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We investigate resonant inelastic x-ray scattering (RIXS) at the O K edge in insulating cuprates by means of
three methods: cluster perturbation theory (CPT), Hartree-Fock approximation (HFA), and exact diagonalization
(ED) method. We consider the three-band Hubbard model and show the overall momentum-dependence of the
Zhang-Rice singlet (ZRS) excitation and charge-transfer excitation by the CPT combining with the perturbation
scheme. A comparison of the RIXS spectra calculated using CPT and HFA reveals different momentum
dependencies through the changes in the properties of the upper Hubbard band and the ZRS band. These findings
are supported by analyses using the ED method on the RIXS spectra and dynamical charge structure factor.
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I. INTRODUCTION

The development of high-brilliance synchrotron radiation
sources has highlighted the importance of using resonant
x-ray inelastic scattering (RIXS) to study the physical prop-
erties of materials [1–4]. It is expected that analyses of the
electronic states of various materials exhibiting interesting
physical properties will develop through complementary mea-
surements of dynamical physical properties by using angle
resolved photoemission spectroscopy (ARPES) and neutron
scattering. RIXS research can be broadly classified into two
perspectives: one is elucidation of the dynamical physical
properties of novel materials [5–7]; the other is the study of
the RIXS process itself [8–11]. The study of fundamental
electron scattering processes continues to be an important
problem. RIXS is an indirect process with core-hole exci-
tation, in contrast to direct processes such as ARPES and
neutron scattering. A useful feature for analysis is that dif-
ferent substances will show the different RIXS spectra at the
x-ray absorption edges.

In particular, to clarify the latter perspective, it is very
important to study the characteristics of RIXS by using mate-
rials such as high-Tc cuprates as reference materials. For this
purpose, we decided to focus on O K-edge RIXS in high-Tc

cuprates, especially, charge responses such as charge-transfer
(CT) excitation and Zhang-Rice singlet (ZRS) excitation.
Here, the ZRS is a spin singlet state formed locally by two
holes in the O 2px,y and Cu 3dx2−y2 orbitals. It is considered
to be a quasiparticle in cuprate superconductors [12–16]. The
ZRS excitation is expected to be more clearly observable at
the O K edge than at other absorption edges owing to the
selective excitation of O 2p orbitals. Actually, the ZRS ex-
citation at the Cu K-edge RIXS is unclear, because it involves
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excitations of not only the Cu 3dx2−y2 orbital but also the other
3d orbitals [17–19].

In RIXS phenomena, an incident x-ray excites a core
electron to the valence band, and the subsequent relaxation
process emits a scattered x ray. Accordingly, the momentum
dependence of elementary excitation spectra can be obtained
by precisely measuring the changes in the x-ray’s energy
(� = ωi − ω f ) and momentum (Q = qi − q f ) in a wide range
of (Q,�) space. The momentum range of x rays is wide
enough to investigate the elementary excitations of solids in
the first Brillouin zone (BZ). RIXS has a noteworthy feature
of measuring finite-Q excitation spectra in contrast with op-
tical conductivity experiments measuring the excitations at
Q ∼ 0. Also, element-selective experiments can be performed
by tuning the incident x-ray’s energy to a specific atomic
transition. In O K-edge RIXS, a soft x-ray resonantly excites
an electron from the O 1s orbital to the O 2px,y orbital. The
momentum of the soft x-ray covers about 40% of the BZ.
Subsequently, the locally excited electron perturbs the elec-
tronic structure, which can be interpreted as an insertion of a
test charge into the O 2p orbital. In this process, the strong
hybridization between the Cu 3dx2−y2 and O 2p orbitals leads
to the formation of the various excited states. For example, a
ZRS and a doublon (a doubly occupied state of the Cu 3dx2−y2 ,
d10) can be simultaneously excited on adjacent plaquettes
by an electron hopping from an O 2p orbitals to one of the
surrounding Cu 3dx2−y2 orbitals [20]. This process is described
by |d9; d9〉 → |d9, ZRS; d10〉; we call it ZRS excitation in this
paper. Previous studies have shown that the O K-edge RIXS
in insulating cuprates can also be used to study bimagnon
and d-d excitations besides ZRS excitation and CT excitation
[16,20–31].

The exact diagonalization (ED) method has been used
to study the RIXS spectra of various strongly correlated
materials [31–37] because it can accurately take into ac-
count electronic correlations and core-hole potentials in the
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complicated RIXS processes. Application of the ED method
is, however, restricted to a small number of lattice sites or
simple models such as the single-band Hubbard model. Thus,
the momentum dependence of the O K-edge RIXS spectra of
insulating cuprates, which requires a model with oxygen sites
in addition to copper sites, remains unclear.

