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Fate of the reentrant localization phenomenon in the one-dimensional dimerized
quasiperiodic chain with long-range hopping
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Recently, the exciting reentrant localization transition phenomenon was found in a one-dimensional dimerized
lattice with staggered quasiperiodic potentials. Usually, long-range hopping is typically important in actual
physical systems. In this work, we study the effect of next-nearest neighbor hopping (NNNH) on the reentrant
localization phenomenon. Due to the presence of NNNH, the broken chiral symmetry is further enhanced and
the localization properties of electron states in the upper and lower bands become quite different. It is found that
the reentrant localization can still persist within a range of NNNH both in Hermitian and non-Hermitian cases.
Eventually, the reentrant localization disappears as the strength of NNNH increases to some extent, since the
increasing NNNH weakens the dimerization of the system and destroys its competition with the quasiperiodic
disorder. Our work thus reveals the effect of long-range hopping in the reentrant localization phenomenon and
deepens its physical understanding.
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I. INTRODUCTION

As an important research topic in condensed matter
physics, Anderson localization has been extensively studied
since the pioneering work of Anderson [1,2]. In recent years,
the phenomenon of quantum particle localization, which is
directly related to their transport properties, has attracted ex-
tensive attention. Anderson localization describes the absence
of electron diffusion of electronic waves aroused by disorder
and predicts the metal-insulator transition due to quantum
interference of scattered electron wave functions [3–5], which
sparked widespread research interest in many systems, such as
cold atomic gases [4,6–12], quantum optics [13–17], acoustic
waves systems [18], etc. According to the scaling theory [19]
of Anderson localization, all the single-particle states will
be spatially exponentially localized by arbitrarily small ran-
dom (uncorrelated) disorders in one- and two-dimensional
systems. In the three-dimensional systems, both extended and
localized states can coexist with disorders and an energy-
dependent mobility edge distinguishing the localized region
from the delocalized region that appears at the phase bound-
ary. Compared to randomly disordered lattices, quasiperiodic
systems are located at the interface between long-range
ordered and disordered systems, which provides a unique op-
portunity to explore localization transitions. The most typical
example is the Aubry-André-Harper (AAH) model [20,21],
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which hosts an energy-independent localization transition
and has been widely investigated in optical and atomic sys-
tems [4,5,22,23]. In this model, all eigenstates change from
extended to localized over a critical quasiperiodic amplitude
because of its self-dual symmetry [20,24,25]. However, many
generalized AAH models [26–31] exhibit accurate energy-
dependent mobility edges [27,28,32–38] when long-range
hopping terms [30,38–44] or modified quasiperiodic poten-
tials are introduced. These accurate mobility edges are helpful
for a better understanding of Anderson localization in one-
dimensional quasicrystals.

Lately, the interplay of non-Hermiticity and disorder has
received a lot of research attention. For a non-Hermitian
system, the non-Hermiticity can be generally obtained by
introducing nonreciprocal hopping terms or gain and loss
potentials, which are found in open systems exchanging en-
ergy or particles with the environment. Consequently, lots of
exotic phenomena have been found that do not exist in the
traditional Hermitian systems, such as non-Hermitian skin ef-
fect [45–53], exceptional points [54–57], and exotic transport
features [58–64]. On the spectral side, if the system is in the
PT symmetry phase [65–67], the energy spectrum can still
be purely real. However, when the non-Hermitian parameter
exceeds the exceptional points, the PT symmetry is broken,
resulting a real-to-complex transition in the energy spectrum.
This has attracted widespread research attention in the fields
of topolectrical (TE) circuits [68–74], acoustics [75–77], ul-
tracold atoms [34–38,78,79], disordered systems [80–82], etc.

