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Dynamic mode decomposition for extrapolating nonequilibrium Green’s-function dynamics
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The Hartree-Fock generalized Kadanoff-Baym ansatz (HF-GKBA) offers an approximate numerical proce-
dure for propagating the two-time nonequilibrium Green’s function (NEGF). Here, using the GW self-energy, we
compare the HF-GKBA to exact results for a variety of systems with long- and short-range interactions, different
two-body interaction strengths, and various nonequilibrium preparations. We find excellent agreement between
the HF-GKBA and exact time evolution in models when more realistic long-range exponentially decaying
interactions are considered. This agreement persists for long times and for intermediate to strong interaction
strengths. In large systems, HF-GKBA becomes prohibitively expensive for long-time evolutions. For this reason,
we look at the use of dynamical mode decomposition (DMD) to reconstruct long-time NEGF trajectories from
a sample of the initial trajectory. Using no more than 16% of the total time evolution, we reconstruct the total
trajectory with high fidelity. Our results show the potential for DMD to be used in conjunction with HF-GKBA
to calculate long-time trajectories in large-scale systems.
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I. INTRODUCTION

Despite the relevance of nonequilibrium physics in many
condensed matter systems [1,2] a robust and practical theo-
retical framework for studying these nonequilibrium systems
is still lagging. One popular approach to studying nonequi-
librium systems is to use two-time nonequilibrium Green’s
functions (NEGFs) [3,4]. For a given system and set of initial
conditions, the time evolution of the one-particle NEGF can
be computed using the Kadanoff-Baym equations (KBEs) [5].
This time evolution is exact, given the exact self-energy is
known, but in practice, the self-energy is an approximate
quantity.

Unfortunately, the KBEs are known to suffer from two
major issues. First, the KBEs have been reported to reach
artificial steady states that are not present in the exact time
evolution [6–8]. The KBEs are, in principle, an exact set
of equations when the exact self-energy is used; therefore,
these artificial steady states must arise due to the self-energy
approximations used. In fact, when the full self-energy is
included in finite systems, such as Hubbard clusters, the sum-
mation of Feynman diagrams contributing to the self-energy
leads to many exact cancellations [6]. However, when only
certain classes of diagrams are summed to infinite order, some
of these cancellations no longer occur. Unphysical terms in the
self-energy can build up from self-consistency on only certain
subsets of diagrams. The unphysical terms may resemble an
artificial bath that leads to the formation of spurious steady

states, as was pointed out and demonstrated in [6]. The second
major problem with the KBE approach is in the computational
cost, specifically in the number of time propagation steps Nt .
To solve the KBEs, the two-time Green’s function needs to
be propagated at all points on a two-time grid, which leads
to asymptotic computational scaling O(N3

t ) [9]. This makes
the use of the KBEs impractical outside of small systems and
beyond short propagation times.

Because of this second issue, an approximate partial so-
lution to the KBE, known as the Hartree-Fock generalized
Kadanoff-Baym ansatz (HF-GKBA), is more commonly used
for simulations of realistic problems [10–12]. With the HF-
GKBA, only the KBE for the two-time Green’s function at
equal times is explicitly propagated. The time off-diagonal
elements are then reconstructed from the information about
the time diagonal. The HF-GKBA has become widely used
due to the speedup it offers over the full KBE, especially for
long-time propagation. The HF-GKBA has even been argued
to be an improvement over the full KBE by removing spurious
steady states and artificial damping [6] and has even been
claimed to outperform KBE in reconstructing particle densi-
ties in a simple Hubbard chain [8]. However, the HF-GKBA
makes further approximations upon only those already made
in the KBE, and so any improvements are, at least in part,
fortuitous.

Although faster than full KBE, in its original formulation
the HF-GKBA still retains the O(N3

t ) scaling (except when
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used with the second-Born self-energy). Recently, a refor-
mulation of the HF-GKBA, known as the G1-G2 scheme,
has offered a method for propagating NEGFs within the
HF-GKBA with scaling O(Nt ) [13]. While promising, the
scheme still suffers from several drawbacks. First, the method
expresses the single-particle self-energy in terms of the two-
particle Green’s function, thus upfolding the problem onto a
larger space. This upfolding leads to O(N6

s ) numerical scaling
in the system size, making it difficult to use the G1-G2 scheme
in large systems or systems with multiple bands. A second
issue the G1-G2 scheme faces is that the time propagation is
known to be unstable for long times and/or strong couplings
since certain consistency relations for the two-particle Green’s
function break down [14]. In the G1-G2 scheme, remov-
ing this instability requires repeated diagonalization of the
two-particle Green’s function, making it impractical for large
systems and long-time evolutions [14]. The former issue is
well suited to the family of stochastic methods [15–17] which
provides a seemingly straightforward strategy to reduce the
computational cost in the system size. This, however, comes
at a price: the time evolution trajectory is fundamentally not
stable over extended propagation time.

