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Configuration interaction based nonequilibrium steady state impurity solver
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We present a solver for correlated impurity problems out of equilibrium based on a combination of the
so-called auxiliary master equation approach (AMEA) and the configuration interaction expansion. Within
AMEA one maps the original impurity model onto an auxiliary open quantum system with a restricted number
of bath sites which can be addressed by numerical many-body approaches such as Lanczos/Arnoldi exact
diagonalization (ED) or matrix product states (MPS). While the mapping becomes exponentially more accurate
with increasing number of bath sites, ED implementations are severely limited due to the fast increase of the
Hilbert space dimension for open systems, and the MPS solver typically requires rather long runtimes. Here, we
propose to adopt a configuration interaction approach augmented by active space extension to solve numerically
the correlated auxiliary open quantum system. This allows access to a larger number of bath sites at lower
computational costs than for plain ED. We benchmark the approach with numerical renormalization group results
in equilibrium and with MPS out of equilibrium. In particular, we evaluate the current, the conductance, as well
as the Kondo peak and its splitting as a function of increasing bias voltage below the Kondo temperature TK. We
obtain a rather accurate scaling of the conductance as a function of the bias voltage and temperature rescaled by
TK for moderate to strong interactions in a wide range of parameters. The approach combines the fast runtime
of ED with an accuracy close to the one achieved by MPS making it an attractive solver for nonequilibrium
dynamical mean field theory.
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I. INTRODUCTION

The single-impurity Anderson model [1–3] was originally
devised to gain insight into the effect of dilute magnetic impu-
rities in metals. Its universal low-energy physics characterized
by the Kondo temperature TK as energy scale can be cap-
tured quantitatively by the numerical renormalization group
(NRG) [4–6]. Besides the description of quantum dots [7–10],
nanowires [11–13], and carbon nanotubes [14], an impor-
tant application is the dynamical mean field theory (DMFT)
[15–17], where a single site in a correlated lattice is identified
with an impurity embedded in a self-consistently determined
effective environment. Using the Keldysh formalism, DMFT
can be extended to the nonequilibrium case [18–20].

In this paper we will focus on a correlated impurity out
of equilibrium and investigate its properties with an imple-
mentation of the so-called auxiliary master equation approach
(AMEA) [21,22] based on the configuration interaction (CI)
expansion and its complete active space (CASCI) extension
[23–26]. AMEA is used to study nonequilibrium steady state
properties of strongly correlated impurity models, especially
in connection with DMFT [27–29]. It is based on a mapping
of the original impurity plus bath model onto an auxiliary
open quantum system, which becomes exponentially exact
upon increasing the number of its bath sites [30]. This aux-
iliary many-body impurity problem has been solved by either
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Lanczos/Arnoldi exact diagonalization (ED) [21,22], matrix
product states (MPS) [31,32], or stochastic wave-function ap-
proaches [33].

While the last two schemes provide more accurate results
for the impurity problem itself, they are numerically quite
expensive. Hence for DMFT, where a large number of im-
purity solutions are required to achieve self-consistency, only
the ED solver has been adopted so far. Unfortunately, since
the dimension of the many-body density matrix of the open
quantum systems grows as the square of the dimension of the
Hilbert space, the number of bath sites is limited to a maxi-
mum of NB = 6 for ED. On the other hand, the corresponding
Lindblad equation provides a larger number of parameters to
fit the bath hybridization function so that roughly speaking
the same accuracy can be achieved as for a closed system
with twice as many bath sites in equilibrium [30]. Issues arise
when the hybridization function becomes too sharp or exhibits
too many peaks which cannot be captured by the parameters
provided by six bath sites. The first situation can occur when
investigating the Kondo peak for high Hubbard interactions at
low temperature, while the second one can become relevant
when performing DMFT.

Due to the exponential increase of the accuracy with the
number of bath sites, it would be desirable to access even
a few more of them without a significant increase of the
numerical costs. In this paper we show that these requirements
are met by CI (and its extension CASCI), which have been
shown to be quite accurate as many-body solvers for equi-
librium (closed) impurity models for which the interaction
is localized on one or a few sites [25,34]. In our case, these
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approaches allow us to consider up to NB = 10 bath sites
while the runtime does not significantly increase beyond that
of the ED solver for up to NB = 8. To demonstrate their
capabilities, we benchmark CI and CASCI against MPS by
comparing the spectral function of the Anderson impurity
model (AIM) in and out of equilibrium. As a particularly
challenging benchmark, we address the equilibrium problem,
which is accessible by AMEA as well, while certainly being
less accurate than more established methods such as NRG.
Here, we compare the temperature dependence of the equi-
librium conductance obtained with CI and CASCI against
NRG results down below the Kondo temperature. Thereby,
the computed conductance quite accurately collapses into a
single function of the scaled temperature T/TK for different
moderate to strong interactions and for T � 0.1D, where D
is the half-bandwidth. This scaling behavior is also quite
accurately reproduced when considering the nonequilibrium
conductance as a function of the scaled bias voltage φ/TK for
the same T/TK. Finally, we evaluate the nonequilibrium spec-
tral function as a function of the bias voltage and comment on
the splitting of the Kondo peak.

One should mention that recently very accurate results
for the nonequilibrium steady state spectral function of the
AIM have been obtained by inchworm quantum Monte
Carlo (QMC) [35], which is also a numerically quite ex-
pensive approach. Among other approaches to deal with
time-dependent impurity problems up to long times one
should mention quantum quasi–Monte Carlo (see, e.g., [36])
and fork tensor network [37] approaches. Also numerical and
perturbative renormalization-group approaches [4–6,38,39]
obviously achieve much more accurate scaling behaviors. The
strength of our approach, besides being applicable for strong
and weak interactions, lies in the considerably reduced com-
putational costs, especially the wall time, making it attractive
as a nonequilibrium impurity solver for DMFT.

The paper is organized as follows. In Sec. II, we review
AMEA, before discussing CI in Sec. II E. Starting in Sec. III,
we determine the method parameter of CI in Sec. III A. Then,
in Sec. III B, we benchmark it against the NRG [40] con-
ductance in equilibrium and MPS spectral functions out of
equilibrium [31]. We conclude in Sec. IV. The description
of and results obtained using CASCI are provided in the
Appendix.

