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Resilience of topological superconductivity under particle current
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We investigate the robustness of topological superconductors under the perturbing influence of a finite charge
current. To this aim, we introduce a modified Kitaev Hamiltonian parametrically dependent on the quasiparticle
momentum induced by the current. Using different quantifiers of the topological phase, such as the Majorana
polarization and the edge state quantum conditional mutual information, we prove the existence of a finite critical
value of the quasiparticle momentum below which edge modes and topological superconductivity survive. We
also discuss how a finite current breaks time reversal symmetry and changes the topological class in the Altland-
Zirnbauer classification scheme compared to the case of isolated systems. Our findings provide a nontrivial
example of the interplay between topology and the nonequilibrium physics of open quantum systems, a relation
of crucial importance in the quest to a viable topological quantum electronics.
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I. INTRODUCTION

In the last two decades topological superconductivity has
attracted a steadily growing interest, not least due to its
potential role in conceiving innovative devices of quantum
electronics. The simplest model of topological superconduc-
tivity was proposed by Kitaev in 2001 [1]. It consists of
a one-dimensional spinless p-wave superconductor in which
Majorana bound states (MBSs) are pinned to zero energy
and localize at the edges. Indeed, an effective p-wave pairing
can be realized by proximizing semiconducting nanowires to
s-wave superconductors [2]. Thus, having some well identi-
fied condensed-matter physical counterparts [3,4], the Kitaev
wire has become an established paradigm in studying the
robustness of superconducting topological phases, as it allows
to gain insight with limited computational efforts, into the
response of real devices to system modifications, material
imperfections, and environmental perturbations. Accordingly,
robustness of MBSs has been tested in the presence of imper-
fections [5–8], multi-mode geometries [9–15], and longrange
hopping and/or pairing terms [16–20]. These studies have
proved the resilience of topologically ordered phases against
various realistic sources of perturbations, suggesting that
superconducting topological order can be considered as a
valuable resource in future and emerging quantum electronic
technologies.

Most of the experimental efforts to detect emergent MBSs
rely on metal/superconductor junctions [21–28] and Joseph-
son junctions based on helical materials [29–31]. Indeed, once
a current flux is injected into the systems, signatures of MBSs
can be revealed by tunneling spectroscopy, via the zero-bias
quantized peak, or by interferometric devices able to identify
the 4π -periodic Josephson effect. On the other hand, and quite
crucially, the currents injected via source/drain terminals lead

to undesired nonequilibrium effects on the topological phases,
introducing a novel source of environmental perturbation. For
this reason, despite the above-mentioned rich literature on
isolated systems, it is particularly relevant to gain some un-
derstanding of the interplay between nonequilibrium physics
and topology for open systems in realistic conditions.

Recent works have approached the study of topological
systems coupled to the evironment by imposing general-
ized boundary conditions [32–34]. These methods, which
share some similarity with previous investigations based on
a self-energy approach [35,36], incorporate information on
the environment by emulating particle-hole symmetry break-
ing mechanisms originating from quasiparticle poisoning or
boson-assisted tunneling phenomena [37]. Such approaches
are limited to situations where the net current injected into the
system is negligible, so that they cannot be applied to impor-
tant situations where current-induced nonequilibrium effects
cannot be neglected. We are thus in need of effective models
capable of incorporating genuine nonequilibrium features of
open topological systems. While treating the full nonequilib-
rium dynamics of the system-environment interaction remains
a formidable task, we expect that important information can
be recovered by studying simple models that incorporate the
effects of charged current flows.

