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Motivated by recent experiments on Mott insulators, in both iridates and ultracold atoms, we theoretically
study the effects of magnetic order on the Mott-Hubbard excitons. In particular, we focus on spin-mediated
doublon-holon pairing in Hubbard materials. We use several complementary theoretical techniques: Mean-field
theory to describe the spin degrees of freedom, the self-consistent Born approximation to characterize individual
charge excitations across the Hubbard gap, and the Bethe-Salpeter equation to identify bound states of doublons
and holons. The binding energy of the Mott exciton is found to increase with increasing the Néel order parameter,
whereas the exciton mass decreases. We observe that these trends rely significantly on the retardation of the
effective interaction, and require consideration of multiple effects from changing the magnetic order. Our
results are consistent with the key qualitative trends observed in recent experiments on iridates. Moreover, the
findings could have direct implications on ultracold atom Mott insulators where the Hubbard model is the exact
description of the system and the microscopic degrees of freedom can be directly accessed.
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I. INTRODUCTION

The physics of excitons in semiconductors, i.e., bound
states of electrons and holes, is by now well established
[1,2]. Excitons play an essential role in technologies such
as light-emitting diodes [3], organic solar cells [4], and pho-
todetectors [5], among others. Furthermore, there has recently
been tremendous interest in hybridizing exciton states with
photon modes in optical cavities [6]. Such exciton polaritons
can form (nonequilibrium) Bose-Einstein condensates at re-
markably high temperatures, even room temperature [7–11].

Given these applications, it is important to study the
properties of excitons in systems other than conventional
semiconductors. It has been convincingly established that ex-
citonic states do exist in strongly correlated materials such as
Mott insulators [12–28], yet essential aspects of Mott excitons
remain poorly understood.

For example, it is known that Mott insulators are often
antiferromagnetic at low temperature, but very little work has
been performed to understand how and to what extent the
presence of such order affects exciton properties. The qual-
itative role of magnetization is sketched in Fig. 1—charges
remain bound so as to minimize the number of spins disrupted
by their motion—but a quantitative description has been lack-
ing.

Recent experiments have begun to investigate this question.
In Refs. [29,30], pump-probe experiments were performed on
the Mott insulator Na2IrO3 both with and without magnetic
order (controlled by varying temperature or applying an inter-
mediate pulse). The authors concluded that the binding energy
and exciton mass are both enhanced by the presence of mag-

netization. Reference [31] similarly observed that the binding
energy increases with the spin-spin interaction strength in
cuprates. See also Ref. [32], which found that the relaxation
time in Mott insulators decreases with increasing spin corre-
lations.

The same question can apply to Mott insulators in syn-
thetic quantum systems, such as ultracold gases. By loading
fermionic atoms into an optical lattice and tuning their
interactions, the Fermi-Hubbard model can be synthesized ex-
perimentally [33–37]. Unlike condensed-matter systems such
as the iridates and cuprates, for which the Hubbard model is a
significant idealization, neutral fermionic atoms in an optical
lattice are genuinely described by the Hubbard Hamilto-
nian without any additional effects arising from longer-range
Coulomb interactions, phonons, etc. Researchers have quite
recently begun investigating the interplay of spin and charge
degrees of freedom in this setting [38–44] (note that here the
“charge” excitations are not actually charged).

In this paper, we perform a theoretical study of the role
of magnetic order in Mott excitons. As depicted in Fig. 1, in
an antiferromagnetic background, a hole and doubly occupied
site can bind through a string of flipped spins. Such Mott ex-
citons differ from conventional excitons formed by Coulomb
interaction in two aspects. First, the spin-mediated interaction
is far from instantaneous, and second, the individual charges
are themselves renormalized by spin fluctuations. We will
demonstrate that both effects are necessary ingredients in the
trends reported here.

Given the complexity of the problem, our analysis requires
multiple stages. We first use slave particles to isolate spin and
charge degrees of freedom, then describe the spin dynamics
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FIG. 1. Sketch of the physics underlying spin-mediated exciton
formation in a Mott insulator. A string of flipped spins (green line)
connects the hole and double-occupancy. The energy cost associated
to the string binds them together.

by mean-field theory, calculate the dispersion of charges self-
consistently, and finally characterize excitonic states via the
Bethe-Salpeter equation. Many of the steps in this program
are analogous to those in Ref. [45], which studied charge dy-
namics in the Hubbard model. The good agreement between
the results of Ref. [45] and alternate numerical methods lends
support to the present approach.