II. MODEL AND METHOD

A. Nonequilibrium Green’s functions

A convenient way to represent Green’s functions in the
nonequilibrium case is via the Keldysh formalism [41–46].
Since we are interested in the steady state where time trans-
lational invariance applies, we work in the frequency domain

G(ω) =
(

GR(ω) GK(ω)
0 GA(ω)

)
, (1)

where G(ω) is used to denote the 2×2 matrix structure and
GA(ω) = [GR(ω)]†.

In equilibrium, the Keldysh component of the Green’s
function can be determined from the retarded one using the

FIG. 1. Physical system consisting of an impurity with Hubbard
interaction U coupled via t ′

L,R to two leads with flat band spectrum
characterized by the chemical potentials μL,R and temperature T .

fluctuation dissipation theorem

GK(ω) = 2i[1 − 2ρFD(ω,μ, T )]Im[GR(ω)], (2)

where ρFD(ω,μ, T ) = {exp[(ω − μ)/T ] + 1}−1 is the Fermi-
Dirac distribution function.

The spectral function (DOS) is given by

A(ω) = − 1

π
Im[GR(ω)]. (3)

B. Physical impurity model

The physical system consists of a correlated impurity cou-
pled to two noninteracting leads, as sketched in Fig. 1 and
described by the Hamiltonian

H = Himp + Hbath + Hcoup. (4)

Here Himp denotes the impurity Hamiltonian

Himp = εimp

∑
σ

d†
σ dσ + Und↑nd↓ (5)

with Hubbard interaction U , on-site energy εimp, creation (an-
nihilation) operator d†

σ (dσ ) of a fermion at the impurity site
with spin σ and particle number operator ndσ = d†

σ dσ . Hbath
describes the leads

Hbath =
∑
kλσ

ελka†
λkσ

aλkσ , (6)

with dispersion ελk and creation (annihilation) operator a†
λkσ

(aλkσ ) of a fermion in the left and right lead λ ∈ {L, R} labeled
by momentum k. The coupling between impurity and bath is
given by

Hcoup = 1√
Nk

∑
kλσ

t ′
λ(a†

λkσ
dσ + d†

σ aλkσ ), (7)

where t ′
λ is the coupling strength between the leads and the

impurity, and Nk → ∞ is the number of k points. In this
paper we only consider the particle-hole symmetric case with
εimp = −U/2, t ′

L = t ′
R, and εLk = εRk .
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The environment of the impurity can be captured by the
physical hybridization function, which one can write [47] as

	ph =
∑

λ

t ′2
λ g

λ
(ω), (8)

where g
λ
(ω) are the Green’s functions of the leads at the point

of contact. In the following we consider leads with a flat band
spectrum

−Im
[
gR

λ (ω)
] = π

2D

(D − |ω|). (9)

For convenience, we choose t ′
λ = √

�D/π giving
−Im[	ph(0)] = �, which is the unit of energy throughout
this paper. This spectrum is used for the reference calculations
with NRG. Since the precise form of the cutoff is unimportant,
for AMEA where the hybridization function is fitted, it is
convenient to employ a smoothed version of Eq. (9) given by

−Im
[
gR

λ (ω)
] = π

2D
ρFD(ω, D, Tfict )ρFD(−ω, D, Tfict ), (10)

where Tfict is a fictitious temperature used to smoothen the
band edge. We choose Tfict = 0.5�, and the half-bandwidth
D = 10� to be consistent with Ref. [31] and allow for a
comparison of the results. Since the leads are considered
in equilibrium, their Keldysh components follow from the
fluctuation-dissipation theorem in Eq. (2), where the applied
voltage enters within the Fermi-Dirac distribution function as
chemical potential μR = φ/2 = −μL.

C. Auxiliary impurity model

Our goal is to compute the Green’s function of the impurity
in presence of interactions. In AMEA one replaces the infinite
bath with an open system consisting of a limited number of
bath sites coupled to Markovian environments. Its auxiliary
hybridization function 	aux is determined to resemble the
physical one 	ph as closely as possible, since in the limit
	aux → 	ph the solution of the impurity problem becomes
exact. For convenience, we choose the impurity to be located
at the central site i = 0 =: f connected to two equally long
chains with NB bath sites at i = ±1,±2, . . . ,±NB/2. The dy-
namics of the density matrix ρ of this open system is described
by the Lindblad equation

ρ̇(t ) = Lρ

= − i[Haux, ρ] +
∑
i jσ

�
(1)
i j

(
c jσ ρc†

iσ − 1

2
{c†

iσ c jσ , ρ}
)

+
∑
i jσ

�
(2)
i j

(
c†

iσ ρc jσ − 1

2
{c jσ c†

iσ , ρ}
)

, (11)

where [A, B] and {A, B} denote the commutator and anticom-
mutator, respectively. Within the Lindbladian L, the unitary
time evolution is determined by

Haux =
∑
i jσ

Ei jc
†
iσ c jσ + Un f ↑n f ↓. (12)

In Fig. 2, the “normal space” part illustrates the action of the
Lindbladian. There, the green lines represent the dissipative
part of the Lindbladian in form of �i j , while the blue lines

FIG. 2. Auxiliary system in the superfermion representation. The
green lines represent the dissipative part �(1/2) of the Lindbladian and
the blue ones the unitary part E.

denote the unitary part given by the hopping in Haux. The
coupling constants �i j , on-site energies Eii [48], and hoppings
Ei j occurring in Eq. (11) are used as parameters to fit the
expression for 	aux to the data 	ph. Since the baths in the
auxiliary system are noninteracting, one has access to an ana-
lytical expression for the auxiliary hybridization function via
the Dyson equation

G−1
0, f f = g−1

0, f f
− 	aux, (13)

which in components reads

	R
aux(ω) = 1/gR

0, f f (ω) − 1/GR
0, f f (ω),

	K
aux(ω) = GK

0, f f (ω)
/∣∣GR

0, f f (ω)
∣∣2

. (14)

Here, GR/K
0, f f are the f f components of the Green’s function

matrices [30]