In this study, we use the diagrammatic perturbative method
developed by Nomura and Igarashi [38–40] to calculate the
O K-edge RIXS spectra in the three-band Hubbard model
[15,41–43] in the insulating phase. Here, the one-particle
Green’s functions used to evaluate the RIXS diagrams are
calculated within the framework of cluster perturbation theory
(CPT) [44,45]. CPT is a cluster method that can compute
one-particle Green’s function of multiorbital systems. This
combination gives the overall momentum-dependence of the
ZRS excitation and the CT excitation. We also evaluate the
RIXS diagrams using Green’s functions based on the Hartree-
Fock approximation (HFA) instead of CPT. We discuss the
effects of electronic correlations by comparing the results of
these two methods. We also use the ED method to check
whether the local correlation is sufficiently incorporated in the
calculation based on CPT.

The rest of this paper is organized as follows. In Sec. II,
we give a model Hamiltonian that can describes the process
of O K-edge RIXS, and briefly introduce the three differ-
ent methods to calculate RIXS spectra. In Sec. III A, we
show the RIXS spectra based on CPT, and reveal the overall
momentum-dependence of the ZRS excitation and the CT
excitation. In Sec. III B, we analyze a small 2 by 2 cluster by
using the ED method and the Kramers-Heisenberg formula.
In Sec. III C, we show the electronic structure and the RIXS
spectra based on the HFA. We also discuss the effect of elec-
tron correlations on the RIXS spectra by comparing results
based on CPT and based on the HFA. Finally, we summarize
our results.

II. MODEL

We will use the d p Hamiltonian to examine the RIXS
spectra at the O K edge. The 3dx2−y2 and 2px,y orbitals are
taken account at each Cu and O sites, respectively, in two-
dimensional CuO2 plane. The Hamiltonian is divided into a
one-body part (H0) and a interaction part (HU ) as

Hd p = H0 + HU . (1)

The explicit forms are given by

H0 = εd
∑

iσ

d†
iσ diσ + εp

∑
iασ

p†
i+ασ pi+ασ

+
∑

iσ

t d pd†
iσ (pi+xσ − pi+yσ − pi−xσ + pi−yσ ) + H.c.

+
∑

iσ

t pp(p†
i+yσ − p†

i−yσ )(pi−xσ − pi+xσ ) + H.c., (2)

and

HU = U d
∑

i

nd
i↑nd

i↓ + U p
∑

iα

np
i+α↑np

i+α↓. (3)

Here, we have introduced the creation (annihilation) operators
d†

iσ (diσ ) of the 3dx2−y2 electron with spin σ (=↑,↓) at site

FIG. 1. Schematic illustration of the CuO2 plane, and the orbitals
and hopping integrals in Hd p [Eq. (1)] in the electron picture. The
shaded parts indicate that the wave functions are negative.

i, and those p†
i±ασ (pi±ασ ) of the 2pα electron with orbital

α(= x, y) and spin σ at site i ± α. The position operators at
site i and i ± α are ri and ri + aeα/2, respectively, where eα

is the unit vector along the α direction, and a is the lattice
constant. The number operators are defined by nd

iσ = d†
iσ diσ

and np
i+ασ = p†

i+ασ pi+ασ . At each oxygen site, we consider
either of the two O 2p orbitals forming the σ bonds with the
neighboring Cu 3dx2−y2 orbitals. We take the charge-transfer
energy in the calculation of the ED and CPT as ε p − εd =
1 eV. In the HFA, it is determined self-consistently and we set
εd + U d 〈nd〉 /2 − ε p = −0.5 eV, which roughly reproduces
the experimentally observed Mott gap energy.

A schematic view of the orbitals and transfer integrals
are shown in Fig. 1. In the intermediate state of the RIXS
processes, an O 1s core hole is created, to which the following
core-hole potential Hamiltonian is related:

Hc = εs
∑
iασ

s†
i+ασ si+ασ − Vc

∑
iα

np
i+αns

i+α, (4)

where s†
i+ασ (si+ασ ) is the creation (annihilation) operator

of the O 1s electron with spin s at site i + α, and ns
i+α =∑

σ s†
i+ασ si+ασ and np

i+α = ∑
σ np

i+ασ are the number opera-
tors. The second term represents the core-hole potential.