More recently, a interesting reentrant localization phe-
nomenon in one-dimensional quasiperiodic disordered sys-
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FIG. 1. Schematic plot of the modulated AAH model
with next-nearest neighbor hopping terms, each unit cell
consists of two sublattices A and B. t1, t2, and t3 represent
intracell, intercell and next-nearest neighbor hopping strengths,
respectively. Parameter α denotes the asymmetric hopping
strength.

tems has been found and studied in both Hermitian and
non-Hermitian cases [83–85]. This nontrivial reentrant fea-
ture and corresponding single-particle mobility edge (SPME)
can be attributed to the competition between the hopping
dimerization and the staggered disorder. During this process,
some already localized states become extended again as the
strength of staggered quasiperiodic potential increases. This
result in two localization transitions until all the states are fi-
nally completely localized. Usually, long-range hopping plays
a significant role in the actual physical systems [86–88].
For example, long-range hopping is important to generate
the mobility edge and Anderson localization [39,89]. Then
the natural question arises: What is the fate of the reen-
trant localization transition in a 1D quasiperiodic system with

long-range hopping? To simplify the model and facilitate
research, next-nearest neighbor hopping (NNNH) is intro-
duced in three kinds of generalized AAH chains with
staggered quasiperiodic potential. In this work, we showed
that increasing NNNH impairs the dimerization of the SSH
chain and destroys its competition with the quasiperiodic dis-
order. When the strength of NNNH reaches some value, the
reentrant phenomenon disappears. To confirm our findings,
we investigated the eigenenergy spectrum and participation
ratios in this work and showed that the introduction of
long-range interactions has a great impact on the reentrant
localization transitions.

This paper is organized as follows. In Sec. II, we intro-
duced the model based on a generalized AAH quasiperiodic
chain and calculated the corresponding significant physical
quantities that can be used to unveil the spectral, localiza-
tion, and topological transitions and mobility edges in the
quasiperiodic systems. The numerical results and discussions
are presented in Sec. III, in which we calculate the eigenen-
ergy spectrum and participation ratios for three different cases
to confirm our findings. Finally, a brief summary is given in
Sec. IV.

II. MODEL AND APPROACH

We study the following one-dimensional tight-binding
model with on-site quasiperiodic potential as shown in Fig. 1,

Ĥ = t1

N∑
n=1

(
eα ĉ†

n,Bĉn,A + e−α ĉ†
n,Aĉn,B

) + t2

N−1∑
n=1

(
eα ĉ†

n+1,Aĉn,B + e−α ĉ†
n,Bĉn+1,A

)

+ t3

N−2∑
n=1

(
eα ĉ†

n+1,Aĉn,A + e−α ĉ†
n,Aĉn+1,A + eα ĉ†

n+1,Bĉn,B + e−α ĉ†
n,Bĉn+1,B

)

+
∑

n

VAn̂n,Acos[2πβ(2n − 1) + i�] +
∑

n

VBn̂n,Bcos[2πβ(2n) + i�], (1)

where n represents the unit cell index, the length of chain is
L = 2N , and ĉ†

n,A/B (ĉn,A/B) are creation (annihilation) opera-
tors corresponding to A or B sublattice denoted by (n, A) and
(n, B). The particle number operators on related sites are n̂n,A

and n̂n,B. Here, intra- and intercell hopping strengths are repre-
sented by t1 and t2, and t3 represents the next-nearest neighbor
hopping strength. Parameters VA and VB are the strength of the
onsite quasiperiodic potentials at sublattices A and B. β deter-
mines the period of quasiperiodic potential. Here we introduce
the staggered potential in the sublattice by assuming VA =
−VB = V . It should be noted that the nonreciprocal strength
α and the complex phase factor i� contribute to the non-
Hermiticity in this model. In the quasiperiodic potential term,
we take the irrational number defined as β = limm→∞( Fm−1

Fm
),

where {Fm} are the Fibonacci numbers [90,91]. In our work,
we chose β = (

√
5 − 1)/2 as a Diophantine number [92].

Specifically, for most case we set L = 610, t1 = 1 and the pe-
riodic boundary condition (PBC) unless otherwise mentioned.
In the following, the reentrant localization phenomenon in
three different cases are studied, which are listed in Table I.

In Subsec. III A, a Hermitian system with α = 0,� = 0 is
studied. In Subsecs. III B and III C, the numerical results and
discussion of non-Hermitian systems with nonzero asymmet-
ric hopping strength α or complex onsite potential i� are
presented, respectively.

In most cases, the inverse participation ratio (IPR) and
normalized participation ratio (NPR) [38,93] are used to

TABLE I. The different nonreciprocal and complex phase factors
on reentrant localization transitions is discussed for three Hamilto-
nian cases, i.e., M1, M2, and M3. α is the nonreciprocal strength for
asymmetric hopping terms. i� denotes the complex phase factor in
the quasiperiodic potential.