GR
0 (ω) = [ω − E + i(�(1) + �(2) )]−1,

GK
0 (ω) = 2iGR

0 (ω)(�(2) − �(1) )GA
0 (ω), (15)

with

gR
0, f f (ω) = (ω − εimp)−1. (16)

Given the hybridization function of the physical system in
Eq. (8), one defines a cost function

χ (E,�(1),�(2) ) =
∑

α∈{R,K}

∫ ∞

−∞
dωW α (ω)

× Im
[
	α

ph(ω) − 	α
aux(ω; E,�(1),�(2) )

]2

(17)

to assess the quality of the fit with the hybridization function
of the auxiliary system. In this paper, the weight function
W α (ω) = 
(|ω| − ωmax) only restricts the frequency range
with ωmax = 15�. More aspects of the fitting procedure are
discussed in Ref. [30]. The aforementioned paper also shows
that in case all available fit parameters are used, the shape of
the bath in the auxiliary system does not affect the quality of
the fit. This justifies our choice of bath geometry.
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D. Superfermion representation

In the following, we sketch how the superfermion represen-
tation [49] serves as a convenient way to express the Lindblad
equation. For an alternative, equivalent representation, see
[50]. Within this section, we roughly follow the presentations
in [22,51].

The basic idea is to vectorize the density matrix and de-
scribe it in terms of a state that lives in a doubled Hilbert space
to convert the Lindblad equation into a linear algebra problem.
The usual density matrix can be written as

ρ =
∑
mn

ρmn |m〉 〈n| . (18)

To transform the bra state into a ket state, one introduces the
left vacuum [52]

|I〉 =
∑

m

|m〉 ⊗ |m̃〉 . (19)

With this, one can transform the density matrix into a state
vector as

ρ → |ρ〉 = (ρ ⊗ 1̃) |I〉

=
(∑

mn

ρmn |m〉 〈n| ⊗ 1̃

)⎛⎝∑
j

| j〉 ⊗ | j̃〉
⎞⎠

=
∑
mn j

ρmn(|m〉 〈n| j〉) ⊗ | j̃〉 =
∑
mn

ρmn |m〉 ⊗ |ñ〉 .

(20)

By applying the Lindblad equation to the left vacuum, one
can express it in the superfermion representation. The ensuing
aim is to move the density matrix to the left vacuum, such
that one can employ Eq. (20) to turn it into a state. This
requires commutations of the density matrix with creation and
annihilation operators. To achieve this, one uses that the left
vacuum transfers the creation (annihilation) operators to the
tilde space via

c†
j |I〉 = −ic̃ j |I〉 ,

c j |I〉 = −ic̃†
j |I〉 , (21)

which then commute with the density matrix [53]. The Lind-
bladian then follows as

iL =
∑

σ

c†
σ hcσ − 2Tr(E + i�)

+ U (n f ↑n f ↓ − ñ f ↑ñ f ↓), (22)

with the matrix

h =
(

E + i� 2�(2)

−2�(1) E − i�

)
, (23)

the vector c†
σ = (c†

0σ , . . . , c†
NBσ , c̃0σ , . . . , c̃NBσ ), as well as the

matrices � = �(2) − �(1) and � = �(2) + �(1). Note that f =
0 refers to the impurity site. The action of the matrices E,
�(1), and �(2) in the superfermion representation are illustrated
in Fig. 2. It can be seen that the spin-resolved difference in
particle number between normal and tilde space,

N̂σ − ˆ̃Nσ =
∑

i

(c†
iσ ciσ − c̃†

iσ c̃iσ ), (24)

is conserved [21]. Since the left vacuum is the left eigenstate
corresponding to the steady state, and it lies within the sub-
space with Nσ − Ñσ = 0 [54], also the steady state must lie in
this subspace.

The interacting Green’s function can be obtained in its
Lehmann representation. The Fourier transform of the greater
and lesser component (≷) obtained for positive times (+)
reads

G>+
i j (ω) =

∑
k

〈I| ci |kR〉 〈kL| c†
j |ρ∞〉 1

ω − iLk

,

G<+
i j (ω) =

∑
k

〈I| c†
j |kR〉 〈kL| ci |ρ∞〉 1

ω + iLk

, (25)

with the left and right eigenvectors |kL〉 and |kR〉 as well as
eigenvalues Lk of the Lindbladian L [55]. Using the relations

G≷−
i j (ω) = −[

G≷+
ji (ω)

]∗
,

GR
i j (ω) = G>+

i j − G<−
i j ,

GK
i j (ω) = G>+

i j + G<+
i j − G>−

i j − G<−
i j ,

�R(ω) = 1/GR
0 (ω) − 1/GR(ω),

�K(ω) = −GK
0 (ω)/

∣∣GR
0 (ω)

∣∣2 + GK(ω)/|GR(ω)|2,

(26)

one obtains the full Green’s function and self-energy which
can be used to compute other physical observables.

In practice, we express the Lindbladian L in a given basis
and obtain the steady state |ρ∞〉 using the biconjugate gradient
method [56]. We construct the basis using CI as described in
Sec. II E. After applying the creation/annihilation operator to
the steady state, we compute the matrix elements contributing
to the Green’s function and the eigenvalues Lk of the Lindbla-
dian using the bi-Lanczos method [56]. With the assembled
quantities defined in Eq. (25), we obtain the Green’s function
and self-energy via Eq. (26).

E. Configuration interaction expansion

The configuration interaction (CI) expansion is well known
for the equilibrium case [23–26] and has been used for
nonequilibrium situations as well [57].

In equilibrium, one first determines the many-body ground
state for an effectively noninteracting system, e.g., within
a mean field approximation. It serves as a reference state
to construct a restricted basis in which the Hamiltonian is
diagonalized. This basis of many-body states is obtained by
applying particle-hole (PH) excitations to the reference state,
meaning the removal of a particle from one single-particle
state and addition of a particle to another one.

Out of equilibrium, the many-body steady state for an
effectively noninteracting system is used as reference state
and the Lindbladian replaces the Hamiltonian. Within the
superfermion representation (see Sec. II D), the basis is gen-
erated by changing the occupation of the single-particle states
labeled by the normal modes [22] of the Lindbladian of the
effectively noninteracting system, which will be introduced
below. We will call the excitations used to generate the basis
states also PH excitations [58]. For the remainder of this
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paper, single-particle states are denoted as “orbitals” and
many-body states are shortened to “states.”