In analogy with the Peierls substitution commonly used in
modeling the influence of a vector potential in a tight-binding
framework, the effect of a particle current on a supercon-
ducting Kitaev wire can be taken into account by introducing
a phase factor eiq in the hopping integrals, where the wave
vector q quantifies the quasiparticle momentum induced by
the current. In the presence of p-wave superconducting cor-
relations, the complex phase induces a finite momentum 2q
of the Cooper pair, parallel to the direction of the current.
Accordingly, in the following we introduce such a modified
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version of the Kitaev model and we investigate systemati-
cally the resilience of the edge modes by looking at different
witnesses of the topological superconducting order, including
the long-distance, edge-to-edge quantum conditional mutual
information (QCMI) that measures the nonlocal correlations
of the Majorana excitations [38,39], and the Majorana polar-
ization of the zero-energy modes [40–43].

The paper is organized as follows. In Sec. II, we introduce
the model, study its main properties, and discuss its bulk phase
diagram. In Sec. III, by means of real-space methods (Majo-
rana polarization, edge-to-edge quantum conditional mutual
information), we corroborate the bulk results by a systematic
investigation of the conditions required to observe MBSs.
Here we also discuss the special role played by the edge-
to-edge quantum conditional mutual information, measuring
the quantum correlations that arise between the system edges
in the topologically ordered phase. In Sec. IV we discuss
our findings and possible future outlooks. Mathematical and
technical details are presented and reviewed in Appendixes
A, B, and C.

II. MODEL, TOPOLOGY, AND BULK PHASE DIAGRAM

A. The Hamiltonian

In the following we introduce an effective Hamiltonian for
a Kitaev wire subject to the perturbing influence of a charged
particle current. We start from the free Hamiltonian of a one-
dimensional metal,

Hf = −t
L−1∑
j=1

c†
j c j+1 + H.c., (1)

whose band structure features the dispersion relation ε(k) =
−2t cos(k) in the thermodynamic limit. The group velocity
of an electron with wave vector k is then v(k) = ∂kε(k)/h̄ ∼
2t sin(k). Since electronic states with k and −k are equally
populated and v(−k) = −v(k), no net current is observed in
the system.

This equilibrium picture breaks down when one considers
a current flowing trough the system. The latter is a gen-
uine nonequilibrium phenomenon that can be emulated by
replacing the hopping strength t in Eq. (1) according to the
prescription t → teiq, where q identifies the quasiparticle mo-
mentum induced by the current. The band structure of the
modified free Hamiltonian is now shifted by the wave vector
q and reads ε(k) = −2t cos(k − q). Accordingly, the group
velocity takes the form v(k) ∼ 2t sin(k − q), implying an av-
erage quasiparticle velocity proportional to q.

Adding p-wave correlations on top of the metallic model,
one ends up with a modified Kitaev chain Hamiltonian that
includes the perturbing effect of a current flow:

H =
L−1∑
j=1

(−teiqc†
j c j+1 + �c jc j+1 + H.c.) − μ

L∑
j=1

c†
j c j, (2)

where the parameters t , �, μ define, respectively, the nearest-
neighbour hopping, the superconducting pairing, and the
on-site energy offset (chemical potential). The index j ∈
{1, . . . , L} specifies the position along the lattice chain, while

c†
j and c j are the on-site fermionic creation and annihilation

operators.
Without loss of generality, the q dependence can be moved

to the p-wave pair potential by a U (1) gauge transformation
of the operators c j → e−iq jc j . As a result, � → �ei2q j and
a Cooper pair acquires a finite momentum 2q [44], with q a
wave vector in the direction of the current flow.

Within a condensed matter realization of Eq. (2), it is
expected that the current flow would give rise to rather small
values of q, which is appropriate for the description of a dc
current within the long wavelength limit [45]. At any rate,
in view of possible realizations via other quantum simulation
platforms, for instance cold atomic gases, we will consider
larger values of q as well.

Finally, the Bogoliubov–de Gennes representation of
Eq. (2) can be obtained by introducing the Nambu spinors
in momentum representation: �(k) = (ck, c†

−k )T , so that we
obtain H = 1/2

∑
k �†(k)H̃ (k)�(k), with

H̃ (k) =
(

−2t cos(k − q) − μ 2i� sin(k)

−2i� sin(k) 2t cos(k + q) + μ

)
. (3)

H̃ (k) in Eq. (3) admits eigenvalues E1,2(k) reported in
Appendix A.