Our key finding is that larger magnetization leads to an in-
creased binding energy of the Hubbard exciton but a decreased
mass. This observation is in some tension with interpretations
of recent experiments [30]. It also stands in contrast to conven-
tional Coulomb-mediated excitons where the binding energy
and mass are proportional to each other.

Note that the formation of Mott excitons is closely related
to the Cooper pairing of holes in high-Tc superconductors.
Similar treatments of hole-hole binding can be found in the
corresponding literature [46–50]. Nonetheless, there are dif-
ferences between the two problems as we discuss below.
Moreover, here we carry out a study of how the bound state
properties change as a function of magnetization.

In the following Sec. II, we describe the steps of our anal-
ysis in detail. Results are presented in Sec. III, and Sec. IV
concludes.

II. FORMALISM AND METHODS

Our starting point is the two-dimensional (2D) Fermi-
Hubbard model, which by now needs no introduction,

HHub = −t
∑
〈i j〉,σ

c†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

where σ ∈ {↑,↓} and 〈i j〉 denotes nearest-neighbor sites on
a square lattice. ciσ is the usual electron annihilation operator
and niσ ≡ c†

iσ ciσ . We will consider the system at half-filling
in the U � t limit. Although admittedly an idealization, es-
pecially for strongly correlated materials, Eq. (1) already
exhibits a wide range of interesting phenomena.

It is well known that in the large-U limit, the Hubbard
model features two types of excitations, associated with the
transport of charge and spin, respectively [51–54]. Further-
more, the charge excitations can be either positive or negative,
corresponding to sites with zero or two electrons, and their
creation comes with a high energy cost of order U . By analogy

FIG. 2. Sketch of the slave-particle formalism. Each of the four
possible occupancies on a site corresponds to a different type of
fictitious particle.

with conventional semiconductors, we thus expect this system
to support well-defined excitons in the dilute-charge limit.
However, long-wavelength spin excitations do not come with
an energy cost, and their presence plays a significant role in
determining the exciton properties.

There are many formalisms with which to study the Hub-
bard model [28,55–58]. Since our focus is on the motion
of only a few charges within a background of spin excita-
tions, the slave-particle formalism is particularly well suited
[45,59,60]. The steps of our calculation are as follows:

(i) Express the Hamiltonian in terms of slave particles—
doublons, holons, and spinons—and reduce to the t-J model
following the standard procedure [61].

(ii) Treat the Heisenberg interaction within semiclassical
and mean-field approximations, while neglecting the backac-
tion of doublons and holons on the magnetic order.

(iii) Calculate the dispersion of individual doublons and
holons in the magnetic background via the self-consistent
Born approximation.

(iv) Calculate exciton properties using the Bethe-Salpeter
equation.

The major limitation of this program is our approximate
description of the magnetic order. Thus, we do not claim to
have quantitatively accurate results, especially at small mag-
netization. That said, we do expect that the qualitative trends
seen here are accurate, including near the equilibrium value of
magnetization for which mean-field theory is known to work
reasonably well (see Ref. [45] and references therein).

A. Slave particles

In the slave-particle formalism, we express the electron
operator as (with σ = ±1)

ciσ = s†
i,−σ di + σe†

i siσ , (2)

where di and ei are fermionic operators and siσ is bosonic. One
can confirm that Eq. (2) is consistent with the commutation
relations. A site with a d particle is to be interpreted as a
site with two electrons (a “doublon”), a site with an e particle
is to be interpreted as an empty site (a “holon”), and a site
with an sσ particle is one with a single electron having spin
σ (a “spinon”). See Fig. 2. The physical content of Eq. (2) is
then clear: removing an electron of given spin is equivalent
to replacing the doublon with the opposite spinon if the site
is doubly occupied and replacing the spinon with a holon if
the site is singly occupied (otherwise the state is annihilated).
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Note that since every site is in one of the four states—empty,
spin up, spin down, doubly occupied—there must be exactly
one of the fictitious particles on each site,

d†
i di + e†

i ei + s†
i↑si↑ + s†

i↓si↓ = 1, ∀ i. (3)

The original Hamiltonian clearly preserves this relationship.
Substituting Eq. (2) into Eq. (1), we have that

HHub = −t
∑
〈i j〉,σ

(d†
i d j − e†

i e j )s
†
jσ siσ + U

∑
i

d†
i di

− t
∑
〈i j〉,σ

σ (d†
i e†

j si,−σ s jσ + eid js
†
iσ s†

j,−σ ). (4)

Note that the first line preserves the number of doublons and
holons, whereas the second line does not.