The noninteracting system is constructed by decoupling the
interaction term similarly to the Hartree-Fock (HF) approxi-
mation via

n f ↑n f ↓ → HF(〈n f ↑〉) = n f ↑ 〈n f ↓〉 + 〈n f ↑〉 n f ↓ − 〈n f ↑〉 〈n f ↓〉 ,

ñ f ↑ñ f ↓ → H̃F(〈ñ f ↑〉) = ñ f ↑ 〈ñ f ↓〉 + 〈ñ f ↑〉 ñ f ↓ − 〈ñ f ↑〉 〈ñ f ↓〉 .

(27)

As we will show in Sec. III A, in practice it is more suitable
to treat the expectation values 〈n f ↑〉, 〈n f ↓〉, 〈ñ f ↑〉, 〈ñ f ↓〉 as
free parameters and fix them via an explicit parameter sweep
rather than to determine them self-consistently. Due to the
conservation of Eq. (24) and since we work (on average) at
half filling, we can restrict ourselves to

〈ñ f σ 〉 = 〈n f σ 〉 ,

〈n f ↓〉 = 1 − 〈n f ↑〉 ,

m↑ := 〈n f ↑〉 ∈ [0, 0.5]. (28)

The constant offset in the HF approximation cancels in the
Lindbladian of Eq. (22). When absorbing the HF contribution,
the matrix h introduced in Eq. (23) picks up a spin dependence
hσ in the form of

Eiiσ = Eii + U 〈n f σ̄ 〉 δi f , (29)

where σ̄ denotes the spin direction opposite to σ and the
second term in Eq. (22) becomes

η = −
∑

σ

Tr(Eσ ) − 2iTr(�). (30)

The non-Hermitian matrix hσ can be diagonalized [22] as

ε = V −1hσV (31)

with a diagonal matrix ε, so that the effective noninteracting
Lindbladian amounts to

iL0 =
∑

σ

ξ̄εξ + η. (32)

Here and in the following the spin index σ is suppressed. The
operators ξ̄ = c†V and ξ = V −1c denote the “creation” and
“annihilation” operators labeled by the normal modes which
obey the canonical anticommutation relations

{ξi, ξ̄ j} = δi j, (33)

but are not mutually Hermitian conjugate.
To motivate how these orbitals labeled by normal modes

allow for the notion of a PH excitation and which quantity cor-
responds to the single-particle energies, we follow Ref. [22].
The steady state is time-independent,

L0 |ρ∞0〉 = 0. (34)

In contrast, the time evolution of a normal mode operator
applied to the steady state depends on time,

eL0tξi |ρ∞0〉 = eL0tξie
−L0t |ρ∞0〉 = eiεitξi |ρ∞0〉 . (35)

FIG. 3. Construction of the many-body basis in CI using single
PH excitations for the orbitals labeled by normal modes. We start
from the reference state and add all states attainable with a single PH
excitation. The green arrows highlight the annihilation of a particle
in an occupied orbital and creation of a particle in an empty orbital.
Here the construction omits the state highlighted in green in Fig. 10
which is part of the full basis. With double excitations, we would
reach the full state space.

Since Im(εi ) < 0 implies a diverging state, while the long-
time limit is given by the steady state itself, we must have

ξi |ρ∞0〉 = 0 for Im(εi ) < 0. (36)

Similarly it must hold that

ξ̄i |ρ∞0〉 = 0 for Im(εi ) > 0. (37)

The steady state can thus be interpreted as a kind of “Fermi
sea,” where Im(εi ) takes the role of the single-particle energies
separating the “filled” orbitals at Im(εi ) > 0 from the “empty”
orbitals at Im(εi ) < 0. Within this line of argument, a PH
excitation is given by

ξ̄iξ j |ρ∞0〉 , (38)

with the indices i, j chosen such that the state is nonvanishing.
Basis states are expressed in terms of the occupations ξ̄iξi

of the orbitals labeled by normal modes. As discussed above,
the reference state is a “Fermi sea,” where Im(εi ) separates
filled from empty orbitals. Applying PH excitations given in
Eq. (38) to the reference state generates further basis states
[59] as illustrated in Fig. 3. The maximum number of allowed
PH excitations on top of the reference state determines the di-
mension of the basis and thereby the restriction of the Hilbert
space. Since each excitation increases the size of the Hilbert
space exponentially, we will restrict ourselves to three PH
excitations [60].

An extension of CI consists of using more reference states
by means of a so-called complete active space (CAS). Results
of such an extension (CASCI), which is computationally more
costly, turn out not to improve significantly our CI results. For
this reason, we present its implementation and results in the
Appendix.

It is convenient to further simplify the noninteracting Lind-
bladian by performing a PH transformation. It serves to make
the steady state become the vacuum and thereby eliminate the
constant term η. The transformation reads

P = D̄ξ + ξ̄D,

P̄ = Dξ + ξ̄D̄, (39)
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TABLE I. Dimension of the Hilbert spaces dim(H) encountered when computing the steady state |ρ∞〉 and the Green’s function G for
different numbers of bath sites NB employing CI and CASCI compared to the full Hilbert space. The conservation of Nσ − Ñσ = 0, ±1 for
|ρ∞〉 and G, respectively, is exploited for all cases.