B. Topology and bulk phase diagram

In equilibrium conditions, topological phases of mean field
Hamiltonians are meaningfully described by bulk topological
invariants, according to the Altland-Zinbauer tenfold classifi-
cation [46]. The ten symmetry classes [46] allow to associate
the appropriate topological invariants to the bulk Hamilto-
nians according to the dimensionality and the simultaneous
presence/absence of particle-hole symmetry (P), time rever-
sal symmetry (T ), and chiral symmetry (C). The topological
invariants capture the topology (in mathematical sense) of the
band structure of the bulk, providing the phase diagrams of
the systems in thermodynamic limit, also identifying the band
gap closing points.

The original Kitaev model, whose Hamiltonian is obtained
by setting q = 0 in Eq. (3), belongs to the BDI class of the ten-
fold classification since it enjoys all the three aforementioned
symmetries. In the presence of a flux, q �= 0, the time reversal
symmetry and the chiral symmetry (C = PT ) break down,
leaving the particle-hole as the only protecting symmetry of
the topological phase. Thus, the charge current leads the chain
from BDI class with Z index to D class with Z2 index of the
Cartan classification.

The time-reversal symmetry breaking mechanism induced
by the current has significant implications in the relation-
ship between topology of isolated systems and measurement
procedures. Indeed, several time-reversal protected systems,
belonging to classes BDI, CI, and CII, can host multimode
phases where more then a single nontrivial mode nucleates at
the edge of the system [10,47,48]. On the other hand, break-
ing T by adding a particle current reduces the total number
of symmetries to at most one and simultaneously induces a
change of class of the tenfold classification. This mechanism
implies that in some cases one single edge mode holds robust
to the measurement procedure, while the other ones are fragile
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FIG. 1. Bulk phase diagrams for � = 0.3 (a), � = 0.6 (b), � = 0.9 (c), and � = 1 (d). Brown and cyan colors correspond respectively to
topological and trivial phases. Red and blue curves, superimposed on phase diagrams, show the functions μ = 2t cos(q), q = qc = arcsin(�/t ).
The doubled panels (e)–(h) show the energy bands along the red curves of the phase diagrams (a)–(d), respectively, at q = 0.2 (top panels) and
q = 1.2 (bottom panels). The hopping strength is t = 1 throughout.

against the injected current. This can be the case when a one-
dimensional multileg Kitaev ladder in the BDI class collapses
into the D class.

The connection between symmetries and topology can be
formalized in a rigorous manner and the topological invariant
Q can be formally defined even when q �= 0, as discussed
in Appendix B. Indeed, the Q parameter can be deduced
by looking at the band properties, i.e., by identifying the
bulk gap closing points. Hence, by looking at the analyt-
ical expression of the energy bands E1(k) and E2(k), gap
closing points are obtained as real solutions of the equa-
tions μ = −2t cos(k) cos(q) ±

√
φc sin(k)2, with φc = t2 −

2�2 − t2 cos(2q). When q < arcsin(�/t ), gap closes only
at k = 0 or π , corresponding to phase boundaries μ =
±2t cos(q), respectively [Fig. 1 upper panels (e)–(h)]. For
q � arcsin(�/t ) the system only shows band crossing points
and, as a consequence, it is expected to be in a trivial phase
[Fig. 1 lower panels (e)–(h)].

