
PHYSICAL REVIEW B 107, 075109 (2023)

Phase diagram of mixed-dimensional anisotropic t-J models

Julius Dicke , Lukas Rammelmüller, Fabian Grusdt , and Lode Pollet
Arnold Sommerfeld Center for Theoretical Physics, LMU Munich, D-80333 Munich, Germany

and Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany

(Received 20 October 2022; revised 17 January 2023; accepted 18 January 2023; published 6 February 2023)

We study the phase diagram of two different mixed-dimensional t-Jz-J⊥ models on the square lattice, in
which the hopping amplitude t is only nonzero along the x direction. In the first model, which is bosonic,
the spin-exchange amplitude J⊥ is negative and isotropic along the x and y directions of the lattice, and Jz

is isotropic and positive. The low-energy physics is characterized by spin-charge separation: the holes hop
as free fermions in an easy-plane ferromagnetic background. In the second model, J⊥ is restricted to the x
axis while Jz remains isotropic and positive. The model is agnostic to particle statistics, and shows stripe
patterns with antiferromagnetic Néel order at low temperature and high hole densities, in resemblance of the
mixed-dimensional t-Jz and t-J models. At lower hole density, a very strong first-order transition and hysteresis
loop is seen extending to a remarkably high 14(1)% hole doping.
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I. INTRODUCTION

Competing orders, in which radically different phases ap-
pear with very similar ordering temperatures, are a hallmark
of highly correlated systems and high-temperature supercon-
ductors in particular [1–4]. The interplay between hole motion
and local antiferromagnetic correlations plays a crucial role,
although antiferromagnetism and superconductivity are rarely
seen together and tend to suppress each other on long length
scales. The most recent studies find stripe order in the Hub-
bard and t-J models [5–8], which are the minimal models
capturing the localization of the d electrons. But it has also
been known that various ground states of different nature may
be close in energy [9], with extreme sensitivity to parameters
such as the next-nearest hopping amplitude t ′ [10]. Whereas
it is difficult to estimate the role of an individual parameter
in a frustrated parameter landscape, nematicity is generally
accepted to favor stripe formation [3].

In previous work, two of us studied the phase diagram
of the mixed-dimensional t-Jz model [11], in which the hop-
ping is one-dimensional (along x) but the Ising spins interact
via Jz isotropically and antiferromagnetically. Its phase dia-
gram showed a chargon phase (i.e., a phase without order)
at high temperature, stripes with antiferromagnetic domains
modulated by the hole doping at low temperature, and a
meson phase consisting of paired holes at low hole density
and at low but finite temperature. The phase diagram had
a natural explanation in terms of a Z2 lattice gauge theory.
The purpose of the present paper is to examine the effect of
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quantum spin-exchange interactions absent in Ref. [11]. This
will be done for two different cases: (i) spatially isotropic but
ferromagnetic spin-exchange interactions (a bosonic model)
realized for α = 1 in Eq. (1), and (ii) spatially anisotropic
spin-exchange interactions purely oriented along x realized
for α = 0 in Eq. (1).

The second purpose of our work is to study how a
one-dimensional hopping amplitude affects the results found
for isotropic hopping amplitudes and ferromagnetic spin-
exchange interactions, as was studied in the bosonic t-Jz-J⊥
model of Refs. [12,13]. The authors found for any J⊥/Jz < 1
phase separation into a superfluid hole-rich and an antifer-
romagnetic hole-free region at low enough hole density. Its
occurrence was claimed on the basis of the string picture
of Brinkman and Rice [14], which excludes the case J⊥ =
Jz [15]. The physics of models interpolating between that of
Refs. [12,13] on the one hand, and Ref. [11] on the other hand,
will be reported here.