NB dim(H|ρ∞〉) CI dim(H|ρ∞〉) CASCI dim(H|ρ∞〉) full dim(HG) CI dim(HG) CASCI dim(HG) full

2 282 356 400 522 584 600
4 6 076 10 980 63 504 20 160 32 924 105 840
6 49 050 104 356 11 778 624 244 328 485 748 20 612 592
8 233 380 540 996 2 363 904 400 1 561 860 3 445 588 4 255 027 920
10 807 434 1 971 684 497 634 306 624 6 799 252 912 329 562 144

with components

Di j = δi j
[Im(εi )],

D̄i j = 1 − Di j . (40)

Considering the creation operators ξ̄i, particles stay particles
if Im(εi ) < 0 and become holes when Im(εi ) > 0. After the
transformation, the Lindbladian becomes

iL0 =
∑

i

εiP̄iPi. (41)

Note that when ξ -creation operators become P-annihilation
operators and vice versa, we obtain a factor −1 for commu-
tating, which we absorb in ε. Since the constant η is removed,
every Pi annihilates the steady state and every P̄i annihilates
the left vacuum. After the transformation, a PH excitation
reads

P̄iP̄j |ρ∞0〉 . (42)

The interacting Lindbladian finally follows as

iL =
∑

i

εiP̄iPi − [HF(〈n f ↑〉) − H̃F(〈ñ f ↑〉)]

+ U (n f ↑n f ↓ − ñ f ↑ñ f ↓). (43)

To take the correlation part properly into account, the de-
coupled interaction term is removed from the effective
noninteracting Lindbladian. Expressing the correlation part
in terms of P and P̄ leads to additional terms. The choice
of the free parameter m↑ := 〈n f ↑〉 contained in the effective
noninteracting Lindbladian will be discussed in Sec. III A.

As established before, the noninteracting steady state ex-
pressed in P and P̄ operators is the vacuum state. To construct
the basis within CI for the computation of the interacting
steady state, we apply two, four, and six P̄ operators to the
noninteracting steady state, which correspond to one, two,
and three PH excitations. After filtering the resulting states
by requiring them to lie in the subspace with Nσ − Ñσ = 0,
we use the basis to construct the entries of the Lindbladian in
Eq. (43) as mentioned in Sec. II D. For the Green’s function
in CI, we generate the basis of excited states by applying one,
three, five, and seven P̄ operators to the noninteracting steady
state as required by Eq. (25). Here, we filter the states by
requiring them to lie in the subspace with Nσ − Ñσ = ±1.
Since the number of these states is quite large, as seen in
Table I, we restrict the basis even further. More specifically,

in the expansion

c†
i |ρ∞〉 =

∑
k

βk |xk〉 (44)

in terms of the basis states |xk〉 generated using one, three,
five, and seven P̄ operators, we remove 75% of the states with
the smallest coefficients |βk|.

III. RESULTS

A. Method parameter

Let us begin by discussing the free parameter of CI. To
fully determine our interacting Lindbladian given in Eq. (43),
we have to fix the parameter m↑ := 〈n f ↑〉 whose range is
specified in Eq. (28). In practice it turns out that whenever
the fit matches the hybridization function well, this parameter
has little effect on the results. It becomes relevant for more
challenging cases with sharp features in the hybridization
function, e.g., at low temperatures and for strong correlations
within DMFT, where correlations have a backaction onto the
hybridization function.

Since we are most interested in the regime of low tem-
perature and high electron-electron interaction, within this
section we set T/� = 0.05 and U/� = 6. Our benchmark
to adjust the parameters of the method are ED calculations,
which are based on the same set of fit parameters. Hence any
deviation between CI and ED emerges from the approximative
character of CI. We use NB = 6 bath sites, since this is the
upper limit for ED.

Figure 4 shows the difference between CI and ED, calcu-
lated as

error =
∫ ∞

−∞
dω

({
Im

[
GK

CI(ω)
]

Im
[
GK

ED(ω)
]

max

− Im
[
GK

ED(ω)
]

Im
[
GK

ED(ω)
]

max

}2

+
{

Im
[
GR

CI(ω)
]

Im
[
GR

ED(ω)
]

max

− Im
[
GR

ED(ω)
]

Im
[
GR

ED(ω)
]

max

}2)
,

(45)

where Im[Gα
β (ω)]max = maxω{Im[Gα

β (ω)]}. Note that the
worst and partially nonconvergent results obtained for m↑ >

0.35 around half filling m↑ = 0.5 are omitted. The HF values
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FIG. 4. Matrix plot of the error defined in Eq. (45) for CI
as solver for AMEA given different voltages φ and parameters
m↑ with resolution 	m↑ = 0.025. For m↑ ∈ [0.375, 0.5], the error
jumps two orders of magnitude for moderate and large voltages
and is omitted here. Green lines denote self-consistently deter-
mined parameters m↑sc [61]. The remaining parameters are the
temperature T/� = 0.05, Hubbard interaction U/� = 6, and NB = 6
bath sites.

m↑sc [61] perform better than m↑ = 0.5 for small to intermedi-
ate voltages, but the minimal difference between ED and CI is
located around m↑ = 0.3 [62]. Therefore, we fix m↑ = 0.3 for
the rest of the paper [63]. Notice that a larger voltage provides
a better agreement, so that the equilibrium case seems the
most challenging one. Therefore, we will investigate it in more
detail in Sec. III B. The matrix plot showing the deviations for
CASCI can be found in Fig. 11 within Appendix A 2.

B. Comparison with NRG and MPS

In the previous section, we confined ourselves to NB = 6
bath sites for CI to use ED as a benchmark. This does not
exploit the main advantage of CI to access larger NB which
increases the number of parameters to fit the hybridization
function for a more accurate description of the physical im-
purity model. However there is an opposing effect since the
fraction of Hilbert space addressed by CI compared to the full
Hilbert space shrinks exponentially fast with increasing NB

as can be inferred from Table I. In principle, we can address
systems with up to NB = 10 bath sites with CI, which provide
access to smaller temperatures and slightly more accurate
results than with NB = 8. However this comes at the expense
of a much longer wall time of about 5 h [64]. For this reason,
we use at most NB = 8 bath sites throughout this section.