All of this means that in large-scale or strongly interacting
systems even HF-GKBA alone may be a computationally
intractable tool to study NEGF over long-time trajectories.

In this paper, we test the ability of using dynamical mode
decomposition (DMD) to reconstruct NEGF trajectories from
partial samples of the full trajectory. For the case of large
systems, this would be extremely advantageous since DMD is
computationally much cheaper than HF-GKBA. Additionally,
in the cases where we can successfully fit DMD on data
before HF-GKBA becomes unstable, the need to diagonalize
the two-particle Green’s function at every step is removed. In
both scenarios, DMD is a promising method of significantly
speeding up the propagation of NEGF under HF-GKBA, es-
pecially for long propagation times in large-scale realistic
systems. For smaller systems where exact diagonalization is
possible we compare these results to the HF-GKBA result.
Further, we numerically demonstrate that (seemingly counter-
intuitively) the approximate methodology agrees better for the
more realistic long-range Hamiltonian forms. This is rational-
ized as the approximate self-energy applied is well suited for
realistic weakly and moderately correlated systems in which
long-range interactions make significant contributions. This
further motivates the use of DMD for creating computation-
ally cheap long-time trajectories that match well with exact
time propagation.

II. THEORY

A. Model systems

To evaluate the ability of DMD to numerically extrapolate
the Green’s-function trajectories, we use the following strat-
egy illustrated in Fig. 1. The system is first prepared in a
correlated stationary state and then driven from equilibrium
via a quenching of specific sites of the Hamiltonian. More
details on the initial state preparation are given in Sec. III.
The discussion of system quenching is continued later in
this section. After the nonequilibrium dynamics are initiated,

FIG. 1. (a) Model system with exponentially decaying interac-
tions and an alternating local potential described by Eqs. (1), (2), and
(3). (b) Outline of the nonequilibrium preparation and DMD fitting
procedure.

DMD is used in an initial window of the trajectory, after
which the DMD result is propagated and compared with the
remainder of the unfitted trajectory. For a detailed discussion
on the DMD procedure see Sec. II C.

A generic many-body Hamiltonian can be written in the
following form:

H =
∑

i j

h(0)
i j (t )c†

i c j + 1

2

∑
i jkl

wi jkl (t )c†
i c†

j ckcl . (1)

Here, wi jkl is the two-body interaction term, and h(0)(t ) is
the single-particle Hamiltonian. For the model we study, the
corresponding two-body interactions are given explicitly by

w
σiσ jσkσl

i jkl (t ) = U (t )δi jδikδilδσiσk δσ jσl (1 − δσiσk )

+ U (t )
Ns∑

n=1

e−γ |i− j|δ(n)
i j δikδ jlδσiσk δσ jσl , (2)

where σ ∈ {↑,↓} are spin indices, Ns is the number of sites
in the chain, and γ determines the rate of decay of the long-
range interactions. Here, we define δ

(n)
i j to be nonzero only if

|i − j| = n.
Later, when using the HF-GKBA, since we prepare cor-

related initial states with adiabatic switching, we include an
explicit time dependence in the interaction terms above. The
initial state preparation will be discussed in more detail in
Sec. III, but for now we note that for a model with the two-
body term in Eq. (2) and nearest-neighbor hopping only the
gap between the grounds state and the first excited state tends
to zero as the system size is increased. This makes the adia-
batic switching procedure increasingly numerically unstable.
To open a gap and allow for a numerically stable initial state
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preparation we add an alternating step potential to our model
which is illustrated in Fig. 1.

The single-particle Hamiltonian for our model is given by

h(0)
i j (t ) = −Jδ

(1)
i j + δi j (−1)iV + hquench

i j (t ). (3)

hquench
i j (t ) is the quench Hamiltonian that drives the system

from equilibrium. We study two types of quenches here, writ-
ten explicitly as

hquench
i j (t ) = qδi j fτ (t − t0),

hquench
i j (t ) = qδi j fτ (t − t0)[1 − fτ (t − t1)], (4)

where fτ (t − t0) is the Fermi-Dirac function,

fτ (t − t0) = 1

1 + e− t−t0
τ

. (5)

It should also be understood that the chosen quench acts only
on a specific subset of the chain Nq.