The above discussion hints that the system experiences
a topological phase transition at the boundary of the plane
region defined by |μ| < 2t cos(q) ∧ q < arcsin(�/t ). This
criterion leads to the topological invariant Q defined in Ap-
pendix B and to the phase diagrams reported in Fig. 1, panels
(a)–(d), where the curves μ = 2t cos(q) (red) and q = qc =
arcsin(�/t ) (blue) partially overlap with the boundaries of
the topological phase. As shown in panels (a)–(d) of Fig. 1,
a critical value qc exists for which the superconducting order
and the topological regime are simultaneously lost. Actu-
ally, the existence of such limit is expected in a superfluid
and it is reminiscent of the Landau critical velocity [49].
Below this threshold, MBSs are resilient and the phase bound-
ary features only a q-dependent renormalization which is
well approximated by μc ∼ 2t (1 − q2/2). The latter observa-
tions provide a direct proof of the resilience of topological

order against a moderate amount of current injected into the
system.

In order to further validate this physical picture, in the
following we identify the phase diagram according to two
different nonlocal indicators of topological order, namely the
Majorana polarization and the nonlocal correlation that is
established between the edges as quantified by the quantum
conditional mutual information.

III. NONLOCAL TOPOLOGICAL ORDER PARAMETERS

Real-space nonlocal order parameters, such as the Ma-
jorana polarization (MP) [40–43] and edge-to-edge quan-
tum conditional mutual information (QCMI) [34,38,39],
have been proposed and extensively used to investigate
the presence/robustness of topological, symmetry-protected
edge states. The MP and the QCMI capture complementary
aspects of MBSs. More specifically, MP measures the weight
of the Majorana quasiparticles in Nambu space. Following the
notation of Refs. [40–43], the MP can be expressed as follows:

Mp( j, ω) =
∑

n

(un, jvn, j )(δ(ω − En) + δ(ω + En)), (4)

with u and v, the particle and hole weights in Nambu repre-
sentation. In particular, by choosing ω = 0, the total MP Mp =
| ∑L/2

j=1 Mp( j, 0)| is equal to one for genuine MBSs, vanishes
for electrons/holes, and decreases from the maximum value
one for hybridized modes originated by genuine initial MBSs.

On the other hand, the edge-to-edge QCMI Iee determines
the unique, longdistance, and nonlocal quantum correla-
tions that are established in a topologically ordered phase
between the system edges. Indeed, such topological nonlocal
edge-to-edge correlations are faithfully quantified by a spe-
cific measure of bipartite entanglement [50,51], the squashed
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FIG. 2. Real-space phase diagrams according to the Majorana polarization Mp, panels (a)–(d), and according to the QCMI Iee, panels
(e)–(h), for the same parameter choice adopted in Fig. 1. One has Mp = 1, 0 and I = log 2/2, 0 respectively in the topological and in the
trivial phase. The size of the system is set at L = 100 in panels (a)–(d). In panels (e)–(h) the size of the system and the size of the edges are,
respectively, L = 10 and LA = LB = 3.

entanglement (SE) E0
SQ between the edges. Taking a triparti-

tion of a one-dimensional system in terms of edge A, edge B,
and bulk C, the SE between A and B is defined as the min-
imum of the QCMI between A and B taken over all possible
C extensions of the system, keeping A and B fixed [38,39].
The edge-edge QCMI Iee thus provides the natural quantum
upper bound on the true long-distance SE between the edges.
It is defined by a suitable combination of the reduced von
Neumann entropies between the connected and disconnected
parts of the tripartite system, namely:

Iee = SAC + SBC − SC − SABC . (5)

The first three terms in the rhs of Eq. (5) are the von Neu-
mann entropies of the ground-state reduced density matrices,
respectively for subsystems AC (left edge and bulk, after
tracing out the right edge), BC (right edge and bulk, after
tracing our the left edge), and C (bulk, after tracing out both
edges). The last term is the total ground-state von Neumann
entropy that vanishes whenever the ground state is a pure state.
The particular combination of total and reduced entropies in
Eq. (5) “squashes” out the classical contributions to the total
correlations, leaving only the genuine quantum contributions
to the correlations between the edges [38].