Our main result is the description of all phases for the mod-
els with α = 1 and α = 0 in Eq. (1) at constant |J⊥| = Jz =
0.4 (the in-plane component is ferromagnetic), and hopping
amplitude t = 1 for temperatures down to βt = 20 obtained
by first-principles quantum Monte Carlo simulations. For
α = 1, the spins show an easy-plane ferromagnetic order for
nonzero hole doping. The holes move in this spin background
as if they were free particles, showing Friedel oscillations.
For α = 0, we find at large hole doping density nh > 14(1)%
a Néel-type, hidden antiferromagnetic order. The holes form
a periodic structure along the x direction, leading to vertical
stripes. The spins are oriented in opposite directions across
a hole. The Néel temperature and the hole ordering temper-
ature coincide, making the transition first order. At lower
hole densities, we see clear signs of a very strong first-order
transition, accompanied by a strong hysteresis loop, between
the hole-free perfect Néel state and a phase with the spin and
charge stripes described above.
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FIG. 1. Illustration of an exchange cycle that leads to a sign
problem for in-plane antiferromagnetic [i.e., J⊥ < 0 in Eq. (1)] spin
coupling when α > 0. The red line indicates which spins or holes
are exchanged in each step. The loop consists of moving the hole
once and then moving the up spin clockwise around the plaquette.
The last configuration is the same as the initial configuration because
of the indistinguishability of the down spins. The shown exchange
loop involves two hopping amplitudes, two spin exchanges in the y
direction and one in the x direction. It is the latter that is relevant
for the sign structure, even on a bipartite lattice, since the sign of the
configuration is given by (−1)nhop+ns.e. , with nhop and ns.e. the total
number of particle hopping and spin exchanges, respectively, present
in the path integral configuration.

The paper is structured as follows. In Sec. II we introduce
the model and define the main observables of interest. In
Sec. III we report our findings for the model with α = 1,
which lead to a picture of an effective spin-charge separation.
In Sec. IV we show how vertical stripes for large hole densities
and hysteresis for low hole densities are found in the model
with α = 0. We conclude in Sec. V.

II. MODEL

The system is defined on the square lattice of size Lx × Ly

with lattice constant a = 1 by the Hamiltonian

Ĥ = −t
∑

σ

∑
〈i,j〉x̂

(P ĉ†
i,σ ĉj,σP + H.c.)

+ Jz

∑
〈i,j〉

(
Ŝz

i Ŝz
j − n̂in̂j

4

)
− J⊥

2

∑
〈i,j〉x̂

(Ŝ+
i Ŝ−

j + H.c.)

− α
J⊥
2

∑
〈i,j〉ŷ

(Ŝ+
i Ŝ−

j + H.c.), (1)

where ĉ†
i,σ creates a boson of type σ at site i and correspond-

ingly ĉj,σ destroys one. All parameters are taken positive. The
notation 〈i, j〉(〈i, j〉μ̂) denotes a pair of neighboring sites i and
j (along direction μ̂ = x̂, ŷ).

The operator n̂i = ∑
σ ĉ†

i,σ ĉi,σ counts the total number
of particles on lattice site i. The operators Ŝz

i = 1
2 (n̂i,↑ −

n̂i,↓), Ŝ+
i = ĉ†

i,↑ĉi,↓, and Ŝ−
i = ĉ†

i,↓ĉi,↑ are the usual spin-1/2
operators. The projectors P ensure that at most one particle
resides on a given lattice site. We consider two different cases:
(i) fully isotropic spin-exchange interaction (α = 1), and (ii)
spin-exchange terms restricted to the x direction only (α = 0).
Unless otherwise noted, all results will be presented for the
isotropic case Jz = J⊥ = 0.4 with hopping set to t = 1, such
that t/J = 2.5 (corresponding to U = 4t2/J = 10 in terms of
a Hubbard model). This is also a typical value for the cuprates.

The model in Eq. (1) is written such that positive Jz reflects
antiferromagnetic (AFM) couplings in the z direction but
positive J⊥ reflects in-plane ferromagnetic coupling, which
is necessary to prevent the sign problem for α > 0, as is
explained in Fig. 1. For α = 0, the model is sign-free and
furthermore particle statistics agnostic in the case of open

boundary conditions since the charge degrees of freedom
never leave a row. The model possesses spin SU (2) symmetry
only at zero hole density and if simultaneously α = 1.

Regardless of the nature of the spin-flipping term, the re-
stricted one-dimensional (1D) hopping in Eq. (1) conserves
the number of holes per row. We always choose the same
number of holes per row in canonical simulations, or the same
chemical potential in grand-canonical simulations. Moreover,
for α = 0, the ↑ and ↓ densities are conserved separately
in each row. We usually work in the zero magnetization
sector for an even number of holes, and in the sector with
total Sz = 1/2 for an odd number of holes. The model is
addressed with path integral quantum Monte Carlo simula-
tions using worm updates [16] in a straightforward adaptation
of Ref. [17]. The main quantities of interest are the kinetic,
potential, and total energy, the spin-spin correlation func-
tions Cz(r1, r2) = 〈Sz

r1
Sz

r2
〉 and C⊥(r1, r2) = 〈S+

r1
S−

r2
+ H.c.〉,

and the hole-hole correlation function ρhh(r1, r2) = 〈(1 −
nr1 )(1 − nr2 )〉. For translationally invariant systems we also
use the notation Cc(r) = Cc(r = r1 − r2, 0), with c = z,⊥.