B. The Hartree-Fock generalized Kadanoff-Baym ansatz

The HF-GKBA is an approximate partial solution to the
full propagation of the NEGF through the KBE. The full
Kadanoff-Baym equations are a set of five integro-differential
equations. In this paper we consider only the zero-temperature
limit, in which case the KBEs are given by [5]

i∂t G
</>(t, t ′) = hHF(t )G</>(t, t ′) + I</>

1 (t, t ′),

−i∂t ′G</>(t, t ′) = G</>(t, t ′)hHF(t ′) + I</>

2 (t, t ′), (6)

i∂t G
<(t, t ) = [hHF(t ), G<(t, t )] + I<

1 (t, t ) − I<
2 (t, t ),

with

I</>

1 (t, t ′) =
∫ t

0
dt̄�R(t, t̄ )G</>(t̄, t ′)

+
∫ t ′

0
dt̄�</>(t, t̄ )GA(t̄, t ′),

I</>

2 (t, t ′) =
∫ t

0
dt̄GR(t, t̄ )�</>(t̄, t ′)

+
∫ t ′

0
dt̄G</>(t, t̄ )�A(t̄, t ′). (7)

Here, G<(t, t ′) [G>(t, t ′)] is the two-time particle (hole)
propagator. The collision integrals I</>

1,2 take into account
many-body correlation effects as well as system memory. The
two-time nature of the KBE combined with these integral
terms leads to the cubic scaling of KBE mentioned in the
Introduction. The HF-GKBA is derived directly from the KBE
and can be summarized in the following equations [11]:

G</>(t, t ′) = GR(t, t ′)G</>(t, t ) − G</>(t, t )GR(t, t ′),

GR/A(t1, t2) = ∓i�[±(t1 − t2)]T
{
e−i

∫ t1
t2

hHF(t )dt}
. (8)

In other words, at each time step only the final equation in
Eq. (6) is explicitly evaluated. Equation (8) is then used to
reconstruct the time off-diagonal components.

Apart from those approximations made to the self-energy,
which HF-GKBA and KBE share, two additional approx-
imations are made in the derivation of HF-GKBA. The

first involves neglecting certain integrals, similar to those in
Eq. (7), over products of different components of the Green’s
function and self-energy. These terms appear in the expression
for reconstructing G</>(t, t ′) and are dropped, leading to
the generalized Kadanoff-Baym ansatz [10]. The HF-GKBA
involves a further approximation in which the full GR/A(t, t ′)
are replaced by the retarded and advanced Hartree-Fock prop-
agators. The HF-GKBA still leaves important quantities such
as energy and particle number conserved as well as retaining
causal time evolution.

Recently, a linear time scaling [∼O(Nt )] implementation of
the HF-GKBA was achieved, opening the door for long-time
evolution of NEGFs [13]. The method removes the explicit
appearance of integrals in Eq. (7) from the differential equa-
tion for G<(t ) by explicitly expressing them in terms of the
correlated part of the equal-time two-particle Green’s function
G(t ). Within this formulation G(t ) is propagated simultane-
ously with G<(t ) using an equation analogous to the last line
of Eq. (6). Throughout this paper, we use this propagation
scheme to generate HF-GKBA results for the models dis-
cussed in Sec. II A.

The exact equation of motion for G(t ) depends on the
self-energy approximation used. Throughout this paper, we
use the GW self-energy due to its wide usage and its success
in equilibrium condensed matter systems [18]. For the GW
self-energy the equations of motion for G<(t ) and G(t ) in the
orbital basis are

i∂t G
<
i j (t ) = [hHF(t ), G<(t )]i j + [I + I†]i j (t ),

i∂tGi jkl (t ) = [h(2),HF(t ),G(t )]i jkl

+ 	i jkl (t ) + 
i jkl (t ) − 
∗
lk ji(t ). (9)

Above, the following definitions are used:

hHF
i j (t ) = h(0)

i j (t ) − i
∑

kl

(wik jl − wikl j )(t )G<
kl (t ),

Ii j (t ) = −i
∑
kl p

wikl p(t )Gl p jk (t ),

h(2),HF
i jkl (t ) = δ jl h

HF
ik (t ) + δikhHF

jl (t ),

	i jkl =
∑
pqrs

wpqrs[G
>
ip(t )G<

rk (t )G>
jq(t )G<

sl (t )

− G<
ip(t )G>

rk (t )G<
jq(t )G>

sl (t )],

(10)


i jkl =
∑
pqrs

wsqr p(t )[G>
js(t )G<

rl (t ) − G<
js(t )G>

rl (t )]Gipkq(t ).