At large U , the second line of Eq. (4) can be treated by
perturbation theory in t/U (starting from states with a definite
number of double-occupancies). The method as applied here
is standard, and can be found in, e.g., Ref. [61]. We obtain the
t-J model,

HtJ = −t
∑
〈i j〉,σ

(d†
i d j − e†

i e j )s
†
jσ siσ + U

∑
i

d†
i di

− J
∑
〈i j〉

(s†
i↑s†

j↓ − s†
i↓s†

j↑)(s j↓si↑ − s j↑si↓), (5)

where J ≡ 4t2/U . Strictly speaking, Eq. (5) should include
additional next-nearest-neighbor terms as well as a direct in-
teraction between nearest-neighbor doublons and holons, but
these are commonly neglected.

B. Magnetic ordering

The second line of Eq. (5) is precisely the antiferro-
magnetic Heisenberg Hamiltonian, expressed in terms of
Schwinger bosons (here the spinons siσ ) [61]. We are specif-
ically considering Néel-ordered ground states with positive
magnetization on the A sublattice and negative on B. It is, thus,
convenient to express si↑ (si↓) in terms of si↓ (si↑) for i ∈ A (B)
using Eq. (3)—this is equivalent to using Holstein-Primakoff
rather than Schwinger bosons [61],

si↑ = [1 − s†
i↓si↓]1/2, i ∈ A,

si↓ = [1 − s†
i↑si↑]1/2, i ∈ B. (6)

We neglect d†
i di and e†

i ei in using Eq. (3) because we are
interested in the dilute-charge limit. From here on, we will
simply write si in place of si↓ (si↑) for i ∈ A (B). On both
sublattices, the si boson represents a fluctuation relative to
perfect Néel order.

Note that Eq. (6) cannot be an exact equality because it
does not respect the fact that [siσ , s†

iσ ] = 1. It is more of a
semiclassical approximation, valid in the limit of large spin S.
Of course, the case S = 1/2 under consideration here is far
from large, but all other analytical techniques of which we are
aware for treating long-range order via slave particles (such as
Bose-Einstein condensation of the Schwinger bosons [62,63])
have the same regime of validity. We refer to Ref. [61] for
more details.

Inserting Eq. (6) into HtJ does not yield a solvable Hamil-
tonian on its own. Thus, to progress further, we perform a
mean-field approximation by expanding HtJ to first order in
s†

i si − 〈s†
i si〉 (this is also reasonable in the semiclassical limit).

With 〈s†
i si〉 = 1/2 − m, where m is the Néel magnetization,

we find that

HtJ ≈ −
√

1 + 2m

2
t
∑
〈i j〉

(d†
i d j − e†

i e j )(si + s†
j )

+ 4(1 + 2m)J
∑

i

s†
i si + 1 + 2m

2
J

∑
〈i j〉

(s†
i s†

j + sis j )

+U
∑

i

d†
i di − NJ (1 + 2m)2. (7)

The second line is diagonalized by passing to momentum
space and performing a Bogoliubov transformation, leading
to the final Hamiltonian (neglecting constant terms),

HtJ ≈ −
√

1 + 2m

2N
t
∑

kq

d†
k+qdk (Mkqβq + Mk+q,−qβ

†
−q)

+
√

1 + 2m

2N
t
∑

kq

e†
k+qek (Mkqβq + Mk+q,−qβ

†
−q )

+U
∑

q

d†
q dq +

∑
q

ωqβ
†
qβq, (8)

where the sum is over the 2D Brillouin zone (N is the num-
ber of lattice sites) and βq ≡ uqsq + vqs†

−q is the transformed
spinon operator. With

uq ≡

√√√√√√1

2

⎛
⎜⎝1 + 1√

1 − γ 2
q

⎞
⎟⎠, (9)

vq ≡ sgn[γq]

√√√√√√1

2

⎛
⎜⎝ 1√

1 − γ 2
q

− 1

⎞
⎟⎠, (10)

where

γq ≡ 1
2 (cos qx + cos qy), (11)

the frequencies ωq and vertices Mkq entering into Eq. (8) are
given by

ωq = 4(1 + 2m)J
√

1 − γ 2
q , (12)