Figure 5 shows a comparison of Im(GR) and Im(�R)
for T/� = 0.05, U/� = 6, NB specified in the legend, and
various voltages φ which are computed using CI, ED, and
MPS as solvers for AMEA. The MPS results are taken from
Ref. [31] and serve as our benchmark, since they are the

FIG. 5. Comparison of the imaginary parts of the retarded com-
ponents of the (a) Green’s function G and the (b) self-energy
� for temperature T/� = 0.05, Hubbard interaction U/� = 6, NB

bath sites specified in the legend, and various voltages φ ob-
tained from CI, ED, and MPS [31] as solvers for AMEA. NRG
[40] serves as reference for the equilibrium case. The legend of
the main figure also applies to the insets, which show the auxil-
iary hybridization functions for φ = 1/3, 1/2 and compare them to
the physical hybridization function (black dotted line) as given in
Eq. (10).

most accurate among the three [65]. In equilibrium, NRG as
implemented in [40] serves as reference. For the largest bias
voltages shown, all three approaches give almost identical
results, which means that in this case NB = 6 bath sites are
sufficient. At intermediate voltages φ/� = 1/2 and 1 the ED
results deteriorate, while CI remains comparable to MPS over
a wide frequency range. This contrast between CI on the
one hand and ED on the other can be attributed to the fits
shown in the insets of Fig. 5. While the six bath sites of ED
provide an inaccurate fit, the eight bath sites of CI capture the
physical hybridization function [66] quite well. In equilibrium
at φ = 0, CI keeps performing significantly better than ED.
With −Im[GR(0)]� ≈ 0.885, CI is very close to the T = 0
Friedel sum rule −Im[GR(0)]� = 1 [67,68]. It is thus also
comparable to the result using MPS of −Im[GR(0)]� ≈ 0.879
and NRG with −Im[GR(0)]� ≈ 0.891 at this temperature.

Compared to CI, CASCI does not change these results as
can be seen in Fig. 13 within Appendix A 2.

Since there are more powerful approaches such as NRG
[4–6] available for equilibrium conditions, we will now in-
vestigate the temperature dependence of the conductance for
the equilibrium impurity problem and compare it with NRG
as implemented in [40]. The φ = 0 conductance is obtained
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FIG. 6. Normalized equilibrium conductance G(φ = 0)/G0 as a
function of temperature for the Hubbard interaction U/� = 4, 6, and
8 with NB bath sites specified in the legend. Comparison between CI
and ED as solvers for AMEA as well as NRG [40].

by analytically differentiating the Meir-Wingreen formula
[45,69,70] with respect to the voltage φ, which reduces for
our leads in Eq. (9) (NRG) and in Eq. (10) (AMEA) to

G(φ = 0) = ∂ j(T )

∂φ

∣∣∣∣
φ=0

(46)

=
∫ ∞

−∞
dω

exp(ω/T )

πT [exp(ω/T ) + 1]2

× Im[	R(ω)]Im[GR(ω)]. (47)

It is well known [5,71] that in the Anderson and Kondo model
the conductance increases as the temperature decreases. Phys-
ically, this is due to the emergence of the Kondo peak in the
spectral function. In the limit T → 0, the spectral function
at zero frequency is independent of the interaction strength,
as stated by the Friedel sum rule [67,68]. Consequently, fol-
lowing Eq. (47), the dc conductance reaches the same value
G0 = 1/π in our units for T → 0, independently of the inter-
action.

Figure 6 shows the equilibrium conductance G(φ = 0) ob-
tained via CI and ED as solvers for AMEA, and NRG. For
better orientation regarding the relative temperature scale, we
show the Kondo temperature for each interaction strength U
[72]. At high temperatures all methods agree well, apart from
a small offset for NRG. This behavior is probably due to NRG
using the flat band spectrum in Eq. (9) instead of its smoothed
version in Eq. (10). For U/� = 4, CI gives the quantitatively
correct behavior of the conductance down to the smallest
temperature considered T/� ≈ 0.01. For U/� = 6 and 8 this
is valid down to threshold temperatures [73] T/� ≈ 0.015
and 0.023, which are smaller than their respective TK. In
any case, CI is performing significantly better than ED and
comparably to NRG for small temperatures. Comparing the

FIG. 7. Normalized equilibrium conductance G(φ = 0)/G0 as a
function of the scaled temperature T/TK for the Hubbard interactions
U/� = 4, 6, and 8 obtained with CI using NB = 8.

conductance for different U , we note that with increasing U
the temperature at which CI starts to deviate from the NRG
results increases. This is to be expected, because first, the HF
reference state is not the best choice for large U [25,26], and
second, for an accurate description of larger U , one requires a
larger state space than CI can provide. ED on the other hand
starts to deviate from NRG always at the same temperature
independently of U , since the fit of the hybridization function
does not change as U changes.

Compared to CI, CASCI does not change these results as
can be seen in Fig. 14 within Appendix A 2.

Figure 7 shows the equilibrium conductance G(φ = 0) ob-
tained with CI as already discussed in Fig. 6 but with the
temperature rescaled in units of the Kondo temperature. As
can be seen, the conductances for different interactions U
collapse quite well onto a single curve as expected and ob-
served for NRG [5,39], at least up to T ∼ TK. In other words,
the conductance for systems of different moderate to strong
interactions is characterized by a single energy scale TK.

In the following, we consider the system out of equilibrium
under challenging conditions such as small temperatures and
strong correlations. We investigate the current, conductance,
and spectral function as functions of the bias voltage at two
temperatures T = TK/4 and T = 2TK below and above the
Kondo temperature. For the smaller temperature, we expect
the presence of a Kondo peak, and thus an enhanced con-
ductance [5]. As the voltage increases, we expect the Kondo
peak to split [9,10,31,32,35,74–80], in turn reducing the dc
conductance.

Figure 8 shows the conductance [81], while Fig. 9 displays
the spectral function for various Hubbard interactions. For
comparison, we also show the NRG conductance in equilib-
rium at φ = 0, which agrees quantitatively with the results
of CI for the different U considered. Besides the enhanced
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FIG. 8. Normalized conductance G/G0 as function of the scaled
voltage φ/TK for NB bath sites specified in the legend, two different
temperatures (a) T = TK/4, (b) 2TK, and different Hubbard interac-
tion U/� = 4, 6, and 8 using the CI solver for AMEA (φ � 0). The
crosses denote equilibrium (φ = 0) results obtained with NRG.

conductance due to the Kondo peak at the smaller temper-
ature, we observe that for T = TK/4, the conductances for
the different interactions U/� = 4, 6, and 8 exhibit the same
scaling behavior with φ/TK [5]. For T = 2TK, corrections
to scaling due to the finite bandwidth [39] can be already
observed.