Model Nonreciprocal strength Complex phase factor

M1 α = 0 � = 0
M2 α �= 0 � = 0
M3 α = 0 � �= 0
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TABLE II. A convenient operational definition to distinguish
three different localization phases in a 1D single-particle Hamilto-
nian. Here L is the size of the system.

Localized phase 〈IPR〉 ∼ O(1) and 〈NPR〉 ∼ L−1

Extended phase 〈IPR〉 ∼ L−1 and 〈NPR〉 ∼ O(1)
Intermediate phase 〈IPR〉 ∼ O(1) and 〈NPR〉 ∼ O(1)

identify localized and extended states in the system, which
are defined as

IPRi =
∑L

n=1

∣∣ψ i
n

∣∣4

[ ∑L
n=1

∣∣ψ i
n

∣∣2]2 , (2)

NPRi =
[

L
L∑

n=1

∣∣ψ i
n

∣∣4

]−1

, (3)

where ψ i
n is the eigenstate with the superscript i denoting the

ith eigenstate and n denotes the lattice.
Furthermore, by taking summation over all eigenstates, we

can obtain the IPR and NPR of the system

〈IPR〉 = 1

L

L∑
i=1

IPRi, (4)

〈NPR〉 = 1

L

L∑
i=1

NPRi, (5)

and η [93]

η = log10 [〈IPR〉〈NPR〉], (6)

to figure out whether the system is in the intermediate, fully
extended, or localized phases. For extended states, the 〈IPR〉
tends to be zero (finite) and the 〈NPR〉 tends to be finite (zero)
in the large L limit (localized states). Based on these, the
localization transitions can be identified. For convenience, the
typical orders of 〈IPR〉 and 〈NPR〉 in different regions have
been listed in Table II.

In order to more clearly exhibit the SPME, the fractal
dimension �i of the wave function is introduced as the probe
of the ith wave function’s localization character [2,38,94],

�i = − ln
(∑L

n=1

∣∣ψ i
n

∣∣4)
ln L

. (7)

Contrary to the IPRi mentioned above, the �i tends to be zero
for localized states and finite for extended states.

III. NUMERICAL RESULTS AND DISCUSSION

A. M1: Hermitian Hamiltonian

First of all, we study the system described by Hermitian
Hamiltonian M1 without considering the effect of nonrecip-
rocal strength and complex phase factor as shown in Table I.
After diagonalization, the energy spectrums with correspond-
ing �i are calculated and presented in Fig. 2. When there
is no next-nearest neighbor hopping (NNNH), the energy
spectrum given in Fig. 2(a). Since �i changes from 1 to 0
as the quasiperiodic potential V increases from 0 around 2.5,
we can know that all extended states are gradually localized.

FIG. 2. The energy spectrum vs quasiperiodic modulation ampli-
tude V for the system with t1 = 1, t2 = 2.4. (a) t3 = 0, (b) t3 = 0.5,
(c) t3 = 0.62, (d) t3 = 1. The color map shows �i associated with the
ith eigenstate.

There exists a critically intermediate region with the coexis-
tence of both extended and localized states separated by the
SPME. As V further continues to increase, the upper bands
and lower bands touch and some localized states become ex-
tended again with V 	 2.5. Thus another critical region with
SPME emerges, which is the reentrant phenomenon discov-
ered recently [83]. However, by introducing the next-nearest
neighbor hopping shown in Fig. 1, the broken chiral symmetry
is further enhanced, making the eigenenergy spectrum asym-
metric up and down. From Fig. 2(b), we can know that the
extended states of lower bands tend to be easier localized than
that of the upper bands as V increases for t3 = 0.5. More im-
portantly, the states of the lowest branch in upper bands persist
until V reaches the second critical region as the strength of
NNNH increases. Thus, there is only one critical region with
SPME left, which implies the disappearance of the reentrant
phenomenon with the introduction of long-range hopping.
Interestingly, it is found that the reentrant phenomenon reap-
pears when V 	 2.8 and t3 increases up to 0.62 in Fig. 2(c).
Clearly, as t3 further increases up to 1, there is no signature
of the reentrant phenomenon in Fig. 2(d). From the above,
we know that the reentrant phenomena can be eliminated by
introducing next-nearest hopping. However, this is not always
the case, and further investigations are needed. The quantity
η is usually used to distinguish the critically intermediated
region from fully extended and localized regions. From it,
one can easily know how many times the system enters the
intermediated regions to confirm the reentrant phenomena that
are found with energy spectrum calculations. Therefore, we
present the η in form of a phase diagram as shown in Fig. 3.
First of all, we can find that all eigenstates are extended when
the quasiperiodic potential is small. As the staggered potential
V increases, some originally extended states are localized,
forming a critical region where extended and local states coex-
ist in the phase diagram in V and t2 plane without considering
NNNH in Fig. 3(a). One can encounter the critical regime
twice for a range of t2 = [2.2, 3], which is indeed a reentrant
phenomenon. From Figs. 3(b) and 3(c), we can know that the
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FIG. 3. Phase diagrams of the Hermitian system in V and t2