Mkq = 4γkuq − 4γk+qvq. (13)

Normally one would determine m self-consistently
from the ground-state spinon occupation: 1/2 − m =
N−1 ∑

q〈s†
qsq〉 = N−1 ∑

q v2
q . This is known to give m ≈ 0.3

for a 2D square lattice [45]. We will instead treat m as an
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FIG. 3. The SCBA for the single-particle propagator (either
doublon-doublon or holon-holon). The solid single line is the free
propagator, in this case simply G0

k (ε) = 1/ε, and the solid double
line is the full propagator. The dashed line is the spinon propagator,
and the black dot is the vertex, corresponding to the Hamiltonian in
Eq. (8).

independent parameter—this is an approximate (albeit crude)
means of estimating exciton properties as a function of
magnetization.

C. Self-consistent Born approximation

The self-consistent Born approximation (SCBA) gives
the doublon-doublon and holon-holon propagators by the
integral equation in Fig. 3. The same equation holds
for each propagator separately. This approximation is ex-
pected to be accurate in the dilute-charge limit, where the
charge dynamics is strongly affected by spinons but not
vice versa.

In terms of the doublon/holon self-energy �k (ε), Fig. 3
translates to (after a frequency integration)

�k (ε) = (1 + 2m) t2

2N

∑
q

M2
kq

ε − ωq − �k−q(ε − ωq)
. (14)

The quasiparticle spectrum εk is given by the solution to
�k (εk ) = εk .

Equation (14) can be solved quite efficiently. Note that all
ωq’s are positive [64], thus Eq. (14) in fact expresses �k (ε)
in terms of the self-energy at lower frequencies. We start at
sufficiently negative ε, below which we approximate �k (ε) ≈
(1 + 2m)t2/2N

∑
q M2

kq/(ε − ωq), and then compute the self-
energy at incrementally higher frequencies in terms of the
previous values. To help avoid numerical errors, we add a
small imaginary part [namely, 0.1i(1 + 2m)J] to ε.

Although one could proceed using the full �k (ε), it has
been found that the quasiparticle dispersion can be well ap-
proximated by the form [65]

εk = −2t1[cos (kx + ky) + cos (kx − ky)]

− 2t2[cos (2kx ) + cos (2ky) + 2]. (15)

This expression has a clear physical interpretation: t1 is the
amplitude for performing a two-step hop along the diagonals
of the lattice, and t2 is the amplitude for a two-step hop along
the principal axes (see Fig. 4). Thus, in what follows, we will
use for the single-particle propagators the simpler expression,

Gk (ε) = 1

ε − (1 − i0)εk
, (16)

with εk given by Eq. (15).

FIG. 4. Illustration of hopping parameters t1 and t2 for the
approximation to the quasiparticle dispersion in Eq. (15). Singly
occupied sites show the background magnetic order in which the
double occupancy hops.

D. Bethe-Salpeter equation

We next consider the two-particle Green’s function (T de-
notes time ordering),

G jd je; j′d j′e (td , te; t ′
d , t ′

e) ≡ −〈T djd (td )e je (te)e j′e (t ′
e)†d j′d (t ′

d )†〉,
(17)

and its Fourier transform Gkd ke;k′
d k′

e
(εd , εe; ε′

d , ε
′
e). Due to trans-

lational invariance, G depends only on differences in position
and time, which we choose to parametrize by the relative
coordinates,

j ≡ jd − je,

j′ ≡ j′d − j′e, (18)

r ≡ jd + je
2

− j′d + j′e
2

,

with relative times defined analogously. The corresponding
momenta are

k = kd − ke

2
,

k′ = k′
d − k′

e

2
, (19)

K = kd + ke = k′
d + k′

e.

We will use absolute and relative momenta interchangeably,
depending on notational convenience, with Eq. (19)
always giving the relationship between the two.
Gkd ke;k′

d k′
e
(εd , εe; ε′

d , ε
′
e) will often be written as Gkk′;K (ε, ε′; E ).