As symmetry-protected topological order is encoded in
the edges, the edge-edge QCMI Iee identifies unequivocally
topologically ordered phases, satisfying all the criteria of a
genuine nonlocal order parameter. In particular, the edge-edge
QCMI takes the quantized value Iee = log 2/2, i.e., half of
the maximal Bell-pair entanglement, at the exact ground-state
topological degeneracy point, μ = 0, for a Kitaev chain with
open boundary conditions hosting genuine Majorana modes,
and remains constant at this quantized value throughout the
entire topological phase, i.e., up to μ = 2t [38].

Such behavior is actually typical in one-dimensional topo-
logical quantum matter. For instance, one finds that Iee = log 2
throughout the topologically ordered phase of the SSH topo-
logical insulator [39]. This is exactly the maximal Bell-state
entanglement, as should be expected for a system whose edge
modes are standard Dirac fermions (topological insulator) and
not “half-fermion” Majoranas (topological superconductor).
These analytical coincidences on different classes of topo-
logical systems lead to conjecture that the QCMI nonlocal
topological order parameter Iee is not only an upper bound
on the true edge-edge squashed entanglement E0

SQ, but in fact
coincides with it in the ground state of all one-dimensional
symmetry-protected topological systems [38,39].

Resorting to the Jordan-Wigner mapping [52], one can
transform the fermionic degrees of freedom into spins dis-
tributed along a one-dimensional lattice. The resulting model
Hamiltonian is that of an XY spin chain, modified by a mixing
term between the X and Y components of the spins (see
Appendix C for details). The mapping allows several com-
putational advantages in the evaluation of the various reduced
von Neumann entropies, either connected or disconnected.

The phase diagrams in Fig. 2, obtained by means of the MP
Mp, panels (a)–(d), and by means of the edge-edge QCMI Iee,
panels (e)–(h), provide a consistent picture of the topological
phases of the system and are consistent with the bulk phase di-
agrams reported in Fig. 1. The correspondence between these
three types of phase diagrams confirms that MBSs survive to
a moderate amount of current flow and proves that the bulk-
edge correspondence is an intrinsic and meaningful property
of topological materials even in nonequilibrium conditions.

Due to finite-size effects, the few modest quantitative dis-
crepancies are observed at the phase boundaries. In fact, when
using the MP Mp we can afford setting a system size L = 100,
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FIG. 3. Modulus squared of the lowest energy eigenstates in agreement with the phase diagrams of Fig. 1. We also fix μ = 0.5 and
L = 100. MBSs and trivial states are clearly recognised for q = 0.2 and q = 1.2 in panels (a)–(c). MBSs appear for both q = 0.2 and q = 1.2 in
panel (d).

while when resorting to the QCMI Iee we set the system
size at only L = 10. This difference is due to the different
computational resources needed to evaluate the two quantities;
indeed, calculating Iee, a much more sophisticated quantity,
involves keeping track of all different reduced states, with
the respective eigenvalues and eigenvectors, through all the
different subsystem partitions of increasing size. The excellent
qualitative agreement between the two phase diagrams despite
a difference of one order of magnitude in the system size
suggests that non-trivial long-distance correlations between
MBSs are more robust to finite-size effects than their spectral
properties.

Finally, the spatial profile of the lowest energy modes that
we report in Fig. 3 is also consistent with the emerging picture.
In particular, we observe localized modes at the edges with
a decaying tail in the bulk for values of the Hamiltonian
parameters corresponding to the topologically ordered phase,
while completely delocalized modes are observed in trivial
phase.

IV. DISCUSSION AND OUTLOOK

In conclusion, we have studied the topological properties
of a Kitaev chain under the perturbing influence of a uniform
charged current injected into the system. This investigation
sheds light on the stability of the topological phases of open
systems subject to measuring processes. We have proved the
robustness of topological phases under a moderate current.
Indeed, when the current flow exceeds a critical thresh-
old, superconducting correlations and topological order are
simultaneously lost. On the other hand, below such threshold
the edge modes turn out to be robust, even though the ex-
tension of the topological phase is reduced compared to the
case of an unperturbed Kitaev chain. We have also shown that
the current induces a time-reversal symmetry breaking and

reduces the number of protecting symmetries of the chain. The
latter is a rather general mechanism that reveals the fragility of
some classes of topological materials to measurement proce-
dures. Indeed, when the current is applied to one-dimensional
BDI systems hosting more than a single edge mode, due to
the symmetry reduction mechanism, most of the modes are
destabilized, while at most one single mode remains stable
against the injected current.