Experimentally, the model in Eq. (1) can be realized start-
ing from pseudo-spin-1/2 bosons on a square lattice and
subject to a strong tilt � along the ŷ direction in order to
inhibit particle tunneling along ŷ [18]. For large on-site Hub-
bard interactions, the bosonic superexchange along ŷ realizes
ferromagnetic terms on 〈i, j〉x̂, with J⊥ > 0 in Eq. (1) [19,20].
Similarly, superexchange along the gradient realizes J⊥ terms
with tunable sign on 〈i, j〉ŷ [20,21]. By adding spatially
isotropic Rydberg-Rydberg interactions, the Ising terms in
Eq. (1) can be realized [22,23]. For α = 0, the gradient �

can be removed if a sufficiently strong anisotropic lattice
guarantees that tunneling along ŷ can be neglected, ty = 0
along 〈i, j〉ŷ as required.

III. MODEL WITH ISOTROPIC SPIN-EXCHANGE
TERMS α = 1

For the spin-isotropic mixed-dimensional t-J model with
α = 1 in Eq. (1), no simple Z2 lattice gauge structure can
be introduced, unlike Ref. [11]. We see in Fig. 2 that the
spins show ferromagnetic easy-plane ordering at low tem-
perature for any nonzero hole doping: the C⊥(r) correlator
approaches a temperature-independent constant at large dis-
tances on our finite system size. Spin correlations along the
z axis decay exponentially, unless at zero hole density when
the spin SU (2) symmetry is preserved. For finite hole density,
the spin symmetry is U (1). Since it is impossible to break a
continuous symmetry in two dimensions at finite temperature
thanks to the Mermin-Hohenberg-Wagner theorem [24,25],
true long-range order cannot exist. However, when lowering
the temperature from the paramagnetic phase, a Kosterlitz-
Thouless transition to a quasi-long-range order is nevertheless
possible [26]. Such a quasi-long-range ordered phase has
therefore a zero in-plane magnetization, but a nonzero spin
stiffness. This can be detected in the path integral Monte
Carlo simulations by computing the winding number fluc-
tuations, which are proportional to the spin stiffness [27].
In the charge sector, we observe no correlations between
the rows, ruling out any type of stripe order. Within each
row, however, Friedel oscillations in the hole-hole correlation
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FIG. 2. In-plane spin ordering for the model with α = 1 on a
lattice of size Lx × Ly = 30 × 30 with periodic boundary conditions
and hole density nh = 6/30 per row. The plot shows the spatial de-
pendence of the the easy-plane correlation function C⊥(r) for several
temperatures. The curves for the three lowest temperatures lie on top
of each other, where near ordering is seen because of the finite system
size. The correlator decays as a power law at any finite temperature
in the thermodynamic limit.

function can be observed at low enough temperature, as is
shown in Fig. 3. The density-density correlation function can
be computed analytically from ρ0(r, 0)ρ0(0, r), where the
one-body density matrix for spinless free fermions is given
by ρ0(r, r′) = 1

Lx

∑
k nkeik(r−r′ ). Here, nk is the Fermi-Dirac

distribution, nk = 1
exp(βεk )+1 with εk = −2t cos k − μ, μ the

chemical potential, and k = 2πnx
Lx

, nx = 0, 1, . . . , Lx − 1. In
Fig. 3 we used the T = 0 expression where the momentum
distribution simplifies to a step function with the jump at
kF . Note that fewer holes require lower temperatures before
the ground state is reached. Similar to the charge- and spin-
isotropic case considered in Refs. [12,13] we observe no
indication of phase separation for α = 1.

Our observations can be explained in terms of a generalized
spin-charge separation picture. Although spin-charge sepa-
ration is well established for one-dimensional systems, the
present system is one-dimensional only in the charge sector.
Nevertheless, when the spins are ferromagnetically in-plane
ordered, there is no penalty for moving the holes around,
unlike in the string picture for antiferromagnetic order, and the
spin and charge sectors can hence effectively decouple. We
recall that an effective decoupling was also observed in the
different model of Ref. [28], where the hopping amplitudes
were one-dimensional but in orthogonal directions for up and
down spins.