We determine G within the ladder approximation as
shown in Fig. 5. Although admittedly uncontrolled, this

FIG. 5. The integral equation which determines the two-particle
Green’s function, within the ladder approximation. The hatched
square is the Green’s function, and all other symbols are as in Fig. 3.
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approximation does conveniently represent the physics of
two-particle bound states being mediated by emission and

absorption of spin waves. Written out, the integral equation of
Fig. 5 is

Gkk′;K (ε, ε′; E ) = Gkd (εd )Gke (εe)

[
δkk′ + (1 + 2m) t2

2N

∑
q

∫
dω

2π i

(
Mkd −q,qMke,q

ω − (1 − i0)ωq
− Mkd ,−qMke+q,−q

ω + (1 − i0)ωq

)

× Gk−q,k′;K (ε − ω, ε′; E )

]
, (20)

where Gk (ε) is given by Eq. (16) and the vertices Mkq are as in Eq. (8).
Since our goal is to identify bound states, we reduce Eq. (20) to the Bethe-Salpeter equation. The details of this approach can

be found in Ref. [66]. We assume that G has an isolated pole in the total energy E , near which it has the form

Gkk′;K (ε, ε′; E ) ∼ −i
ψk (ε)ψk′ (ε′)

E − (1 − i0)Eb
, (21)

where the “wavefunction” ψk (ε), its time-reversed partner ψk (ε), and the bound-state energy Eb remain to be determined.
Inserting this ansatz into both sides of Eq. (20) and equating the residues at Eb on each side, we obtain a nonlinear eigenvalue
problem (the Bethe-Salpeter equation),

ψk (ε) = Gkd

(
Eb

2
+ ε

)
Gke

(
Eb

2
− ε

)
(1 + 2m) t2

2N

∑
q

∫
dω

2π i

(
Mkd −q,qMke,q

ω − (1 − i0)ωq
− Mkd ,−qMke+q,−q

ω + (1 − i0)ωq

)
ψk−q(ε − ω). (22)

Eb and ψk (ε) are given by the solution to Eq. (22). Note that they will depend on the center-of-mass momentum K .
ψk (ε) is the bound-state wavefunction in a quite literal sense: It is the Fourier transform of

ψ j (t ) = 〈0|T dj (t )e0(0)|b〉, (23)

where |b〉 denotes the bound state and |0〉 denotes the ground state. Note that t = 0 is of particular interest since it gives the
amplitude for simultaneously observing the holon at site 0 and the doublon at site j. Thus, to simplify the problem, we integrate
Eq. (22) over ε, and furthermore, make the ansatz,

ψk (ε) = −Gkd

(
Eb

2
+ ε

)
Gke

(
Eb

2
− ε

)
(Eb − εkd − εke )�k, (24)

with �k independent of ε. The explicit factor of Eb − εkd − εke is included so that �k is the equal-time wavefunction, i.e.,
�k = ψk (t = 0). This ansatz allows us to perform the ε integral straightforwardly, giving a closed equation for Eb and �k ,

(Eb − εkd − εke )�k = − (1 + 2m) t2

2N

∑
q

(
Mkd −q,qMke,q

Eb − εkd −q − ωq − εke

+ Mkd ,−qMke+q,−q

Eb − εkd − εke+q − ωq

)
�k−q. (25)

Equation (25) is the two-particle Schrödinger equation albeit
with an energy-dependent potential. We find the values of Eb

at which it has a nonzero solution and record the correspond-
ing eigenvector.

Strictly speaking, Eq. (24) is not a valid ansatz for ψk (ε),
i.e., it does not solve the frequency-dependent Eq. (22).
However, it has a clear physical interpretation. The Fourier
transform ψk (t ) gives the wavefunction for inserting the dou-
blon and holon separated by time t [see Eq. (23)]. The
poles coming from the single-particle propagators in Eq. (24)
correspond to the phase factor acquired by the remaining
particle during that interval, and our ansatz amounts to ne-
glecting any other time dependence. This approximation
has been applied previously to study holon-holon binding
[49], and we expect it to be qualitatively accurate for our
purposes.

Equation (25) and those preceding it differ from the equa-
tions for holon-holon binding in two respects. First, the
holon-holon equations must include exchange terms not found

here. Second, due to the relative phase between the doublon-
spinon and holon-spinon vertices, the effective potential in
Eq. (25) would have the opposite sign for the holon-holon
problem.

III. RESULTS

A. Single-particle properties

We first review the behavior of individual quasiparticles,
determined within the SCBA as described above. Although
these calculations have been reported previously, e.g., in
Refs. [59,65], it will be useful to reproduce them here.