Shifting the focus onto the spectral functions in Fig. 9, we
observe that with larger interaction strength, the Kondo peak

FIG. 9. Spectral function obtained via the CI solver for AMEA
as a function of ω and φ for different U/� = 4, 6, and 8 at T = TK/4
and NB = 8 bath sites.

becomes sharper and splits at smaller voltage which leads to a
more rapid decline in the conductance of Fig. 8.

IV. CONCLUSION

In this paper, we used CI and CASCI [23–26] to solve the
auxiliary master equation for interacting systems in AMEA
[21,22]. On the one hand, this allowed us to treat larger
auxiliary systems with more optimization parameters in the
mapping procedure as compared to an ED-based solver [22]
and about as many optimization parameters as an MPS-based
solver [31] provides. This is key, since the accuracy of AMEA
increases exponentially with the number of optimization pa-
rameters [30]. On the other hand, CI and CASCI require
smaller runtimes than the MPS-based solver [31]. Using CI
and CASCI as solvers for AMEA is furthermore numerically
much cheaper than methods like quantum quasi–Monte Carlo
[36], fork tensor network approaches [37], or inchworm QMC
[35], which have been used to address long times or the
nonequilibrium steady state.

To illustrate the improvement of using CI and CASCI,
we investigated the steady state properties of the Anderson
impurity model as functions of the bias voltage φ and the
temperature T well below the Kondo temperature TK. We
showed that CI and CASCI provide good quality spectral
quantities comparable to MPS, and an equilibrium conduc-
tance comparable to NRG starting above and going below the
Kondo temperature for large interactions. More specifically,
we assessed the quality of the spectral functions of CI and
CASCI by comparing them with those of MPS and NRG via
the T = 0 Friedel sum rule −Im[GR(0)]� = 1 [67,68]. At the
temperature T/� = 0.05, CI and CASCI (≈0.885) perform
slightly better than MPS (≈0.879) and slightly worse than
NRG (≈0.891). Comparing the equilibrium conductance with
NRG allowed us to infer the lowest temperatures we can reach
reliably for a range of interactions. For the largest interaction
U/� = 8 considered we obtain the largest threshold temper-
ature T/� ≈ 0.023 = 0.23TK/�. The computed equilibrium
and nonequilibrium conductance quite accurately collapses
into a single function of T/TK and φ/TK for different values
of the interactions U/� = 4, 6, and 8, as long as the energies
are much smaller (about one-tenth) than the bandwidth. The
low-temperature spectrum displays a Kondo peak that splits
up with increasing bias voltage.

Having illustrated the accuracy of CI and CASCI, we now
comment on their computational costs. The CI solver with
NB = 6 bath sites and a wall clock time of ∼5 min takes com-
parably long as ED with NB = 4 (∼3 min). CI with NB = 8
bath sites requires ∼45 min which can be compared with ED
with NB = 6 (∼30 min). CASCI takes about 1.5–2 times as
long as CI, which is still quite good [64]. These short times
make CI/AMEA an appealing impurity solver for nonequilib-
rium DMFT. With respect to a plain ED/AMEA solver, one
can achieve the same accuracy with an order of magnitude
smaller wall clock time per DMFT iteration.

Up to now, we have not taken advantage of the full po-
tential of CI, because so far we have only used the HF basis.
For larger electron-electron interactions, it is probably more
advantageous to use the natural orbital basis [25,26]. We
expect its implementation to further improve the accuracy of
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FIG. 10. Construction of the many-body basis in CASCI using
the orbitals labeled by normal modes. On the left is the reference
state. The two orbitals highlighted in orange form the active space.
First, we create all states reached by applying single PH excitations
in the active space [25]. Then, each of the obtained states undergoes
the procedure depicted in Fig. 3. States that appear multiple times
are discarded. We obtain an additional state compared to CI, which is
highlighted in green. Another possible choice of active space consists
of the two orbitals highlighted in blue.

the impurity solver. Another avenue to improve CI consists
in constructing the many-body basis via adaptive sampling
[82–84].

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund
(FWF) within Project No. P 33165-N, as well as NaWi Graz.
The computational results presented have been obtained using
the D-Cluster Graz. We use the QuSpin library [85] to set
up the basis of many-body states and express the interacting
Lindbladian with it. For the reference computations in equi-
librium, we use NRG Ljubljana [40].

APPENDIX A: COMPLETE ACTIVE SPACE EXTENSION

In equilibrium, CASCI poses a straightforward way to im-
prove CI by including more excitations. Therefore, we present
its realization as a solver for AMEA and the results obtained
using it. However, in our case, CASCI does not seem to
introduce a significant improvement.

1. Method

In equilibrium, starting only from a single reference state
may become insufficient once many low-lying states are close
to the Hartree-Fock ground state. This can be improved by us-
ing the complete active space (CAS) extension of CI. Therein
one takes into account further states, which are nearly de-
generate with the reference state in terms of the effective
noninteracting Hamiltonian. The basis then consists of the
reference state, the nearly degenerate states, as well as PH
excitations applied to them. To produce the nearly degenerate
states from the reference state, one selects a set of nearly
degenerate, “active” orbitals (active space) on which a fixed
number of particles is distributed in all distinct combinations
[23,25,26]. In Fig. 10, the first two columns illustrate this for
a single particle on two active orbitals. Further basis states
generated by single PH excitations are shown in the remaining
columns.

In nonequilibrium, the reference state is the steady state
and the orbitals are labeled by normal modes. Here, we re-
strict ourselves to active spaces consisting of two orbitals

FIG. 11. Matrix plot of the error defined in Eq. (45) for CASCI
as solver for AMEA given different voltages φ and parameters m↑
with resolution 	m↑ = 0.025. For m↑ ∈ [0.375, 0.5], the error jumps
two orders of magnitude for moderate and large voltages and is
omitted here. Green lines denote self-consistently determined pa-
rameters m↑sc [61]. The remaining parameters are the temperature
T/� = 0.05, Hubbard interaction U/� = 6, and NB = 6 bath sites.

and their spin-flipped counterparts. Following the notion of
the steady state resembling a Fermi sea, we will show in
Appendix A 2 that the active space is best selected by em-
ploying orbitals of smallest |Im(εi )|. Starting from the single
reference state, we will generate the “nearly degenerate” states
by applying single PH excitations to the orbitals within the
active space. From the reference state and the “nearly degen-
erate” states, the remaining basis states are generated via PH
excitations.