Here, 
i jkl accounts for polarization in the system, and 	i jkl

accounts for pair correlations built up due to two-particle
scattering events [13].

C. DMD

DMD is a data-driven dimension reduction technique used
to predict observables of a nonlinear dynamical system with
a large number of degrees of freedom by constructing a
low-dimensional linear dynamical model [19–22]. The lin-
ear model can be characterized by a number of spatial and
temporal modes that can be obtained from the eigenvalues
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and eigenvectors of a linear operator known as a projected
Koopman operator [23].

To introduce the basic ideas of DMD, let us view (9) as a
general dynamical system of the form

dx(t )

dt
= f (x(t ), t ), t � 0, (11)

where

x(t ) = [g1(t ), g2(t ), . . . , gn(t )]T (12)

and

gi(t ) = [G<
i1(t ), G<

i2(t ), . . . , G<
in(t )]. (13)

Here, n is the number of sites, and we simply consider the
right-hand side of (9) to be a nonlinear function f : Cn ⊗
R+ → Cn of x and t .

The DMD method allows us to approximate (11) by a
linear model:

dx(t )

dt
= Ax(t ), (14)

with a carefully constructed operator A. For problems that
have an explicit analytical expression of f (x(t ), t ), it may be
possible to linearize f (x(t ), t ) and derive A explicitly. This
linearization process essentially amounts to a linear response
analysis. However, when the analytical form of f (x(t ), t )
is unknown, performing such an analysis is difficult, if not
impossible.

The linearization produced by DMD is based on the
Koopman operator theory [23–25], which is developed to
characterize the evolution of a scalar observable function of
x(t ), denoted by g(x(t )), to g(x(t + �t )) with �t > 0, i.e.,

g(x(t + �t )) = K�t g(x(t )).

In the limit of �t → 0, the Koopman operator defines a
linear dynamical system:

dg(x(t ))
dt

= Kg(x(t )). (15)

Because the Koopman operator K is a linear operator that
maps from a function space to another function space, it has
an infinite number of eigenvalues λ j and eigenfunctions ϕ j (x),
j = 1, 2, . . . ,∞.

If the observable functions of interest form an invariant
subspace of K spanned by a finite subset of eigenvalues
and eigenvectors, then it is possible to construct a finite-
dimensional operator (matrix) approximation to K.

To be specific, if g1(x), g2(x), . . . , gn(x) are n observable
functions such that⎡

⎢⎢⎣
g1(x)
g2(x)

...

gn(x)

⎤
⎥⎥⎦ = V1

⎡
⎢⎢⎣

ϕ1(x)
ϕ2(x)

...

ϕk (x)

⎤
⎥⎥⎦ = V1V2

⎡
⎢⎢⎣

g1(x)
g2(x)

...

gk (x)

⎤
⎥⎥⎦ (16)

for some k ∈ N and matrices V1 ∈ Cn×k , V2 ∈ Ck×n, then K
can be approximated by an n × n matrix A = V1V2 on these
observable functions.

But in practice, we cannot assume that Eq. (16) holds
for our observable functions, so we can get only a finite-
dimension approximation of K represented by matrix A. To

construct such an approximation, observable functions are
chosen to be the components of x(t ) defined in Eq. (11); we
take snapshots of x(t ) at t j = ( j − 1)�t , i.e., x j = x(t j ), for
j = 1, . . . , m and use them to build two matrices X1 and X2

of the form

X1 = (x1 x2 · · · xm−1), X2 = (x2 x3 · · · xm). (17)

The creation of these matrices requires the explicit time
propagation of the equations of motion up to time tm. The
finite-dimensional approximation to the Koopman operator
can then be obtained by solving the following linear least
squares problem:

min
A

‖AX1 − X2‖2
F . (18)

The solution to (18) is

A = X2X†
1, (19)

where X†
1 is the Moore-Penrose pseudoinverse of X1 that can

be computed from the singular value decomposition (SVD)
[26] of X1. Once A is calculated using the m snapshots of x(t ),
it can be used to further approximately evolve the system for
times t j for j > m. In essence, A computed from Eq. (19) is
used as a generator of the time evolution for times after tm.
If the nonzero singular values of X1 and σ j , j = 1, 2, . . . , m,
decrease rapidly with respect to j, which indicates that the
numerical rank, denoted by r, of X1 is much smaller than
m and n, we can use a truncated SVD of X1 in the form of
X1 = Ũ�̃ṼT , where the r × r diagonal matrix �̃ contains the
leading r dominant singular values of X1 and Ũ and Ṽ contain
the corresponding right and left singular vectors, to obtain an
approximation of A as