We have investigated the resilience of topological states
by using several physical indicators, including the Ma-
jorana polarization and the recently introduced edge-edge
quantum conditional mutual information Iee that provides
crucial information about the nonlocal quantum correlations
shared by the edge Majorana excitations. These real-space
methods, complemented by the bulk properties of the sys-
tem, yield a complete characterization of the topological
phases. In a future perspective, going beyond the frame-
work of static effective models, we plan to exploit the edge
quantum mutual information and the edge squashed entan-
glement to investigate the fate of topological order in the
full nonequilibrium dynamics of open quantum many-body
systems.
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APPENDIX A: ENERGY BANDS

H̃ (k) in Eq. (3) of the main text can be diagonalized and
the resulting band structure is given by:

E1,2 = ±
√

2�2 + 2t cos(k)(t cos(k) cos(2q) + 2μ cos(q)) + cos(2k)(t2 − 2�2) + μ2 + t2 − 2t sin(k) sin(q). (A1)

APPENDIX B: HAMILTONIANS, TOPOLOGY
AND SYMMETRIES

The tenfold classification of topological superconduc-
tors and insulators has been first discussed by Altalnd and

Zirnbauer [46] for spinful systems and subsequently also ap-
plied to spinless particles. It allows to identify the topological
order and the number of edge modes according to the spa-
tial dimensionality and the simultaneous presence/absence of
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particle-hole symmetry, time reversal symmetry, and chiral
symmetry.

The original Kitaev chain model [1] can be obtained by
Eq. (2) with q = 0. Due to the simultaneous presence of the
three discrete symmetries listed above, it belongs to the BDI
class of the Cartan classification with Z index. The topolog-
ical invariant is sensitive to the number m of edge modes,
with m ∈ {0, ±1, ±2, . . . }. However, for a one-dimensional
(single-orbital) chain, it can only assume values one or zero,
labeling respectively the topological and trivial phase. In
general, a Z topological invariant in one dimension can be
expressed by the winding number [10], even though the same
phase diagram can be obtained by means of the Pfaffian in-
variant [10]. Indeed, being the Hamiltonian in the Majorana
basis (HM) an antisymmetric matrix, the Pfaffian is a well de-
fined quantity, P f [iHM (k)] = −μ − 2t cos(k) − 2i� sin(k).
Hence, the sign of the product of Pfaffians for k = 0, π

switches at the gap closing points of the BdG band structure
and thus the topological phase diagram can be computed by
introducing the simple topological invariant Q that reads

Q = sgn[(−μ + 2t )(−μ − 2t )]. (B1)

The presence of symmetries acting on the Kitaev chain is
highlighted by resorting to the momentum representation. In
this representation, the Hamiltonian reads:

H̃ (k) =
(−2t cos(k) − μ 2i� sin(k)

−2i� sin(k) 2t cos(k) + μ

)
. (B2)

As already mentioned, due to the superconducting order, the
system fulfills the particle-hole symmetry that exchanges cre-
ation and annihilation operators, i.e., in second quantization
language c j ↔ c†

j . This symmetry operator, in momentum
representation can be expressed by P = σxK , whose action on
the Hamiltonian is

PH (k)P† = −H (−k), (B3)

where K is the complex conjugation operator. Given a solution
with energy E and momentum k, the particle-hole symmetry
ensures the presence of a solution with energy −E and mo-
mentum −k.