The interaction between electrons and photons causes the
O 1s → 2p transition, which is formulated within the dipole
approximation as

Hep =
∑
kλ

∑
iασ

wkαeik·ri+α eα
kλ p†

i+ασ si+ασ ckλ + H.c., (5)

where c†
kλ

(ckλ) is the creation (annihilation) operator of a
photon with momentum k and polarization λ(= 1, 2), ekλ is
the polarization vector, and wkα is the dipole matrix element.
For convenience, we introduce the dipole operator

hkλ =
∑
iαs

wkαeik·ri+α eα
kλ p†

i+αssi+αs, (6)

and we rewrite Hep as

Hep =
∑
kλ

hkλckλ + H.c.. (7)
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III. METHOD

We will investigate the RIXS spectra by means of the ED
method, CPT and the HFA. The ED method, when it is used in
combination with the Kramers-Heisenberg formula offers nu-
merically exact results, but has high computational costs. CPT
gives the one-particle Green’s functions as a good approxima-
tion of those in the thermodynamic limit. The RIXS diagrams
evaluated by CPT Green’s function have higher momentum
resolution than those of the ED method but the intermediate
states in the RIXS process are treated as perturbations. Finally,
in order to reveal how electronic correlations affect the RIXS
spectra, the one-particle Green’s functions can be calculated
within the standard HFA by assuming antiferromagnetic (AF)
order.

A. Kramers–Heisenberg formula

We consider x-ray scattering where the initial, intermedi-
ate, and final electronic states are given by |0〉, |m〉, and | f 〉,
with energies E0, Em, and E f , respectively, where |0〉 and E0

are the ground state and its energy, respectively. The incident
and scattered x-rays characterized by the frequency, momen-
tum and polarization are represented by [ωi(= c|ki|), ki, λi]
and [ω f (= c|k f |), k f , λ f ], respectively, where c is the speed
of light. Accordingly, the resonant x-ray scattering intensity is
given by the Kramers-Heisenberg formula [2,3,20]

IRIXS =
∑

f

∣∣∣∣∣
∑

m

〈 f |D†
f |m〉〈m|Di|0〉

E0 + ωi − Em + i	

∣∣∣∣∣
2

× δ(E0 + ωi − E f − ω f ), (8)

where

Di( f ) =
∑

jσ

eiki( f )·r j p†
j+eλi( f ) σ

s j+eλi( f ) σ
(9)

is the dipole operator describing the transition between the
O 2pλi( f ) and 1s orbitals, and 	 is the core hole damping
factor. Both D and Hep describe the dipole transition, but Hep

includes the matrix element of the 1s → 2p dipole transition.
In the same way, the x-ray absorption spectra are given by

IXAS = − 1

π
Im

〈
0

∣∣∣∣D†
i

1

E0 + ωi − Hpd − Hc + i	
Di

∣∣∣∣0
〉
. (10)

B. Perturbative approach based on Keldysh Green’s function

We will follow the formulation given in Refs. [38–40] for
the O K edge. The RIXS intensity can be calculated as the
transition probability per unit time from the initial electron
and photon states to the final ones,

Wk f λ f ;kiλi = lim
t0→∞

d

dt0
Pk f λ f ;kiλi (t0). (11)

The probability that a photon with momentum k f and polar-
ization λ f is found at time t0 is

Pk f λ f ;kiλi (t0) = 〈�|U (−∞, t0)c†
k f λ f

(t0)

× ck f λ f (t0)U (t0,−∞)|�〉, (12)

FIG. 2. Diagram for Wa given in Eq. (14). Solid lines represent
the Green’s function for the 2p and 1s electrons and wavy lines
represent those of photons.

where U (t, t ′) is the time-evolution matrix, and |�〉 =
c†

kiλi
|0〉 ⊗ |0〉ph with the vacuum state of photon |0〉ph. By

expanding U with respect to the electron-photon interaction
Hep in Eq. (5) up to second order, we have

Pk f λ f ;kiλi (t0) =
∫ t0

−∞
du

∫ u

−∞
dt

∫ t0

−∞
du′

∫ u′

−∞
dt ′

× 〈0|hkiλi (t
′)h†

k f λ f
(u′)h†

k f λ f
(u)hkiλi (t )|0〉

× eiωi (t ′−t )e−iω f (u′−u), (13)

where hkλ(t ) is the Heisenberg representation of hkλ.
Equation (11) with Eq. (13) is evaluated by the di-

agrammatic expansion in the Keldysh Green’s function
formalism. Here, we consider four diagrams denoted by
Wa,Wb,Wc,Windirect, in the HFA for Cu K edge and Cu L edge
in Ref. [39]. The diagram Wa is illustrated in Fig. 2 and given
explicitly as