A ≈ X2Ṽ�̃−1Ũ∗. (20)

We can now fully characterize the approximated reduced-
order linear dynamical system model by diagonalizing
the projected Koopman operator Ã = Ũ∗AŨ = ŨX2Ṽ�̃−1 ∈
Cr×r . Let

ÃW = W� (21)

be the eigendecomposition of Ã, where � = diag(λ1, . . . , λr )
is composed of the eigenvalues of Ã and the columns of W
are the corresponding eigenvectors. The matrix

� = X2Ṽ�̃−1W (22)

contains the so-called DMD modes. If φ� is the �th column of
�, the DMD approximation to x can be represented by

x(t ) ≈
r∑

�=1

φ� exp
(
iωDMD

� t
)
b� = � exp(�t )b, (23)

where ωDMD
� = −iln λ�/�t , � = 1, . . . , r, � = ln �/�t =

diag(iωDMD
1 , . . . , iωDMD

r ), and the amplitude vector b :=
[b1, . . . , br]T is taken either as the projection of the initial
value x1 onto the DMD modes, i.e.,

b = �†x1, (24)
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or as the least squares fit of Eq. (23) on the sampled trajecto-
ries, i.e.,

b = arg min
b̃∈Cn

m∑
j=1

‖� exp(�t j )b̃ − x j‖2, (25)

where ‖ · ‖ denotes the standard Euclidean norm of a vector.
For more details on the numerical procedure, we refer readers
to Refs. [19,21,22,27,28].

The major computational cost of DMD computation is in
the SVD of X1, which is O( min(m2n, mn2)). The memory
cost is O(mn).

III. METHODS

For systems with up to eight sites at half filling we prepare
trajectories for the model and quenches described in Sec. II
using both exact diagonalization and HF-GKBA. A publicly
available version of the code used in these simulations is avail-
able online [29]. We also use HF-GKBA to create a trajectory
for 16 sites; however, exact time evolution was not possible for
this system size. Equation (9) was propagated using fourth-
order Runge-Kutta with a time step of 0.07J−1, and we use the
same time step for the exact diagonalization propagation. We
performed calculations for two values of the decay parameter
γ ; first, we take γ = ∞, which leads to a model with only
on-site interactions. The second case we study has γ = 0.7, so
that the nearest neighbor is subject to approximately half the
interaction of the on-site interaction strength. For each model
and quench, calculations were run for U = 0.1J , 0.3J , 0.5J ,
and 1.0J . Additionally, we explored the effect of quenching
different portions of the system, testing both half and quarter
system quenches.

For both HF-GKBA and exact diagonalization we prepare
the system in the respective correlated initial state before
initiating the quench. In the case of exact diagonalization,
we can trivially prepare the system in the exact ground state
by diagonalizing and finding the eigenstate with the lowest
energy. For the HF-GKBA we start by preparing the system
in the noninteracting ground state, and then time evolving
with Eq. (9) while the U parameter is slowly turned on. We
choose the Fermi-Dirac function introduced in Eq. (5) as our
switching function. We found the values t0 = 25 and τ = 3
gave a sufficiently slow rate of switching to converge the
models and parameters presented here.

For the alternating step potential in Eq. (3) we chose a
value of V = 2. We found that for Ns � 16, this value of V
opened the gap sufficiently to perform the adiabatic switching
procedure successfully. However, we note that for V = 2 the
adiabatic switching procedure became unstable as we went to
larger systems (Ns = 32).

IV. RESULTS

In total, around 100 different system setups were tested
(see Sec. III); in this section we will present a small repre-
sentative selection of these results. In Sec. IV A, we look at
the performance of HF-GKBA for the long-range and on-site
models. We compare trajectories for different values of U and
for the two quenches described in Sec. II A. In Sec. IV B we

show results demonstrating the ability of the DMD to fit the
Green’s function in the long-range model with 16 sites.

A. HF-GKBA dynamics for on-site and long-range models

First, we analyze the early-time dynamics of both models
and compare the trajectories to exact diagonalization. In Fig. 2
we show the dipole generated by HF-GKBA and the exact
diagonalization for eight sites for each of the Hamiltonians
described by Eqs. (2) and (3). The Green’s function contains
N2

s elements, and so to compress this large quantity of time
trajectories we choose the center of mass dipole as our fig-
ure of comparison, which we calculate as

p(t ) = i

Ns

Ns∑
j=1

(
Ns − 1

2
− j

)
[G<

j j (t ) − G<
Ns− j+1Ns− j+1(t )],

(26)

where G<
j j (t ) is the density on site j at time t . We choose

the dipole for two reasons, besides compressing the Green’s
function to a single number. First, we believe it is most
relevant to test the ability of the HF-GKBA to reproduce
experimental observables. Second, the dipole is an integrated
quantity and thus provides a site-independent accumulated
result of the density, which also removes some of the bias due
to edge effects or the quench location. We found the dipole
to be a representative quantity for the results in the following
sections.