Figure 6 shows the quasiparticle dispersion throughout the
Brillouin zone with the magnetization set to the equilibrium
value for concreteness. As noted above, it can be well ap-
proximated by a next-nearest-neighbor hopping model with
amplitude t1 for moving along the diagonals of the lattice and
amplitude t2 for moving along the principal axes (see Fig. 4).

075111-5



HUANG, BALDWIN, HAFEZI, AND GALITSKI PHYSICAL REVIEW B 107, 075111 (2023)

FIG. 6. Dispersion of individual quasiparticles (both doublons
and holons) within the SCBA for a lattice of size 32 × 32. Data
shown are for t/J = 2, m = 0.3.

The form of the dispersion is not sensitive to the value of mag-
netization. However, the effective hopping amplitudes, which
we determine empirically by fitting the computed spectrum to
Eq. (15), do depend on m as shown in Fig. 7.

Some features of the dispersion can be explained by
a simple Hartree-Fock (HF) approximation to the original
Hamiltonian in which the Hubbard interaction is replaced by
ni↑〈ni↓〉 + 〈ni↑〉ni↓. Assuming Néel order for 〈niσ 〉, the Hamil-
tonian becomes a tight-binding model on a bipartite lattice
with dispersion,

ε
(HF)
k =

√
U 2 + 4t2(cos kx + cos ky)2

∼ U + 2t2

U
(cos kx + cos ky)2, (26)

using that t  U . Up to a constant shift, the second line is
equivalent to Eq. (15) for the special case t1 = 2t2. Note, in
particular, that t1, t2 < 0. Thus, Hartree-Fock correctly pre-
dicts that the band minimum is within the lines kk + ky =
±π . It also correctly suggests that the bandwidth should be
significantly reduced to O(J ) instead of O(t ). However, it
incorrectly claims that the dispersion is degenerate along the
entire magnetic Brillouin-zone boundary. The more sophisti-
cated SCBA resolves this degeneracy, identifying four minima
at (kx, ky) = (±π/2,±π/2).

Recent work on magnetic polarons in the t-J model [67,68]
has made clear that this behavior can be understood by the
charge excitations forming spinon-charge bound states (the
“polarons”), held together by strings of displaced spins (much
as we have sketched in Fig. 1 but with individual charges).
The charges are forced to move on the timescale set by their
slower spinon partners, namely, O(1/J ), and are subject to
the bipartite lattice felt by the spinons. The dispersion results
shown above confirm this string picture quite nicely if one in-
terprets them as being for the polaron as a whole. With that in
mind, it is rather striking that these three approaches—SCBA,

FIG. 7. (Top) Fitted parameters of the quasiparticle dispersion
[Eq. (15)] as a function of magnetization for a lattice of size 32 × 32
with t/J = 2. (Bottom) Quasiparticle bandwidth versus magnetiza-
tion for the same system.

Hartree-Fock, and the string picture—all lead to consistent
conclusions.

Returning to Fig. 7, we see that the bandwidth W increases
noticeably as the magnetization increases. Equivalently, the
single-particle mass decreases. Within the framework of our
calculation, the explanation is clear: a doublon/holon can
move only if a spinon takes its place [see Eq. (5)], and since
one spinon factor is always in the direction of the Néel mag-
netization, the doublon/holon hopping term is proportional to√

(1 + 2m)/2.

B. Exciton properties

We now turn to the exciton properties as functions of
magnetization, using the Bethe-Salpeter equation. All of the
quantities presented here are straightforward to compute from
the energy Eb and wavefunction ψk given by Eq. (22).

Figure 8 shows the energy of the lowest internal state as
a function of the center-of-mass momentum K . As was the
case for the single-particle dispersion, the shape of the exciton
dispersion is not particularly sensitive to the magnetization.
Note that the bottom of the band is not at the origin but rather
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FIG. 8. Dispersion of the exciton center-of-mass motion for a
lattice of size 32 × 32. Data shown are for t/J = 2, m = 0.3.

at (Kx, Ky) = (π, π ). The wavefunction of the (π, π ) state
is shown in Fig. 9. We leave for future work a full group-
theoretic classification of the exciton wavefunctions based
on square-lattice symmetry, including the selection rules for
creating Mott excitons, but we expect that it can be carried out
straightforwardly—for example, the wavefunction in Fig. 9
has s-wave symmetry about the point (π/2, π/2) [which is
the high-symmetry point of Eq. (25)].