Wa = |wk f λ f wkiλi |2
∫ u′

−∞
dt ′

∫ ∞

−∞
du′

∫ 0

−∞
dt

× e−i(ωi+εs+i	)t ′
e−i(ω f +εs+i	)u′

e−i(ωi−εs−i	)t

× 2

N

∑
kσ

∑
αα′

eα
λi

eα
λ f

eα′
λi

eα′
λ f

× G2p+−
αα′;σσ (k + Q, t ′, t )G2p−+

αα′;σσ (k, 0, u′)

= |wk f λ f wkiλi |2
1

N

∑
kσ

∑
αα′

eα
λi

eα
λ f

eα′
λi

eα′
λ f

×
∫ ∞

−∞

dω

2π
|R(ωi, ω + �)|2

× G2p+−
α′σ ;ασ (k + Q, ω + �)G2p−+

ασ ;α′σ (k, ω), (14)

with

R(x, y) = 1/(x − y + εs + i	) (15)

where � = ωi − ω f is transferred energy Q = qi − q f , and
N is the number of unit cells. In the Keldysh Green’s func-
tions G2pγ γ ′

α′σ ′;ασ (k, t ′, t ), the superscripts γ and γ ′ take + and
−, which represent the backward and outward time legs, re-
spectively. The expressions and the diagrams for Wb, Wc, and
Windirect are given in Appendix.
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C. Cluster perturbation theory

Now let us evaluate the Green’s functions in the diagrams
by using CPT. CPT gives the one-particle Green’s functions of
multi-orbital systems at low numerical cost and simple proce-
dures. The Green’s functions of a large cluster are constructed
from those of a small cluster by incorporating intercluster
hoppings as a perturbation. Local electron correlation effects
are included by using the ED method to solve Green’s func-
tions in a small cluster. In the three-band Hubbard model, the
orbital-resolved Green’s functions are defined as

Gd
CPT(k, ω) = 1

N

∑
i, j

e−ik·(ri−r j )Gi, j (k, ω), (16)

Gpα

CPT(k, ω) = 1

N

∑
i, j

e−ik·(ri+α−r j+α )Gi+α, j+α (k, ω) (17)

where Gi, j (k, ω) = [Ĝ(ω)−1 − V̂ (k)]−1
i, j . V̂ (k) is Fourier-

transformed intercluster hoppings. Ĝ(ω) denotes the numer-
ically exact Green’s functions within the small cluster. Since
we have N unit cells, which contain the three orbitals, Ĝ(ω) is
a 3N × 3N matrix.

D. Hartree-Fock approximation

To describe the AF order within the HFA, the unit cell is
defined as Cu2O4. The HF decompositions are included in the
interaction term HU in Eq. (3) as

nd
i↑nd

i↓ → 〈nd
i↑〉nd

i↓ + nd
i↑〈nd

i↓〉 − 〈nd
i↑〉〈nd

i↓〉
− 〈d†

i↑di↓〉d†
i↓di↑ − d†

i↑di↓〈d†
i↓di↑〉

+ 〈d†
i↑di↓〉〈d†

i↓di↑〉. (18)

Similarly, the HF decomposition is performed for the term
np

i↑np
i↓. By introducing the Fourier transform of the fermionic

operators defined by

dks =
√

2

N

∑
i

dise
iri·k, (19)

pkαs =
√

2

N

∑
i

pi+αse
iri+α ·k, (20)

the HF Hamiltonian is given by

HHF =
∑

k

ψ̂
†
k ĥkψ̂k, (21)

where the bases set is taken to be

ψ̂k = (dk↑, pkx↑, pky↑, dk↓, pkx↓, pky↓)T . (22)

This Hamiltonian can be diagonalized with a unitary transfor-
mation,

HHF =
∑

k

φ̂k† ε̂kφ̂k, (23)

where φ̂k = Û −1
k ψ̂k and ε̂k(= Û −1

k ĥkÛk) is a diagonal matrix.
Then, the Green’s function represented by the basis set in
Eq. (22) is given by

Ĝ(k, ω) = Ûk

[
1

ω − εk + iδ sgn(εk)

]
Û −1

k , (24)
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FIG. 3. One-particle Green’s functions calculated by using CPT.
(a) Momentum-resolved spectral function. (b) Density of states.
Momentum- and orbital-resolved spectral functions for (c) Cu dx2−y2

and (d) O 2px, 2py. The broadening factor of the δ function is set to
0.1 eV.

where δ is a convergent factor.

IV. RESULTS

A. Cluster perturbation theory

In this subsection, we show numerical results of RIXS
spectra using CPT Green’s function. First, we take a look at
the one-particle spectra from the imaginary part of the Green’s
function. The O K-edge RIXS spectra reflect the density of
states of the oxygen component, and its peaks arise mainly
from the particle-hole excitation. Thus, we can determine the
origin of the RIXS spectra by comparing the RIXS spectra
with the one-particle spectral function.