plane for (a) t3 = 0, (b) t3 = 0.2, (c) t3 = 0.5. Phase diagrams of
the Hermitian system for in V and t3 plane for (d) t2 = 2.4. Color
bar represents the value of η. Note that the extended and localized
phases are represented by dark blue regions, and the brilliant yellow
region shows the intermediate phase with SPME.

range of t2 presenting reentrant phenomenon shrinks as the
increase of NNNH. In particular, the reentrant phenomenon
with t2 = 2.4 disappears when t3 � 0.2, which is consistent
with energy spectrum analysis. To clarify the effect of NNNH,
we plot the phase diagram in the V -t3 plane in Fig. 3(d). As
the NNNH increases, it can be seen that two critical regions
merge beyond a critical point δc2 ≈ 0.23. This confirms what
we find in the energy spectrum calculations. In the meanwhile,
the additional lobe of the intermediate phase appears again
and soon fades away in some narrow parameter intervals for
t3 ∈ (0.56, 0.66), which is also shown in the energy spectrum
calculations. As can be seen, the reentrant feature vanished
eventually in the one-dimensional staggered quasiperiodic
generalized AAH lattice with the introduction of long-range
hopping. To further verify the effect of NNNH on the dis-
appearance of reentrant localization, we perform finite-size
calculations for different system sizes when NNNH is fixed. It
is found that η decreases as the system size increases in both
extended and localized regions in Fig. 4. Instead, only one
intermediate region is more notable. This clearly indicates the
stability of the NNNH effect on reentrant phenomenon.

B. M2: Non-Hermitian Hamiltonian with asymmetric couplings

The reentrant localization transition could also exist in
the non-Hermitian system by adjusting the strength of asym-
metric hopping between different lattices. In this section, we
investigate a non-Hermitian Hamiltonian M2 corresponding
to a one-dimensional generalized AAH quasiperiodic lattice
with asymmetric coupling as shown in Table I.

To identify the effect of long-range hopping on the reen-
trant localization transition, we first calculate the real and
imaginary parts of the eigenenergies and their associated �i as
functions of V . As shown in Fig. 5(a), there exist two separate
intermediate regions with mobility edges where the extended

FIG. 4. η vs V for different system sizes L =
1974, 2584, 3194, 5158, 8362, 13530 with t1 = 1, t2 = 2.4, t3 = 1.

states and localized states coexist. Similar to the Hermitian
case, some already localized states become extended again
and then localized finally, a phenomenon known as reentrant
localization. Combined with the imaginary part of the energy
spectrum in Fig. 5(c), it is found that the complex to real, real
to complex, and complex to real transitions in the spectrum all
coincide with the localization transitions [84]. In addition, the
imaginary parts of the eigenenergies vanish completely within
each localized phase. Moreover, the introduction of t3 will also
affect the chiral symmetry and modified the eigenenergy spec-
trum as shown in Fig. 5(b). By analyzing the energy spectrum
with the encoded η, more extended states tend to be distributed
in the upper band and two nonadjacent red extended regions
in the upper band merge together. As a consequence, the
reentrant feature vanishes, and only one intermediate phase
with the mobility edge is preserved in Fig. 5(b). From the