IV. MODEL WITH ISOTROPIC SPIN-EXCHANGE
TERMS α = 0

We proceed with the model in which spin-exchange loops
are turned off: The only closed loops one can make with
the hopping and spin-exchange terms in the Hamiltonian for
α = 0 are backtracking ones (the loops shown in Fig. 1 are

impossible), rendering the system agnostic to the particle
statistics. The two-dimensional nature of the Jz term does
not alter this but is expected to enhance easy-axis antiferro-
magnetism, similar to the physics of the mixed-dimensional
t-Jz model of Ref. [11]. We thus focus on stripe formation
with antiferromagnetic easy-axis order. At low hole doping,
however, the antiferromagnetic order gives rise to a string
picture [14] when moving holes around. As this leads to a
strong increase in the potential energy that cannot be fully
mended due to the lack of quantum fluctuations along the y
direction, we investigate a possible phase separation.

A. The regime of low hole density

Phase separation for low hole doping in the (fermionic) t-J
models has a long history and remains a controversial issue in
two dimensions for physically relevant values of J [29–37].
But for quasi-1D systems consisting of ladders with just a
few legs, Density matrix renormalization group studies could
clearly establish the phase separation boundary, even at low
hole hoping [35,37]: the boundary is close to J/t = 2 for two
legs, and shifts to lower values of J/t ∼ 1.4 when increasing
the number of legs to six.

In order to examine whether our system phase separates
into a hole-rich phase and a hole-free phase, we follow the ar-
gument of Refs. [29,35], in the canonical ensemble. Suppose
phase separation is found between a region with zero holes
and a hole-rich phase with hole density x = xps (note that we
use the notation nh for hole densities in simulations, which are
restricted to be rational numbers). Let the respective energies
be E (0) and E (xps). Then for any 0 < x < xps the energy of
the homogeneous phase E (x) will be higher than the linearly
interpolated one, Elin(x) = E (0) + x E (xps )−E (0)

xps
. This is just the

standard Maxwell argument. In the phase separated regime,
we will thus measure energies that are linear in the hole con-
centration in the simulations, provided that the simulations are
ergodic and the system sizes sufficiently large (such that both
phases fit onto the total system size and the surface energy is
negligible). If this is not the case, then one might observe a
uniform metastable state, with higher energy. In order to find
the density xps of the hole-rich phase, one can directly use the
previous formula by minimizing Elin(x) with respect to xps.
It follows that the linear curve is also tangential to E (x) at
x = xps. Our energies per site were found to be quasilinear in
the doping (not shown), but with an upward curvature clearly
seen for six holes (with linear size Lx = 30, thus nh = 0.2).
Since matching the tangential slope is difficult, we switched
to the original argument by Emery et al. [29] to determine xps,
and which was, for instance, also used in Refs. [13,33,36].
It is likewise based on the existence of a negative inverse
compressibility for a finite system [33]. One determines the
minimum of the energy per hole, which is defined as

ε(x) = E (x) − E (0)

Nx
, (2)

where Nx is the total number of holes. The hole density for
which the minimum is found, is xps. We expect this formula
to work well when xps is not too small [as it enters the de-
nominator in Eq. (2)]. For hole densities x < xps the system
must phase separate: it is energetically favorable to create a
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FIG. 3. Hole-hole correlation function along the x direction for hole densities nh = 3/30, 4/30, 5/30, 6/30, 7/30, 8/30 (top left to bottom
right). The dashed black line corresponds to the expression of noninteracting 1D spinless fermions at zero temperature. Periodic boundary
conditions are used.

region with hole density xps and one without holes in such
a way that the total hole concentration remains x. The en-
ergy of the separated state is lower than that of the uniform
state.

In Fig. 4 we show the extrapolation of the total energy
on a 30 × 30 lattice to zero temperatures. From Eq. (2) we
obtain then the energy per hole, shown in Fig. 5. We observe
a strong odd/even effect, owing to the presence of geometric
frustration in the case of odd hole numbers with periodic
boundary conditions. The curve for even hole numbers (the
one relevant for us) shows a flattening at low hole density with
a shallow minimum for a hole density nh = 4/30.