Let us take a 2 × 2 (Cu4O8) cluster as a reference system of
CPT. We have t d p = 1 eV, t pp = 0.3 eV, ε

p
hole − εd

hole = 3 eV,
U d = 8 eV, and U p = 4 eV as a parameter set for typical
copper oxides. The core-hole potential is set as Vc = 5 eV.
Figures 3(a) and 3(b), respectively, show one-particle spectral
functions and density of states (DOS) computed using CPT,
which include contributions from both the Cu 3dx2−y2 orbital
and the O 2px,y orbitals. The spectral weight projected onto
the Cu 3dx2−y2 orbital and the O 2px,y orbitals are shown in
Figs. 3(c) and 3(d). The large energy gap around the Fermi
level is due to the strong electronic correlation on the Cu
sites. The upper Hubbard band (UHB) and ZRS band are
located above and below the Mott gap, respectively. Here,
the terminology, ZRS band, corresponds to the one-particle
spectra in the energy ranging from −2 eV to −1 eV in Fig. 3.
Since the ZRS band has its weight in both Figs. 3(c) and 3(d),
the band represents the hybridization between the Cu 3dx2−y2

orbital and the O 2px,y orbitals. Although the largest spectral
weight in the oxygen component is around −4 eV, the DOS in
Fig. 3(b) suggests that the spectral weights for the UHB and
ZRS band are large enough to observe the ZRS excitation.

RIXS spectra at the O K edge with the x polarization are
shown in Fig. 4(a). The origin of ωi is set to εs, and ωi
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FIG. 4. (a) Oxygen K-edge RIXS spectra based on the CPT
scheme plotted as a function of the energy loss � (eV) for high-
symmetry cuts in the first BZ. Each of the white-horizontal bars and
white circles are peak positions extracted from the ED results for
2 × 2 and 3 × 2 clusters, respectively [see Fig. 5(c), Sz = 0]. Their
marker size is proportional to the intensities of the RIXS spectra.
(b) Incident x-ray’s energy dependence of the oxygen K-edge RIXS
spectra. Red bars indicate the peak positions of those spectra. The
inset shows the UHB projected onto the O 2p (solid line) and Cu
3dx2−y2 (dotted line) orbitals.

is chosen as the peak of the DOS of the UHB at 0.6 eV.
The momentum dependence of the ZRS excitation is clearly
visible around 1.5–2.5 eV. The ZRS has a maximum intensity
at the Q = (0, 0) and its energy increases from (0, 0) to the
edge of the first BZ. In this calculation, the ZRS excitation is a
particle-hole excitation from the ZRS band to the UHB, which
also corresponds to the formation of the doublon and ZRS as
mentioned in Sec. I. The CT excitation around 4 eV has a high
intensity. There is a prominent flat structure along (π, 0)–
(π, π ), which is not observable in experiments because of the
limited momentum of soft x rays.

The momentum dependencies of the RIXS spectra along
(0, 0)–(π, 0) and (0, 0)–(0, π ) are different. This is due to the
anisotropy caused by the excitation and decay of the core-hole
between the 1s and 2px orbitals at the same oxygen site.

Note that the bimagnon excitation observed in experiments
is not included in the four diagrams Wa,b,c,indirect considered
in this calculation, because the bimagnon excitation is caused
by a higher-order process. However, the energy scale of the
bimagnon excitation is much lower than and separate from
those of the ZRS excitation and the CT excitation.

In Fig. 4(b), we show the O K-edge RIXS spectra as a func-
tion of the incident x-ray’s energy ωi. The origin of ωi is set to
εs. We can see the enhancement of the RIXS intensity when
ωi fulfills the resonance condition. In particular, the spectral
weight of the CT excitation is largely enhanced in comparison
with that of the ZRS excitation. The peak positions of the ZRS
and CT excitations shift with increasing ωi, i.e., they show
fluorescence-like feature. This dispersive feature depending
ωi is considered as a result of the particle-hole excitation
[46,47].

B. Exact diagonalization

To verify the perturbative method used in the previous
section, we performed the ED method on 2 × 2 (Cu4O8)
clusters with periodic boundary conditions. The lifetime for
the O 1s core-hole in the intermediate state was set to 	 =
0.2 eV [48–50]. The Lorentzian broadening η for the XAS
spectrum was set to 0.1 eV. The calculation of the RIXS
spectra was implemented in two steps: First, we calculated the
XAS spectrum from Eq. (10) by using the continued fraction
expansion method, and determined the resonance incident
x-ray’s energy from the peak positions of IXAS. Then, we
calculated the RIXS spectra from the Kramers-Heisenberg
formula Eq. (8) by using the biconjugate gradient stabilized
method (BiCGSTAB). The parameters were the same as those
in CPT.

