao, M. H. W. Chan, J. S.
Moodera, C. Liu, and C.-Z. Chang, Phys. Rev. B 98, 094404
(2018).

075131-6

https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1126/science.1256742
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1103/PhysRevB.91.245157
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/nphys3648
https://doi.org/10.1016/j.nuclphysa.2016.03.055
http://arxiv.org/abs/arXiv:1508.01010
https://doi.org/10.1103/PhysRevB.95.245128
https://doi.org/10.1103/PhysRevLett.119.176804
https://doi.org/10.1103/PhysRevB.96.041110
https://doi.org/10.1103/PhysRevB.98.041103
https://doi.org/10.1103/PhysRevB.98.121108
https://doi.org/10.1103/PhysRevX.8.031002
https://doi.org/10.1103/PhysRevB.98.081103
https://doi.org/10.1103/PhysRevB.98.161110
https://doi.org/10.1103/PhysRevB.97.201110
https://doi.org/10.1103/PhysRevB.98.041114
https://doi.org/10.1093/nsr/nwaa163
https://doi.org/10.1103/PhysRev.94.1121
https://doi.org/10.1002/pssb.19680260220
https://doi.org/10.1103/PhysRevLett.107.086603
https://doi.org/10.1038/s41467-017-01474-8
https://doi.org/10.1103/PhysRevLett.122.106602
https://doi.org/10.1038/s41467-020-14689-z
https://doi.org/10.1063/1.5094231
https://doi.org/10.1103/PhysRevB.99.155119
https://doi.org/10.1103/PhysRevMaterials.3.014201
https://doi.org/10.1088/1361-648X/ab4464
https://doi.org/10.1103/PhysRevB.98.094404


SPATIAL SYMMETRY MODULATION OF PLANAR HALL … PHYSICAL REVIEW B 107, 075131 (2023)

[45] P. Li, C. Zhang, Y. Wen, L. Cheng, G. Nichols, D. G. Cory,
G.-X. Miao, and X.-X. Zhang, Phys. Rev. B 100, 205128
(2019).

[46] Q. R. Zhang, B. Zeng, Y. C. Chiu, R. Schönemann, S. Memaran,
W. Zheng, D. Rhodes, K.-W. Chen, T. Besara, R. Sankar, F.
Chou, G. T. McCandless, J. Y. Chan, N. Alidoust, S.-Y. Xu, I.
Belopolski, M. Z. Hasan, F. F. Balakirev, and L. Balicas, Phys.
Rev. B 100, 115138 (2019).

[47] D. Ma, H. Jiang, H. Liu, and X. C. Xie, Phys. Rev. B 99, 115121
(2019).

[48] A. Cortijo, Phys. Rev. B 94, 241105(R) (2016).
[49] Y.-W. Wei, C.-K. Li, J. Qi, and J. Feng, Phys. Rev. B 97, 205131

(2018).
[50] K. Das and A. Agarwal, Phys. Rev. B 99, 085405 (2019).
[51] A. Kundu, Z. B. Siu, H. Yang, and M. B. A. Jalil, New J. Phys.

22, 083081 (2020).
[52] V. A. Zyuzin, Phys. Rev. B 104, L140407 (2021).
[53] H. Tan, Y. Liu, and B. Yan, Phys. Rev. B 103, 214438

(2021).
[54] A. C. Potter, I. Kimchi, and A. Vishwanath, Nat. Commun. 5,

5161 (2014).
[55] P. Baireuther, J. A. Hutasoit, J. Tworzydło, and C. W. J.

Beenakker, New J. Phys. 18, 045009 (2016).
[56] G. Chang, J.-X. Yin, T. Neupert, D. S. Sanchez, I. Belopolski,

S. S. Zhang, T. A. Cochran, Z. Chéng, M.-C. Hsu, S.-M. Huang,
B. Lian, S.-Y. Xu, H. Lin, and M. Z. Hasan, Phys. Rev. Lett.
124, 166404 (2020).

[57] B. Jiang, L. Wang, R. Bi, J. Fan, J. Zhao, D. Yu, Z. Li, and X.
Wu, Phys. Rev. Lett. 126, 236601 (2021).

[58] L. Onsager, Phys. Rev. 37, 405 (1931).
[59] L. Onsager, Phys. Rev. 38, 2265 (1931).
[60] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[61] K.-S. Kim, H.-J. Kim, and M. Sasaki, Phys. Rev. B 89, 195137

(2014).
[62] Y. Choi, J. W. Villanova, and K. Park, Phys. Rev. B 101, 035105

(2020).
[63] E. Liu et al., Nat. Phys. 14, 1125 (2018).
[64] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D.

Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681
(2018).

[65] T. Liang, J. Lin, Q. Gibson, S. Kushwaha, M. Liu, W. Wang,
H. Xiong, J. A. Sobota, M. Hashimoto, P. S. Kirchmann,
Z. X. Shen, R. J. Cava, and N. P. Ong, Nat. Phys. 14, 451
(2018).

[66] H. Kim and S. Murakami, Phys. Rev. B 93, 195138 (2016).
[67] C. Fang and L. Fu, Phys. Rev. B 91, 161105(R) (2015).
[68] P. Streda, J. Phys. C: Solid State Phys. 15, L717 (1982).
[69] L. Smrcka and P. Streda, J. Phys. C: Solid State Phys. 10, 2153

(1977).
[70] N. A. Sinitsyn, J. E. Hill, H. Min, J. Sinova, and A. H.

MacDonald, Phys. Rev. Lett. 97, 106804 (2006).
[71] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).

075131-7

https://doi.org/10.1103/PhysRevB.100.205128
https://doi.org/10.1103/PhysRevB.100.115138
https://doi.org/10.1103/PhysRevB.99.115121
https://doi.org/10.1103/PhysRevB.94.241105
https://doi.org/10.1103/PhysRevB.97.205131
https://doi.org/10.1103/PhysRevB.99.085405
https://doi.org/10.1088/1367-2630/aba98d
https://doi.org/10.1103/PhysRevB.104.L140407
https://doi.org/10.1103/PhysRevB.103.214438
https://doi.org/10.1038/ncomms6161
https://doi.org/10.1088/1367-2630/18/4/045009
https://doi.org/10.1103/PhysRevLett.124.166404
https://doi.org/10.1103/PhysRevLett.126.236601
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevB.89.195137
https://doi.org/10.1103/PhysRevB.101.035105
https://doi.org/10.1038/s41567-018-0234-5
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1038/s41567-018-0078-z
https://doi.org/10.1103/PhysRevB.93.195138
https://doi.org/10.1103/PhysRevB.91.161105
https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1088/0022-3719/10/12/021
https://doi.org/10.1103/PhysRevLett.97.106804
https://doi.org/10.1103/RevModPhys.82.1539