The results in Fig. 2 show the first 50 time units after the
quench at t = 50, and we direct the reader to the Supplemental
Material (SM) for the full dipole trajectory over 1000 time
units [30]. After preparing the system in the correlated initial
state we perform a full or pulsed quench of magnitude 1 to the
first four sites. Quenches were also tested on the first two sites;
however, little qualitative difference was observed between
the two cases. For the full quench, the parameters chosen were
t0 = 50 and τ = 0.2. In the case of the pulse quench, we fix t0
and τ to be the same as for the full quench and take t1 = 55.
We note that for U = 1.0 the HF-GKBA trajectory for the on-
site model becomes unstable and diverges after between 500
and 800 time units depending on the quench type, whereas the
extended model remains stable for the entire trajectory. From
the portion of the trajectory shown in Fig. 2, we see that for
U = 0.5J the HF-GKBA captures the dynamics of the on-site
model and long-range model quite well. However, already at
around 40 time units after the pulse we see the amplitude of
the HF-GKBA result begin to decrease relative to the exact
result. Meanwhile, the long-range model continues to match
the dynamics remarkably well for the entire trajectory shown.
As we move to U = 1.0J , the difference in the HF-GKBA
between the on-site and long-range models becomes even
more extreme. At around 20 time units after the pulse the HF-
GKBA fails completely to capture the true dipole dynamics,
whereas in the long-range model it is matched almost exactly
by the HF-GKBA.

To compare the HF-GKBA and exact results over the full
dipole trajectory we look at the frequency spectrum for each
of the trajectories shown in Fig. 2.

Due to the failure of HF-GKBA in the on-site model for
U = 1.0 we use only the first 500 time units to generate the
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FIG. 2. Comparison of the early-time dynamics of the dipole given by HF-GKBA (orange dashed line) to exact results (blue solid line) for
γ = ∞ (left) and γ = 0.7 (right) with U = 0.5J and U = 1.0J and for Ns = 8. The top (bottom) panel of (a)–(d) shows the dipole after the
first half of the system is pulse quenched (fully quenched). All the panels are plotted on the same scale.

frequency spectrum. However, for the remaining results, we
use the entire trajectory from the time after the quench. We
found the frequency spectrum to be a more reliable measure
of quality than the residual between HF-GKBA and the exact
result. In particular, in the long-range model, the primary error
that arose was a phase mismatch between the HF-GKBA and
exact results. In this case, the residual provides a misleading
measure of the performance of HF-GKBA. In Fig. 3 we show
only the frequency range 0.40J to 0.85J because this range
holds the major spectrum peaks. The full spectrum is included
in Fig. S2 of the SM [30].

For the on-site model, we see quite good agreement in
the peak positions between the exact and HF-GKBA re-
sults. Clearly, the HF-GKBA consistently underestimates the
magnitude of the spectrum peaks, and for the full quench
the HF-GKBA incorrectly identifies the maximum frequency
peak. As we go from U = 0.5J to U = 1.0J , we see a
broadening of the peaks in both the exact and HF-GKBA
results, which is partially related to the shorter trajectory
used to create the spectrum. The HF-GKBA does, however,

overestimate the broadening and even leads to the formation
of additional peaks in the spectrum. The HF-GKBA con-
tinues to capture the peak positions well in the long-range
model. Furthermore, we now observe that the amplitudes of
each frequency peak match the exact result far better than in
the on-site model. Going to U = 1.0J , the amplitudes and
peak positions continue to be matched very well. We point
out there is a slight shift in the HF-GKBA peaks U = 1.0J;
this causes the dipole trajectories to move slowly in and out
of phase with one another over the time evolution. From
these results, in the scenarios we have studied so far, we
see a clear improvement of the HF-GKBA upon the inclu-
sion of exponentially decaying interactions in the model. The
improvement holds over relatively long times, leading to a
spectrum that matches the exact spectrum almost perfectly.
We also note a similar improvement in the case of a 1

r de-
cay, which is shown in Fig. S6 of the SM for a four-site
model [30].