Figure 5(a) shows the O K-edge XAS spectrum. The XAS
spectrum is composed of two peak structures at ωi � −1.1 eV
and −0.44 eV. These peak energies correspond to the excita-
tion energies when the core-hole electron at the oxygen site
resonantly excited to the O 2px component of the UHB. By
increasing the cluster size, this two peak structure become
a continuum, i.e., the UHB. Because XAS spectrum essen-
tially captures a DOS measured in the inverse photoemission
spectroscopy. Figures 5(b) and 5(c) are the RIXS spectra with
the energy of the incident x-ray tuned to the XAS peaks with
ωi = −1.1 eV and –0.44 eV, respectively. Note that the com-
ponents of the elastic scattering have been removed from the
spectra.

Next, to assign the ZRS excitation and magnetic compo-
nents in the RIXS spectra, we calculated the ground states of
the 2 × 2 cluster in restricted Hilbert spaces of which the total
spin is fixed to 0 or 2. In the case of Sz = 2, the ZRS excitation
is forbidden, because all the Cu spins are initially in parallel.
Magnetic excitations such as the bimagnon are also forbid-
den because only the excitations by an even- or zero-time
spin-flip are allowed in O K-edge RIXS for the initial state.
Thus, the peaks around 0.5 eV and the peaks around 3–4 eV
indicated by a solid line (Sz = 0) and momentum Q = (0, 0)
in Fig. 5(b) are assigned to the bimagnon excitation and the
ZRS excitation, respectively. This is also evidence that the
ZRS has a singlet character. The reason that the bimagnon
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FIG. 5. (a) Oxygen K-edge XAS spectra in x polarization for
the Cu4O8 cluster. There are two resonant peaks at ωi = −1.1 eV,
−0.44 eV. Oxygen K-edge RIXS spectra at the absorption edge
for (b) ωi = −1.1 eV and (c) ωi = −0.44 eV. (d) O K-edge RIXS
spectra and dynamical charge structure factor for the O 2px orbital.
(e) O K-edge RIXS spectra for various core-hole potentials.

excitation appears only at Q = (0, 0) is probably due to the
small cluster size.

Comparing between the solid lines (Sz = 0) in Figs. 5(b)
and 5(c) reveals that the difference in the absorption edges
appears in the spectral weights of the ZRS excitation or the CT
excitation: the spectral weight of the ZRS excitation is highest
for ωi = 3.9 eV, the spectral weight of the CT excitation is
highest for ωi = −0.44 eV. In Fig. 4, the positions of the
peaks in Fig. 5(c) are plotted with white bars while those of
the RIXS spectra for the 3 × 2 cluster are plotted with white
circles. The CT excitations obtained by the ED at (π, 0) and
(π, π ) capture the features of the flat momentum dependence
obtained by CPT in Fig. 4. This indicates that the dominant
contributions are properly included in the diagrams treated in
the perturbative approach in the previous section, and that the
CT excitation at (π, 0) and (π, π ) can be described even in the
four points of the first BZ of the Cu4O8 (2 × 2) cluster. From
the latter point, the CT excitation at (π, 0) can be assigned
to the particle-hole excitation from the O 2p band at (0, π )
to the UHB at (π, π ). Likewise, the CT excitation at (π, π )
corresponds to the particle-hole excitation from the O 2p band
at (0, 0) to the UHB at (π, π ). The ZRS excitation between
2 eV and 3.5 eV also shows good agreement with the CPT
results.

In the following, we check whether O K-edge RIXS can be
interpreted as the dynamical structure factor of O 2p electrons,
denoted by N px (Q,�). In Fig. 5(d), the RIXS spectra are
directly compared with N px . The O K-edge RIXS spectra are
roughly consistent with N px . In particular, there is only a slight
difference even in the spectral intensities for ωi = −0.44 eV.
In addition, as illustrated in Fig. 5(e), the RIXS spectra shows
the weak dependence on the core-hole potential Vc. A strong
dependence would indicates the existence of a complicated
scattering process, but in the figure the core-hole potential
causes only a slight increase in intensity because the number
of holes at O 2p sites is small, as pointed out in Ref. [25].
These results indicate that the O K-edge RIXS spectra can be
interpreted basically as the dynamical charge structure factor
for the O 2p orbital.