In order to have a different view on the problem of phase
separation, we switched to grand-canonical simulations and
found strong indications of a hysteresis loop at low hole
doping, as shown in Fig. 6. A hysteresis loop is a character-
istic of a strong first-order transition, in this case between an
antiferromagnetic defect-free state, and a striped phase that
is discussed further in the next section. The hysteresis loop
persists to a remarkably high hole density in line with the
value of the previous parapraph, nh ≈ 0.14 (for Lx = 60), and
is only seen at low temperature. The figure was taken for
βt = 20 but we saw no indications of hysteresis for βt = 10
(as we will see in the next section, the critical temperature
for stripe formation is also lower than βt = 10). For slightly

higher hole densities in the range 0.15 � nh � 0.25, simula-
tions converge slowly, with plenty of metastable states. For
Lx = 60, however, the Monte Carlo algorithm was eventually

FIG. 4. Extrapolation of the total energy to the ground state for
various hole densities for a system of Lx × Ly = 30 × 30 lattices with
periodic boundary conditions. The curves correspond to different
numbers of holes per row, ranging from 0 to 8, top to bottom.
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FIG. 5. Energy per hole [Eq. (2)] at zero temperature as a func-
tion of hole density extracted from Fig. 4. Odd and even hole
numbers are plotted separately but only the even hole numbers are
relevant. The lowest energy is indicated by the black dashed line at a
hole density of 4/30 ≈ 0.1333.

able to tunnel out of the metastable minima. For Lx = 120
this was not always the case, as can be seen in Fig. 6 (see,
e.g., the data point at nh = 0.88), and also the hysteresis loop
did not fully close. The latter can be made plausible for open
boundary conditions as follows: For μ/t � 1 the system on
the upper branch is for Lx = 120 closer to a hole-free antifer-
romagnet than for Lx = 60, since the holes are found almost
exclusively in the lowest and highest rows. Hence, more rows
have defect-free antiferromagnetic order for Lx = 120, Ly =
60 than for Lx = 60, Ly = 30. After the sizable density jump
seen between μ/t = 0.96 and μ/t = 1 of the order of 14%
one would then expect that the densities at μ/t = 0.96, and

FIG. 6. Particle number as a function of chemical potential μ

(taken constant for each row) for a system with parameters t =
1, J = 0.4, α = 0, β = 20, Ly = Lx/2, open boundary conditions,
and two different system sizes, Lx = 60 and Lx = 120. The arrows
indicate the hysteresis loop; each value of μ was initiated with a
well-annealed sample from the previous μ value along the loop.

FIG. 7. Antiferromagnetic and hole ordering order parameters
for the model with α = 0 and parameters t = 1, J⊥ = Jz = 0.4, Ly =
Lx/2, periodic boundary conditions, and two different system sizes
Lx = 60 and 120. Simulations are performed in the canonical ensem-
ble with 20% hole doping per row (nh = 0.2).

to a lesser degree at μ/t = 0.92, might still differ somewhat
between Lx = 60 and Lx = 120.

Our observation of phase separation for J = 0.4 is hence
in line with the bosonic t-J model of Ref. [13] but casts little
light on the fermionic system.

B. The regime of large hole density

At large hole doping the system orders antiferromagneti-
cally, with a modulation along x given by the hole density.
To probe for this order, we define two separate order pa-
rameters. First, O2

AFM = 〈( 1
LxLy

∑
r(−1)φ Ŝz

r )2〉, which has the
meaning of the staggered magnetization squared in squeezed
space [38,39]: the phase φ changes between ±1 each time
a site is occupied by a spin, but does not change when the
site is not occupied. The square is taken so that the contri-
butions from the two possible spin ground states for a fixed
hole configuration do not average out. Evaluation of the stag-
gered magnetization squared on the full lattice instead of in
squeezed space (i.e., setting φ ≡ 0) leads to a zero signal;
i.e., the magnetic order corresponds to a hidden symmetry.
Second, Oh = 1

LxLy
Shh(q = 2π

Lx
Nh) probes spatial order of the

holes: it is proportional to the static structure factor of the
connected hole-hole correlation function ρconn

hh (r1, r2), with a
momentum along x set by the hole density. The momentum
along y is taken to be zero, implying a probe for vertical
stripes. An analysis of the full momentum dependence of
the static structure factor shows that this is indeed the case.
We have divided the structure factor by the system volume
implying that a constant value at low temperature is indicative
of lattice symmetry breaking.