FIG. 5. The real and imaginary parts of energy spectrum vs the
strength of quasiperiodic potential V for the system with t1 = 1, t2 =
4, α = 0.25. Here [(a), (c)] t3 = 0.25 and [(b), (d)] t3 = 0.65, respec-
tively. The color map shows �i associated with the ith eigenstate.
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FIG. 6. Phase diagram of the system in V and t2 plane with non-
Hermitian staggered quasiperiodic disorder for (a) t3 = 0, (b) t3 =
0.4, (c) t3 = 0.6. (d) Phase diagrams of the non-Hermitian system
in V and t3 plane for t2 = 4. Color bar indicates different values of
η, the extended and localized phases are represented by dark blue
regions, and the brilliant yellow region shows the intermediate phase
with mobility edges. Here α = 0.25, t1 = 1.

imaginary part of the energy spectrum in Fig. 5(d), we can
know that there are no real to complex and complex to real
transitions anymore.

To investigate the localization behavior of the system,
we further investigate the quantity η as a phase diagram in
Fig. 6. With the presence of asymmetric hopping, the region
of SPME is expanded. Similar to the Hermitian case, there
are also two critical regions when t2 is between 3.56 and 5.4,
which exactly indicates the existence of the reentrant local-
ization. More importantly, when the system is subjected to
appropriate NNNH strength [as shown in Figs. 6(b) and 6(c)],
this reentrant feature is absent with t2 = 4 while t3 � 0.4. To
verify the role of NNNH in non-Hermitian systems, we study
the phase diagram of η versus V and t3 by fixing t2 = 4. In
Fig. 6(d), two intermediate regions merge together when t3
exceeds a critical point δc3 ≈ 0.4, this is consistent with the
energy spectrum calculations presented in Fig. 5. In analogy
to the Hermitian system, the introduction of long-range hop-
ping would drive the reentrant localization to disappear when
asymmetric hopping is present. As illustrated in Fig. 6(a), as
compared to the phase diagram presented in Fig. 3(a) in the
Hermitian system, the parameter interval of t2 for which two
critical regions coexist is enlarged due to the introduction of
asymmetric hopping. However, phase diagrams in Figs. 6(b)
and 6(c) only show the disappearance of the second criti-
cal region in a fixed t3, but if the strength of t3 continues
to increase, this phenomenon will reappear. For this reason,
to find out whether this phenomenon completely disappears
in the V -t2 plane when the NNNH is present, we plot the
phase diagram for different NNNH strengths in Fig. 7. From
Figs. 7(a) and 7(b), we find for t3 = 0.8 and t3 = 1, even
though the second critical region is gradually shrinking, but it
still exists in the presence of NNNH. However, if the strength

FIG. 7. Phase diagrams in V -t2 plane for different strength of
NNNH. Here (a) t3 = 0.8, (b) t3 = 1, (c) t3 = 2, (d) t3 = 3, respec-
tively. The color bar indicates values of η; other parameters are the
same as those in Fig. 6(a).

of NNNH is large enough, such as t3 = 2 and t3 = 3, the reen-
trant localization eventually disappears as shown in Figs. 7(c)
and 7(d).

C. M3: Non-Hermitian Hamiltonian with complex phase factor

In general, the non-Hermiticity can also be achieved
by introducing the complex onsite potential or asymmetric
coupling in a non-Hermitian system. In this section, the non-
Hermiticity of the Hamiltonian is generated by a complex
onsite potential, satisfies Vn = V ∗

−n [85], and possesses the
PT symmetry, which shown in M3 of Table I. The local-
ization feature can be encoded in the energy spectrum with
the corresponding �i. In Fig. 8, we present the real parts
of the eigenvalue spectrum while the quasiperiodic potential
has a complex phase factor. Similar to the two cases men-
tioned above, in Fig. 8(a), the system will undergo a series
of reentrant localization transitions without NNNH. However,
by introducing the NNNH shown in Fig. 8(b), the band struc-
ture and corresponding localized (extended) states distribution
will be modified, and the dimerization of the system will
be weakened, resulting in the disappearance of the reentrant
feature with the participation of NNNH. In order to reveal
the localization behavior of the system more obviously, as

FIG. 8. The real parts of the eigenvalue spectra vs V for the
system with (a) t3 = 0, (b) t3 = 0.5. Here other model parameters
are � = 0.05 and t2 = 2.2. The color bar indicates values of �i.
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FIG. 9. Phase diagram of the non-Hermitian system in V and �

plane for (a) t3 = 0, (b) t3 = 0.1, (c) t3 = 0.3, respectively. (d) Phase
diagram in V and t3 plane for � = 0.05. The color bar indicates
different values of η. Here t1 = 1, t2 = 2.2.