C. Hartree-Fock approximation

Now let us calculate the one-particle Green’s functions
and RIXS spectra on the basis of the HFA. We will use the
electron picture rather than the hole picture and the parameter
values t d p = 1.0 eV, t pp = 0.3 eV, U d = 8 eV, Vc = 5 eV, 	 =
0.2 eV. The charge-transfer energy can be self-consistently
determined as εd + U d 〈nd〉 /2 − ε p = −0.5 eV to reproduce
the Mott gap. Within the HFA, the ground state has AF or-
der, for which the unit cell contains two Cu 3dx2−y2 orbitals
and four O 2p orbitals. The electronic band structure and
the DOS within the HFA are shown in Figs. 6(a)–6(c). The
UHB is above and the ZRS band is below the Fermi energy,
and the oxygen band is located around −4 eV. The general
shape of the electronic structure is similar to that obtained by
CPT. However, the ZRS band is mainly composed of the O
2p component, unlike the CPT case, where the contribution
from Cu 3dx2−y2 orbital is comparable with that from O 2p
orbitals.

The RIXS spectra obtained by the HFA are shown in
Fig. 6(d). ωi was chosen as the peak of the UHB. The ZRS
excitation is around 2 eV, and the CT excitation is around 4 eV.
The ZRS excitation has a maximum intensity at (π, π ) unlike
the results based on CPT, and the CT excitation is character-
ized by several sharp peaks. Its momentum dependence, such
as (π, 0)–(π, π ), is similar to but slightly different from those
of the CPT and ED results. Finally, in order to reveal the effect
of the electronic correlation on the RIXS spectra, we examine
differences between the two RIXS spectra obtained by CPT
and the HFA. In Fig. 7, we plot the two RIXS spectra along
(0,0)–(π, 0), half of which are experimentally accessible
momenta.

In Fig. 7(a), the peaks of the ZRS excitation around 2 eV
(red bars) shift towards the high energy direction relative to
those in Fig. 7(b). The difference between the momentum
dependencies obtained by the two calculation schemes is at-
tributed to the difference in between the electronic structures
of the O 2px/y orbitals of the ZRS band and the UHB. This is
because the intensity and momentum dependence of the ZRS
excitation is related to the product of the partial occupation
number of the O 2px electrons in the ZRS band and the
partial occupation number of the O 2px holes in the UHB. The
difference can also be attributed to whether the ZRS band is
actually a singlet state or not: the ZRS band obtained by CPT
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FIG. 6. Orbital-resolved electronic band structure by using the HFA for (a) Cu 3dx2−y2 and (b) O 2p. (c) Density of states. (d) Calculated
RIXS intensity based on the HFA.

is a singlet state described as a many-body state in the range of
the reference cluster, whereas the ZRS band obtained by the
HFA is an antibonding band described as a one-body state.

The difference between the spectra of the CT excitations
of the two schemes is in their broadness: the spectra are
sharp in the HFA [Fig. 7(b)], while they are broad in CPT
[Fig. 7(a)]. One reason for the broad CT excitation spectra is
that the self-energy of the Green’s functions for the oxygen
bands acquires a finite life-time when using CPT. The other
reason is the change in the UHB, which is attributed to the
different origins of the UHB. In the HFA, the charge-transfer
gap opens due to folding of the BZ by the AF order. In CPT,
the Coulomb repulsion on the Cu sites opens the energy gap.
We consider that these differences in the oxygen bands and
UHB are reflected in the CT excitation.

V. SUMMARY

In summary, we calculated the O K-edge RIXS spectra
for the three-band Hubbard model in the insulating phase by
means of three methods. In particular, we studied elementary
charge responses in cuprates including the ZRS excitation and
CT excitation.

The overall momentum dependence of the ZRS excitation
and CT excitation were revealed by performing a dia-
grammatic perturbative method in combination with Green’s
functions obtained by CPT. The validity of the perturbative
method was verified in calculations using the ED method.
Calculations using the ED method indicated that the O K-edge
RIXS spectra can be interpreted as the dynamical struc-
ture factor of O 2p electrons. The effect of the electronic
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FIG. 7. Oxygen K-edge RIXS spectra along Q = (0, 0)–(π, 0)
for (a) CPT and (b) HF. Red bars represent positions of peak
intensity.

correlation on the RIXS spectra was revealed by comparing
RIXS spectra obtained by CPT and the HFA. For exam-
ple, the peak energies of the ZRS excitation along the Q =
(0, 0)–(π, 0) obtained by CPT are shifted in the higher-energy
direction relative to those of the HFA. Regarding experimental
observation of the O K-edge RIXS spectra discussed in the
present paper, the shift in the momentum-dependence of the
ZRS excitation in the high-energy direction would be ob-
servable in the range of 40% of the first BZ. We note that
d-d excitations, local transitions between different d orbitals,
are not included in our model calculations since our model
contains only the Cu 3dx2−y2 orbital. In practice, the energies
of the ZRS excitation and the d-d excitation overlap partially.
In such a case, we would be able to distinguish those ex-
citations from incident x-ray’s energy dependence of RIXS
spectra, since the ZRS excitation depends on ωi, while the d-d
excitation does not depend on ωi as discussed in Sec. IV A.
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APPENDIX: DIAGRAMS IN THE HFA and CPT