These two order parameters are shown in Fig. 7 for a
hole density of nh = 0.2. We see strong indications of a first-
order transition at βt = 14(1), where the antiferromagnetic
and the hole order parameter jump. The physical picture is
one of vertical stripes, with a period set by the hole den-
sity along the x direction. The spins are oriented in opposite
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FIG. 8. Antiferromagnetic and hole ordering order parameters
for the model with α = 0 and parameters t = 1, J⊥ = Jz = 0.4, Ly =
Lx/2, periodic boundary conditions, and two different system sizes
Lx = 60 and 120. Simulations are performed in the canonical ensem-
ble with 25% hole doping per row (nh = 0.25).

directions across a hole. In the ordered phase, the simulations
show broad distributions and aim to sample both spin ground
states. Typically, the hole order parameter has lower error
bars than the antiferromagnetic one. We also see that the
transition for Lx = 60 is remarkably round and broad, and it
becomes a lot sharper (and indicative of a single first-order
transition) for Lx = 120. We see that Oh is strongly affected
by the longer system size whereas signals in the antifer-
romagnetic channel appear almost system size independent.
We attribute this to a reduction in hole position fluctua-
tions as Ly is increased, to which the hidden spin order is
insensitive.

When we increase the hole density to nh = 0.25 and nh =
1/3, as is shown in Figs. 8 and 9, respectively, we get a qualita-

FIG. 9. Antiferromagnetic and hole ordering order parameters
for the model with α = 0 and parameters t = 1, J⊥ = Jz = 0.4, Ly =
Lx/2, periodic boundary conditions, and two different system sizes
Lx = 60 and 120. Simulations are performed in the canonical ensem-
ble with 33.33% hole doping per row (nh = 1/3).

tively similar behavior of the order parameters. The transition
temperature is, however, slightly lower when increasing the
hole density, but the first-order nature of the transition is more
pronounced. The magnitude of the order parameters drops
rapidly, however, between nh = 1/5 and nh = 1/3, by roughly
a factor of 4. Note that the magnitude of the AFM order
parameter for nh = 0.25 and Lx = 60 is anomalously low in
Fig. 8 compared to Figs. 7 and 9. The reason is that the
superstructure requires eight sites for this hole doping (e.g.,
|↑,↓,↑, 0,↓,↑,↓, 0, . . .〉) and this is not commensurate for
Lx = 60, in turn frustrating the system and leading to a reduc-
tion in magnitude of the AFM order parameter. In all other
cases we considered, the superstructure is commensurate with
the system size.

Compared to the mixed-dimensional t-J model for
fermions with SU (2) spin interactions, which was recently
simulated with density matrix renormalization group simu-
lations [40], our results agree on the existence of stripes
with charge and hidden spin order but they also differ in a
number of notable ways: (i) the presence of phase separa-
tion, attributed to the string picture and the fact that quantum
fluctuations cannot mend the Jz spin interactions along the ŷ
direction of the lattice; (ii) the critical temperature for stripe
formation is herethree to five times lower, and scales oppo-
sitely with the hole density; and (iii) charge fluctuations were
found to drive the transition in the SU (2) case, while here no
mechanism can be inferred. We believe that the latter two are
a consequence of the fact that only the spin interactions along
ŷ favor stripe formation, whereas the quantum fluctuations
along x̂ tend to mend the Néel interactions along x̂.

V. CONCLUSION

In conclusion, the bosonic mixed-dimensional t-J models
showed physics worth investigating on their own which is
different from the fermionic mixed-dimensional t-J or the
mixed-dimensional t-Jz models. In the model with α = 1 the
observations of an easy-plane ferromagnetic order combined
with the holes moving around as free fermions, is reminiscent
of spin-charge separation. The model with α = 0 showed
a clear sign of phase separation at low hole density—but
extending to a remarkably high nh = 0.14(1)—and vertical
stripes with antiferromagnetic easy-axis order and a period
set by the hole density for higher hole densities. The transi-
tion temperature from the disordered state into these stripes
is very weakly dependent on the hole density, and the tran-
sition is first order. We could hence establish stripe order
when the spin-exchange term is anisotropic (nematic) for
mixed-dimensional bosonic t-J-Jz models, with an antifer-
romagnetic Néel order in squeezed space reminiscent of 1D
systems.

Numerical data for this paper is available at [41].
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