In practice, we follow the procedure outlined in Sec. II E
with the following additional steps. For the steady state, be-
fore requiring Nσ − Ñσ = 0, we consider in addition the states
generated with eight P̄ operators, i.e., four PH excitations,
where the additional PH excitation shifts particles within the
active space. For the Green’s function, we similarly apply nine
P̄ operators.

2. Results

First, we check whether the choice for the parameter m↑
used for CI in Sec. III A is convenient for CASCI as well.
It is required to fully determine the interacting Lindbladian
given in Eq. (43). The system parameters are the same as
in Sec. III A, low temperature T/� = 0.05, large interaction
U/� = 6, and NB = 6 bath sites restricted by the reference
ED. Figure 11 shows the difference between CASCI and ED,
calculated via Eq. (45). As for CI, we omit the worst and par-
tially nonconvergent results obtained for m↑ > 0.35 around
half filling m↑ = 0.5. Even though the self-consistently
determined values m↑sc [61] perform better than half filling
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FIG. 12. Matrix plot of the error defined in Eq. (45) for CASCI
as solver for AMEA given different voltages φ and using different
active spaces enumerated by ζ . Details on the enumeration can be
found in the main text. The remaining parameters are the temperature
T/� = 0.05, Hubbard interaction U/� = 6, and NB = 6 bath sites.

for small to intermediate voltages, the minimal error for both
methods is located around m↑ = 0.3.

The second method parameter for CASCI is the compo-
sition of the active space. In equilibrium, the active space
can be chosen symmetrically around the highest occupied
orbital [25,26] similar to the illustration in Fig. 10. Since the
eigenvalues of the Lindbladian are not energies, but complex
values, we need another way to measure how “close” states
are to each other.

As established in Sec. II E, the imaginary part of the eigen-
values Im(εi ) takes the role of the single-particle energies
separating the occupied and empty orbitals. In analogy to
Eq. (35), the time evolution of the state obtained from a PH
excitation applied to the noninteracting steady state is

eL0t ξ̄iξ j |ρ∞0〉 = eL0t ξ̄ie
−L0t eL0tξ je

−L0t |ρ∞0〉
= ei(ε j−εi )t ξ̄iξ j |ρ∞0〉 . (A1)

A smaller difference in Im(ε j − εi ) thus implies a longer-lived
state. Starting from t → ∞ and going to shorter times, the
states contributing to the long-time behavior can be sorted
by Im(ε j − εi ) starting from the steady state. It turned out
in practice that each orbital and its spin-flipped counter-
part share the same imaginary part of the single-particle
energies Im(εi↑) = Im(εi↓). Therefore we restrict ourselves
here to states consisting of one PH excitation between
orbitals with Im(εi ) = −Im(ε j ) plus their respective spin-
flipped counterparts. This makes Im(εi ) a sufficient distance
measure.

To clarify whether Im(εi ) is a reliable criterion to select the
active space, we perform a parameter sweep, which is shown
in Fig. 12. The quantity ζ therein refers to the active spaces
sorted by their distance from the steady state measured by
Im(εi ). In terms of Fig. 10, ζ = 1 refers to the orange active
space, while ζ = 2 corresponds to the active space formed
by the orbitals highlighted in blue. Higher ζ refer to more

FIG. 13. Comparison of the imaginary parts of the retarded com-
ponents of the (a) Green’s function G and the (b) selfenergy � for
temperature T/� = 0.05, Hubbard interaction U/� = 6, NB bath
sites specified in the legend and various voltages φ obtained from
CI and CASCI as solvers for AMEA.

FIG. 14. Normalized equilibrium conductance G(φ = 0)/G0 as a
function of temperature for the Hubbard interaction U/� = 4, 6 and
8 with NB bath sites specified in the legend. Comparison between CI
and CASCI as solvers for AMEA.
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distant orbitals which are chosen symmetrically around the
boundary between occupied and empty orbitals. Each of these
active spaces consists of up to four orbitals, two occupied and
two unoccupied ones with opposite spin in terms of the ξ

operators. In agreement with our expectations, Fig. 12 shows
that, given our parameters, the active spaces labeled by ζ = 1
and 2 with the smallest Im(εi ) yield the best result. Hence
throughout this Appendix, we will choose the active space
based on the smallest Im(εi ).

Figure 13 shows a comparison of Im(GR) and Im(�R)
for T/� = 0.05, U/� = 6, NB specified in the legend, and
various voltages φ which are computed using CI and CASCI
as solvers for AMEA. It is evident that CASCI and CI
give the same results. Thus CASCI provides results which

are significantly better than ED and on par with MPS for
all considered bias voltages. The T = 0 Friedel sum rule
−Im[GR(0)]� = 1 [67,68] allows us to quantify how well
CASCI with −Im[GR(0)]� ≈ 0.885 performs in compari-
son to MPS with −Im[GR(0)]� ≈ 0.879 and NRG with
−Im[GR(0)]� ≈ 0.891.

Figure 14 shows the equilibrium conductance G(φ = 0)
obtained using Eq. (47) via CI and CASCI as solvers for
AMEA. Also here, CASCI and CI give the same results.
Hence CASCI provides the quantitatively correct behavior of
the conductance down to the smallest temperature considered
T/� ≈ 0.01 for U/� = 4 and down to the threshold temper-
atures T/� ≈ 0.015 and 0.023 for U/� = 6 and 8, which are
smaller than their respective TK.
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[55] The notation used here is taken partially from Ref. [22], except
for the factor i = √−1 in the denominator. This is because
|kL〉, |kR〉, and Lk are the eigenvectors and eigenvalues of the
Lindbladian L.

[56] A. Meister, Numerik linearer Gleichungssysteme (Springer,
Wiesbaden, 2015).

[57] A. A. Dzhioev and D. S. Kosov, J. Phys. A: Math. Theor. 47,
095002 (2014).

[58] Note that the PH excitation introduced in Eq. (38) preserves
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