In this Appendix, we show the explicit forms of the RIXS
diagrams. In addition to the Wa diagram shown in Fig. 2, we
consider three other diagrams: Wb, Wc, and Windirect. First, we
give the explicit form of the diagram Wb shown in Fig. 8(a),

Wb = |wk f λ f wkiλi |2
1

N

∑
σσ ′

∑
αα′

eα
λi

eα
λ f

eα′
λi

eα′
λ f

× [L(ωi, ω f , Q)†	0	(Q)†�+−
0 (Q)

× 	(Q)	0L(ωi, ω f , Q)]α′σ ′;ασ . (A1)

Here, �
(0)+−
α′σ ′;ασ (Q) is the bubble part of the diagram given by

�
(0)+−
α′σ ′;ασ (Q) = − i

1

N

∑
k

∫ ∞

−∞

dω

2π

× G2p+−
α′σ ′;ασ (k + Q, ω + �)G2p−+

ασ ;α′σ ′ (k, ω),
(A2)
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FIG. 8. (a) Diagram for Wb in Eq. (A1). Solid lines represent
the Green’s functions for the 2p and 1s electrons, and wavy lines
represent those for photons. Solid squares represent the renormalized
vertices. [(b),(c)] Diagrams for W ±

c in Eq. (A5).

and L(ωi, ω f , Q) is the triangle part given by

[L(ωi, ω f , Q)]α′σ ′;ασ

= 1

N

∑
k

∫
dω1dω2

(2π )2

[
R(ωi, ω2)

� + ω1 − ω2 + iη

× G2p−+
α′σ ′;ασ (k + Q, ω1)G2p+−

ασ ;α′σ ′ (k, ω2)

+ R(ω f , ω1)

� + ω1 − ω2 − iη
G2p+−

α′σ ′;ασ (k + Q, ω1)

× G2p−+
ασ ;α′σ ′ (k, ω2) − R(ωi, ω2)R(ω f , ω1)

× G2p+−
α′σ ′;ασ (k + Q, ω1)G2p+−

ασ ;α′σ ′ (k, ω2)

]
, (A3)

where R(ω1, ω2) is introduced in Eq. (15). The bare ver-
tex for the Coulomb interaction is defined as [	0]α,σ,α′,σ ′ =
U pδα,α′ (1 − δσ,σ ′ ) and the renormalized vertex 	(Q) = [I −
	0�(0)(Q)]−1. Next, Wc is divided into two parts,

Wc = W −
c + W +

c (A4)

= |wk f λ f wkiλi |2
∑
σσ ′

∑
αα′

eα
λi

eα
λ f

eα′
λi

eα′
λ f

× [N (ωi, Q)†	(Q)†	0L(ωi, ω f , Q)

+ L(ωi, ω f , Q)†	0	(Q)†N (ωi, Q)]α′σ ′;ασ , (A5)

FIG. 9. Diagram for Windirect in Eq. (A7). Solid lines represent
the Green’s functions for the 2p and 1s electrons, and wavy lines
represent those for photons, and dotted lines represent the Coulomb
interaction. The shaded circle represents the density-density correla-
tion function of the Keldysh-type.

with the triangle part defined by

[N (ωi, ω f , Q)]α′σ ′;ασ

= 1

N

∑
k

∫
dω

2π
R(ωi, ω + �)

× G2p+−
α′σ ′;ασ (k + Q, ω + �)G2p−+

ασ ;α′σ ′ (k, ω). (A6)

Finally, Windirect in Fig. 9 is given by

Windirect = |wk f λ f wkiλi |2
1

N

∑
kσσ ′

∑
αα′

eα
λi

eα
λ f

eα′
λi

eα′
λ f

× [	†(Q)�+−
0 (Q)	(Q)]α′σ ′;ασ |M(ωi,�)|2α′σ ′;ασ

(A7)

with

[M(ωi,�)]α′σ ′;ασ

= Vc

N

∑
k

∫
dω

2π
R(ωi, ω)R(ωi, ω + �)G2p+−

α′σ ′;ασ (k, ω).

(A8)

Windirect corresponds to the lowest-order contribution ex-
panded for the Coulomb attraction between the valence
electron and core hole, the details of which are given in
Ref. [39].
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