illustrated in Fig. 9(a), we present the phase diagram in the
V -� plane using the numerical calculation of η. At first,
when � � 0.036 and without NNNH, there are two critical
regions that represent the reentrant localization. But if the
complex phase factor � continues to increase, there exist
the multiple intermediate phases for � = [0.036, 0.18] and
the system undergoes multiple localization transitions. How-
ever, while the strength of � is large enough, the top branch
eventually decays. Finally, only one intermediate phase will
remain, and the reentrant property will be lost. In sum-
mary, the introduction of long-range hopping can eliminate
the reentrant phenomenon in above cases. To investigate
whether the introduction of NNNH would also kill this feature
with the complex phase factor, in Figs. 9(b) and 9(c), we
present the phase diagram in the V -� plane for different
NNNH strengths. We observe that two critical regions merged
and the reentrant localization transition vanishes as the in-
crease of NNNH strength. Similar to the above result in
Figs. 3(d) and 6(d), after a critical point δc4 	 0.1, the reen-
trant feature at an exact complex phase factor will also vanish
by the increase of t3, as shown in Fig. 9(d). As a matter of fact,
due to the introduction of the NNNH, the reentrant property
will also fade away while the Hamiltonian is hosting a com-
plex on-site potential. From what we have mentioned above,
we can conclude that no matter what kind of case the system
is in in Table I, the introduction of long-range hopping will
finally eliminate reentrant localization in the different phase
diagrams. To confirm the multiple reentrant localization and
rule out the finite-size effects in Figs. 8 and 9(a). We compute
the η for different system sizes with fixed �. As the system
grows larger, four intermediate regions become particularly
distinct, as shown in Fig. 10(a), which definitely establishes
the stability of this behavior in the absence of NNNH. To
eliminate the multiple reentrant behaviors, we set t3 = 0.5 in
Fig. 10(b), which is identical to the prior approach. As ex-
pected, with the presence of NNNH, four intermediate phases

FIG. 10. The η plot as a function of V for L =
1974, 2584, 3194, 5158, 8362, 13530 from top to bottom for
(a) t3 = 0, (b) t3 = 0.5, respectively. Here other model parameters
are � = 0.05 and t2 = 2.2.

merged together and only one intermediate phase survived.
Moreover, computations under different system sizes support
the stability of this elimination behavior.

IV. DISCUSSION AND CONCLUSION

The reentrant physics of the non-Hermitian AAH model in
Eq. (1) can be simulated by electric circuits [69], which are
a powerful platform for investigating non-Hermitian and/or
topological phases [70]. Moreover, negative impedance con-
verters with current inversion (INIC) [72,74] can realize the
asymmetrical hopping amplitudes, and complex onsite po-
tentials can be simulated by grounding nodes with proper
resistors [71,73]. By measuring two-node impedances, the
energy spectrum could be obtained [68].

In conclusion, we have studied the localization transition in
a dimerized lattice with the staggered quasiperiodic disorder
for three different Hamiltonian cases, which are illustrated in
Table I. We discovered that no matter what kind of case the
system is, the introduction of long-range hopping will finally
eliminate reentrant localization in different phase diagrams,
beyond the critical values of t3, two separate intermediate
regions tend to merge together, and the result is shown as
M1–M3 cases in the main text. This can be attributed to the
fact that the increase of NNNH weakens the dimerization
of the SSH chain, thus destroying the competition between
dimerization and quasiperiodic disorder, which results in the
disappearance of reentrant localization transition and confirms
the irreplaceable importance of dimerization to generate the
reentrant phenomenon. On the other hand, while the non-
Hermiticity is introduced by the complex onsite potential
illustrated in M3, the increasing non-Hermitian parameter �

will also significantly remove the reentrant localization tran-
sition in a fixed hopping dimerization. All in all, the reentrant
phenomenon would be eliminated not only due to the intro-
duction of long-range hopping but to the increasing complex
phase factor. We confirm this finding by examining the partic-
ipation ratios, eigenspectra, and different phase diagrams in
the system.
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