In the following section, we will look at results obtained
from applying DMD to fit the HF-GKBA Green’s function.
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FIG. 3. Comparison of frequency spectra of the dipole for HF-GKBA (orange dotted line) and the exact result (blue solid line) for each of
the cases in Fig. 2. The top (bottom) panel of (a)–(d) shows the dipole frequency spectrum after the first half of the system is pulse quenched
(fully quenched). All panels are plotted on the same scale. We also note that for (c), due to numerical instability, only 500 time units of the
exact and HF-GKBA trajectories were used to create the spectrum.

B. DMD extrapolation of HF-GKBA trajectories

In the previous section, we observed excellent agreement
between the HF-GKBA and the exact time evolution for the
long-range model. This motivates the use of DMD in con-
junction with HF-GKBA to extrapolate long-time trajectories
from partial trajectories of HF-GKBA Green’s functions. In
this section, we present results investigating the effectiveness
of DMD in predicting the dynamics of the HF-GKBA. We use
the DMD procedure outlined in Sec. II C and apply it to vari-
ous portions of the total Green’s-function trajectory. Relative
to the long-range model, we found that for the on-site model
a much larger portion of the trajectory was needed to produce
reasonable results, and for most cases, DMD did not produce
a successful reconstruction of the Green’s-function trajectory.
Because of the poor performance of DMD as well as the
poor performance of the HF-GKBA for the on-site model we
omit these results and instead discuss possible reasons for the
failure in Sec. V.

In Fig. 4 we show results for the DMD extrapolation
of G<(t ) for the long-range model with 8 and 16 sites for
U = 1.0J and a pulse quench on half of the sites. For the
smaller models we tested, similar behavior was found, so we
omit these results. Figures 4(a) and 4(b) show the dipole for
four different size fitting windows. For each window, DMD is
used to construct a reduced-order model for the total Green’s
function. The reduced-order model is then used to extrapo-
late beyond the fitting window. We again choose to report
the dipole of the system for the same reasons as listed in
Sec. IV A.

The DMD dipole is generated by using snapshots of the
HF-GKBA Green’s function to construct the DMD extrapola-
tion model. This extrapolated result is then used to calculate
the dipole. In Figs. 4(c) and 4(d) the residuals between the
DMD extrapolated dipole and the HF-GKBA dipole over
the full trajectory for each size of the fitting window are
shown.
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FIG. 4. DMD trajectories (dashed lines) for long-range models with 8 and 16 sites for different sizes of the fitting window with a pulse
quench on half the sites compared to HF-GKBA (solid orange line). (a) and (b) show the dipole between 700 and 750 time units for HF-GKBA
and the DMD reconstruction. (c) and (d) show the residual between DMD and the HF-GKBA dipole for each size of fitting window.

We found the ability of DMD to reconstruct the Green’s
function was captured well by comparing the DMD dipole to
the HF-GKBA dipole. Plots similar to those shown in Fig. 4
are shown in Figs. S3, S4, and S5 of the SM for a selection
of components of the Green’s function [30]. As expected, we
see the residual between the DMD extrapolated dipole and the
HF-GKBA dipole decreases as the fitting window increases.
These figures suggest that for the 8-site long-range model,
somewhere between 4% and 8% of the total trajectory is
needed to have a good fit of G<(t ), and this fraction increases
to between 8% and 16% when we go to the 16-site model.
This is likely due to more low-frequency modes being present
in the 16-site model, which requires a longer fitting window
for DMD. In Sec. V the implications and prospects of DMD
will be discussed.

V. DISCUSSION AND CONCLUSIONS

Returning to the results comparing the exact and HF-
GKBA propagation, we first discuss the significant improve-
ment of HF-GKBA upon going to the long-range model. We
suggest two possible contributions to this observation. First,
we note the magnitude of oscillations is smaller for the ex-
tended model. We explain this by noting the higher degree
of repulsive couplings between sites increases the localization
of individual particles. This may, in turn, lead to dynamics
that are easier to capture with HF-GKBA. A second pos-
sibility comes from the self-energy approximation used in
these calculations. In systems where screening is important
the GW self-energy becomes the dominant contribution to the
full self-energy and describes well the many-body interactions

between particles. In the on-site model due to the completely
local interactions the amount of screening will be quite small,
and so the GW self-energy will not capture the physics
well. However, for a more realistic setup with long-range
interactions (encountered in most materials to which GW is
meaningfully applied), we see that the HF-GKBA behavior is
significantly closer to the ED results. We also see a similar
behavior for the case of a long-range interaction with 1

r decay
(see Fig. S6 in the SM [30]). We will investigate further the
limitations of the various self-energy formulations, as recent
works proposed a route to construct reliable higher-order (i.e.,
beyond GW ) schemes that help with the description of excited
states in equilibrium [17].