Another symmetry condition satisfied by the system is
invariance under time reversal. In the language of second
quantization this means that time reversal leaves the creation
and annihilation operators unaffected while it implements
complex conjugation of all the complex-valued parameters:
(c j, c†

j ) → (c j, c†
j ), i → −i. For spinless systems, time-

reversal symmetry represents a symmetry condition for all
the real-valued matrices. It is straightforward to show that in
the chosen basis it coincides with the operator of complex
conjugation: T = K , so that

T H (k)T † = H (−k). (B4)

Finally, we can define the chiral symmetry as C = PT = σx,
whose action is

CH (k)C† = −H (k). (B5)

When currents are introduced, i.e., setting q �= 0 in the gener-
alized Kitaev model in Eq. (2), the time-reversal symmetry is
broken ((c j, c†

j ) → (c j, c†
j ), teiq → te−iq), since the hopping

strength is a complex-valued quantity. As a consequence, chi-
ral symmetry is also broken, while particle-hole symmetry is
preserved. As the current breaks two symmetries, it leads the
system to the Cartan D class of the tenfold classification with
the topological invariant corresponding to a Z2 index with
only two distinct topological phases. The topological invariant
Q can now be expressed as

Q = sgn[sgn[P f [iHM (0)]P f [iHM (π )]] + sgn[q − qc]],

where P f [iHM (0/π ))] = −μ ± 2t cos(q) and qc =
arcsin(�/t ). Similarly to the case of the unperturbed Kitaev
chain, the topological invariant Q provides a dichotomic
topological label classifying the gap closing points. Indeed,
when q is smaller than the critical value qc, gap closing
points can only occur for k = 0, π and the sign of the
Pfaffians product match topological/trivial phases of the
system. On the other hand, for q � qc, gap closing points
no longer exist and are replaced by crossing points. These
zero-energy band crossings correspond to trivial phases of the
system.

APPENDIX C: SPIN REPRESENTATION OF
TOPOLOGICAL SUPERCONDUCTORS UNDER A

UNIFORM PARTICLE CURRENT

The Jordan-Wigner transformation [52] is a highly non-
local mapping between fermionic and spin 1/2 operators.
On each site, an empty state is mapped into a spin up and
an occupied one to a spin down. The nonlocal part of this
mapping is called the Jordan-Wigner string and fixes the
(anti)commutation relations between operators acting on dis-
tinct sites, by counting the parity of flipped sites to the left of
the spin on which it acts.

This transformation explicitly breaks the translational in-
variance of the model, by singling out a particular site as the
initial point of the string. Denoting by c j and c†

j the generic
annihilation and creation fermionic operators, the Jordan-
Wigner mapping is defined as follows:

c j = e−iπ
∑ j−1

l=1 c†
l cl σ+

j , (C1)

c†
j = σ−

j eiπ
∑ j−1

l=1 c†
l cl , (C2)

n j = 1 − σ z
j

2
, (C3)

where j singles out the explicit lattice site. The
aforementioned parity string of the overturned sites
is e−iπ

∑ j−1
l=1 c†

l cl .
The operators σ±

j = (σ x
j ± iσ y

j )/2 are the well-known lin-
ear combinations of Pauli matrices and the last relation in
Eq. (C3) allows to express the parity operator of the fermionic
site j as e−iπc†

j c j = σ z
j . Using the algebra of spin 1/2 operators

and observing that Pauli matrices acting on different sites
commute, it is straightforward to derive the following spin-
1/2 representation of the Kitaev chain in the presence of a
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particle current:

Hspin = 1

2

L−1∑
j=1

[
ω−

q σ x
j σ

x
j+1 − ω+

q σ
y
j σ

y
j+1 + sin(q)

(
σ

y
j σ

x
j+1 − σ x

j σ
y
j+1

)] + μ

2

L∑
j=1

σ z
j , (C4)

where ω±
q = � ± t cos(q). We see that the fermionic model transforms into a XY spin chain with a term mixing the X and Y

components of the spins and a transverse external magnetic field along the Z direction.
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