The binding energy, mass, and radius of the exciton are
plotted versus magnetization in Fig. 10. We see that as one in-
creases the magnetization m, the mass decreases whereas the
binding energy and size increase. It is interesting to compare
these trends with what one would expect for a conventional
exciton formed via Coulomb attraction. In that situation, a
decrease in mass is associated with an increase in radius and
a decrease in binding energy. Here, we find a similar relation-
ship between radius and mass, but the binding energy instead
scales inversely with mass.

FIG. 9. Exciton wavefunction in (relative) momentum space at
total momentum (Kx, Ky ) = (π, π ), for the same system as in Fig. 8.

FIG. 10. Exciton properties as functions of magnetization m for
various t/J’s and a lattice of size 32 × 32. The t/J → ∞ curves are
obtained from Eq. (27). Vertical dashed lines indicate the equilibrium
value of m. (Top) Binding energy. (Center) Mass. (Bottom) Diameter.

Equation (25) can be simplified further in the large-t/J
limit. We will see that Eb scales as t , whereas εk and ωq

are asymptotically smaller [65]. Thus, we can neglect the
single-particle and spinon dispersions, leaving the equation,

E2
b �k = − (1 + 2m) t2

2N

∑
q

(Mkd −q,qMke,q

+ Mkd ,−qMke+q,−q )�k−q.

(27)

Although still not of the Schrödinger form, Eq. (27) is much
simpler to solve than Eq. (25): The kernel on the right-hand
side no longer depends self-consistently on the energy (and
as claimed, Eb ∼ t). The results obtained from the large-t/J
equation are plotted alongside the others in Fig. 10.

As is clear from Eq. (25), the spinon-mediated interaction
between charges is not instantaneous. To assess the impor-
tance of this retardation, we have compared the results in
Fig. 10 to what would be obtained through the static approx-
imation [setting ω = 0 in the kernel of Eq. (22)]. The static
approximation would predict significantly different results as
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FIG. 11. Comparison between the full results and the two ap-
proximations considered in the text. Data shown are for t/J = 2 and
a lattice of size 32 × 32. Vertical dashed lines indicate the equilib-
rium value of m. For the fixed-mass points, the values of t1 and t2 are
set to their values at m = 0.5 (see Fig. 7).

seen in Fig. 11: The binding energy would instead decrease
slightly with magnetization and the mass would increase
slightly. Thus, the retardation of the effective interaction is an
essential ingredient to the behavior seen here.

Similarly, one can ask whether the trends observed in
Fig. 10 are due primarily to changes in the spinon behavior or
rather due to the single-particle mass, which itself decreases
with magnetization. We have repeated the above calculations
under “fixed-mass” conditions in which the single-particle
parameters t1 and t2 are kept fixed (to their values at m = 0.5)
as we vary the magnetization. Figure 11 shows that each of
the three observables responds differently. The binding energy
becomes more sensitive to magnetization, indicating that the
quasiparticle and spinon properties play antagonistic roles. On
the other hand, the exciton mass becomes less sensitive—the
change to the effective interaction suppresses the mass by
itself. Finally, the exciton radius shows the reverse behavior
to before, instead decreasing with magnetization (although the
size remains quite small in absolute terms).

Certain trends seen here are somewhat surprising. For
example, we find that the exciton radius increases with in-

creasing magnetization, but one might have expected it to
decrease. The fixed-mass calculation provides a partial ex-
planation: the spin waves on their own do, in fact, force the
charges closer together at larger magnetization, but this ef-
fect is overcompensated by each individual charge becoming
lighter. Whether the charges becoming lighter is itself a real
effect or rather an artifact of our approximations is less clear,
and something that warrants further investigation.

It is also surprising that the exciton binding energy does not
vanish as J/t → 0 since the binding is mediated by spin waves
in the first place. Although more systematic studies are clearly
needed, this does not strike us as necessarily contradictory.
Keep in mind that we are considering the behavior of a single
doublon-holon pair on top of an antiferromagnetically ordered
background. Setting J = 0 does not change the fact that our
initial state is ordered, nor that the motion of charges disturbs
that order—in the slave-particle language, the spinons are
inert at J = 0, but the hopping of a charge does still leave
a string of spin excitations in its wake [see Eq. (7)]. It is
conceivable that interference effects analogous to Nagaoka
ferromagnetism [61,69] [whereby background ferromagnetic
order lowers the energy of a single hole by O(t ) even at J = 0]
could bind pairs of charges together in an antiferromagnetic
background as well, implying Eb = O(t ). Further investiga-
tion is certainly warranted, however.