We will investigate further the limitations of the various
self-energy formulations. A recent work showed good agree-
ment between exact results and HF-GKBA using the T -matrix
self-energy for the on-site Hubbard model up to U = 4.0 [31].
Furthermore, a recent work proposed a route to construct
reliable higher-order (i.e., beyond GW ) schemes that include
T -matrix corrections on top of GW and help with the de-
scription of excited states in equilibrium [17]. Incidentally, in
equilibrium, the inclusion of these T -matrix correction terms
also extends the validity of the approximation up to U = 4.0
in the Hubbard dimer. Thus, we assume the agreement be-
tween the HF-GKBA and exact diagonalization results in this
paper can be improved for all models studied here by changing
the self-energy or by including additional correction terms.

We believe the poor performance of DMD in the on-site
model can be explained at least partially if we look at the
full frequency spectrum for the dipole shown in Fig. S2 of
the SM [30]. Clearly, the on-site model has a much larger
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low-frequency component than the long-range models. Lower
frequencies are more difficult to capture using DMD since a
longer portion of the trajectory needs to be sampled to observe
these long-time modes. We believe this to be part of the reason
why DMD tends to fail in the on-site model. We also point this
out as one of the limitations of DMD since for systems with
very low frequency modes DMD will have to be performed
from a very large portion of the trajectory. Similarly, in the
case of the 8- and 16-site models a downward shift in the
low-frequency part of the spectrum going from Ns = 8 to
Ns = 16, which at least partially explains why a larger amount
of the trajectory was required by DMD.

We found that for the long-time trajectories prepared in this
work, several exhibited numerical instabilities after several
hundred time units. These errors typically arose for U � 1.0
and became more prominent as we moved to larger systems.
We comment on two possible sources for these errors. The
first possible way these errors arise is described in detail in
[14] and is related to certain consistency relations for the
two-particle Green’s function breaking down at long times
and strong couplings. We point out that the procedure for
enforcing the consistency relations function is extremely ex-
pensive as it requires the diagonalization of the two-particle
Green’s function throughout the time-stepping procedure,
which scales as O(N6). If not corrected, these inconsistencies
can lead to divergences of the HF-GKBA solution. The second
possible source of error may arise from the adiabatic switch-
ing procedure. It is possible that for some of the parameters
and models we tested small residual errors from the adiabatic
switching preparation built up and contributed to the failures
of the HF-GKBA time propagation.

These issues offer another opportunity for the use of DMD
to assist in the propagation of NEGFs. If the trajectory fails
after a sufficiently long time and one can clearly identify
the point of failure, then DMD can be used to fit G<(t ) on
the portion of the trajectory before the solution breaks down.
The DMD fitted result can be propagated in place of explicit
propagation of Eqs. (9).

In this paper, we have presented results demonstrating a
vast improvement of the HF-GKBA when long-range interac-
tions are included. We also observed that DMD is a suitable
tool for the reconstruction of long-time trajectories of the HF-
GKBA. Despite this, we still believe DMD can be a powerful
tool to be used alongside HF-GKBA and the G1-G2 scheme,
especially in the long-time propagation of Green’s functions
in large systems. In future work, we will continue to explore
DMD as a way of preparing trajectories for large-scale sys-
tems. We will also investigate generalizing existing stochastic
techniques used in equilibrium systems [15,16,32] to nonequi-
librium. Combining stochastic approaches in conjunction with
DMD, we hope to push HF-GKBA to explore the physics of
large multiband systems.
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[10] P. Lipavský, V. Špička, and B. Velický, Generalized Kadanoff-
Baym ansatz for deriving quantum transport equations, Phys.
Rev. B 34, 6933 (1986).

[11] S. Hermanns, K. Balzer, and M. Bonitz, The non-
equilibrium Green function approach to inhomogeneous
quantum many-body systems using the generalized
Kadanoff–Baym ansatz, Phys. Scr. T151, 014036
(2012).

[12] E. Perfetto, Y. Pavlyukh, and G. Stefanucci, Real-Time GW :
Toward an Ab Initio Description of the Ultrafast Carrier and
Exciton Dynamics in Two-Dimensional Materials, Phys. Rev.
Lett. 128, 016801 (2022).

[13] J.-P. Joost, N. Schlünzen, and M. Bonitz, G1-G2
scheme: Dramatic acceleration of nonequilibrium Green
functions simulations within the Hartree-Fock generalized
Kadanoff-Baym ansatz, Phys. Rev. B 101, 245101
(2020).

[14] J.-P. Joost, N. Schlünzen, H. Ohldag, M. Bonitz, F. Lackner,
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