One final surprise is that the binding energy does not vanish
at m = 0 either, but this we fully expect to be an artifact
of our approximations. We have treated the magnetic order
along the lines of spin-wave theory—this is most justified at
full magnetization and seems to work well at the equilibrium
magnetization [45] but fails at m = 0. We do not see the
failure at m = 0 as invalidating the trends found for larger
magnetization, however.

The recent pump-probe experiments in Refs. [29,30] have
investigated how excitons are influenced by magnetic order
in the Mott insulator Na2IrO3. Our results support their in-
terpretation in some aspects but not in others. In Ref. [29],
the authors observe an increase in the fraction of bound
excitations when below the Néel temperature, which they at-
tribute to an increase in the exciton binding energy. Figure 10
shows that magnetic order does indeed increase the binding
energy. On the other hand, Ref. [30] demonstrates that the
relaxational dynamics following a pump are slower in the
presence of magnetic order. This is attributed to the mass
increasing with magnetization, yet we have observed the op-
posite (consistent with past works calculating the dependence
on J/t [60,65,70]). Given the highly nonequilibrium nature of
the experiments as well as the approximations inherent in an
analytical approach, further investigation is clearly needed.

Lastly, let us compare the present calculation of doublon-
holon binding to that of holon-holon binding, which is
obviously of significant interest in its own right [58,71].
Clearly the two have much in common, yet there are two
important differences. First, the integral equation which de-
termines the two-particle Green’s function (Fig. 5) has an
additional exchange term due to the indistinguishability of
the holons. Second, even the direct term comes with an extra
minus sign, i.e., the effective interaction is of opposite sign.
The sign can be removed by redefining the hole operator on
one sublattice, but the additional phase may modify further
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results depending on the application. It is important to keep
these distinctions in mind when relating the present results to
the high-Tc literature.

IV. CONCLUSION

We have studied the role that magnetic order plays in the
formation of excitons within Mott insulators, using the Hub-
bard model as a concrete (albeit simplified) Hamiltonian. The
binding energy increases in the presence of antiferromagnetic
magnetization, whereas the exciton mass decreases. The size
of the exciton increases slightly, yet the radius is never more
than a lattice spacing. Using the standard classification, these
are Frenkel excitons regardless of magnetic order.

In addition, we have established that the trends observed
here require a detailed understanding of the many-body dy-
namics in these systems. Retardation effects in the effective
spinon-mediated interaction are essential. Furthermore, the
constituent charge and spin excitations are each affected sepa-
rately by the background magnetic order in ways cooperative
for some exciton properties but antagonistic for others.

It must be noted that despite the complexity, there are
significant limitations to our approach. In particular, we have
made approximations in the spirit of linear spin-wave theory,
which is only justified at large spin S and full magnetization
(neither of which we assume here). Thus, we do not expect
these results to be quantitatively accurate—we instead view
this analysis as expressing our physical intuition regarding
Mott excitons in the language of slave particles, from which
we can make sharp predictions to be verified or falsified by
more systematic investigations.

As an outlook, the predictions made here will be important
when analyzing recent and future experiments on the opti-
cal properties of strongly correlated electronic materials. The
existing experiments are quite complex and require interpreta-
tions of their own. Our results agree with those interpretations

in some respects but disagree in others. A complete under-
standing of the systems will require many approaches both
experimental and theoretical, including but not limited to the
one described here.

Particularly promising are the recent experiments on
fermionic atoms in optical lattices [41,42,44]. Since ultracold
gases do not have many of the complicating features found
in condensed-matter systems, we expect that this will be a
valuable direction to explore further. It is also likely that our
conclusions, being based on the single-band nearest-neighbor
Hubbard model, are more applicable to those systems than to
materials such as the iridates. Importantly, current quantum
gas microscopes allow one to directly create localized dou-
blons and holons via optical tweezers and reliably measure the
spin correlation functions [43]. Such an unprecedented direct
access to the system microscopics will provide a powerful
way of investigating many-body excitons.
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J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and

L. S. Dang, Bose–Einstein condensation of exciton polaritons,
Nature (London) 443, 409 (2006).

[8] J. Keeling, F. M. Marchetti, M. H. Szymańska, and P. B.
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