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We investigate emergent odd-frequency pairs and proximity effect in nematic and chiral states of supercon-
ducting topological insulators (STIs), such as MxBi2Se3 (M = Cu, Sr, Nb). The interplay of pairing symmetry,
the orbital degrees of freedom, and strong spin-orbit interaction generates a variety of odd-frequency pairs in
the bulk and surface of STIs. The nematic and chiral states are the prototypes of topological superconductors
with and without time-reversal symmetry, respectively. We find that the Fermi surface evolution from a closed
spheroidal to an open cylindrical shape changes the pairing symmetry from the nematic to chiral state, which
causes the evolution of the odd-frequency pairings and surface Andreev bound states (SABSs). In addition,
spin polarization of odd-frequency pairs and SABSs stems from the nonunitary pairing in the chiral state. The
evolution and spin polarization of odd-frequency pairs and SABSs can be captured by tunnel conductance
spectroscopy. Furthermore, we study the anomalous proximity effect in various irreducible representations of
STIs. The anomalous proximity effect was originally predicted in spin-triplet superconductor junctions without
spin-orbit interaction. Odd-frequency spin-triplet s-wave pairs penetrate into diffusive normal (DN) metals and
induce a pronounced zero-energy peak of the local density of states in the DN region. Here we demonstrate
that contrary to the well-known results, the anomalous proximity effect in STIs is not immune to nonmagnetic
impurities. The fragility is attributed to the fact that the proximitized odd-frequency even-parity pairs are
admixtures of s-wave and non-s-wave pairs due to strong spin-orbit interaction inherent to the parent materials.
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I. INTRODUCTION

The concept of odd-frequency pairs [1–4] has paved the
way for understanding anomalous equilibrium and nonequi-
librium phenomena of superconductors (SCs). According
to the Fermi-Dirac statistics, Cooper pair amplitude is an
even or odd function in the relative time, leading to the
notion of even-frequency pairing or odd-frequency pairing,
respectively. Odd-frequency superconductivity, which is the
superconducting state with an odd-frequency gap function,
has been discussed to occur in bulk electron systems, while
its realization remains elusive [5–22]. Here we focus on the
boundary of SCs, which provides another platform to host
odd-frequency pairs. The prototypical examples include the
SC/ferromagnet junctions and SC/normal metal junctions
[3,4,23–30]. In the former case, the broken spin-rotation sym-
metry convert even-frequency spin-singlet Cooper pairs into
odd-frequency spin-triplet pairs [3,4,23–27]. In the latter case,
the translational symmetry breaking induces odd-frequency
even-parity (odd-parity) pairs in the interface of an odd-
parity (even-parity) SC and normal metal [28–30]. Recent
progress on the understanding of odd-frequency pairing has
shed light on the special roles of Andreev bound states (ABSs)
in spin/charge transport, paramagnetic electromagnetic re-
sponses, and proximity effects [28,31–58].

It has recently been pointed out that even in the absence
of any symmetry-breaking fields, odd-frequency pairing can

emerge in the bulk of multiband SCs [59–64] and double
nanowires [65,66]. Triola et al. presented the general condi-
tion for the emergence of odd-frequency pairing [62],∑

k

[hnk�km − �nkh∗
km] �= 0, (1)

where hnm and �nm are the normal state Hamiltonian and pair
potential, respectively, and the indices represent spin, lattice,
and band/orbital degrees of freedom. This condition enables
us to diagnose the symmetry and origin of odd-frequency
Cooper pairs. Equation (1) is also associated with the con-
cept called superconducting fitness [67,68] that reflects the
compatibility of superconducting gap symmetry with a nor-
mal state Hamiltonian and measures the suppression of the
superconducting critical temperature by symmetry-breaking
fields.

Another remarkable ingredient in SCs is a Majorana
fermion, which is an elusive quasiparticle residing in vortices,
surfaces, and interfaces [69,70]. Topological SCs with chiral
symmetry host Majorana fermions which exhibit uniaxial re-
sponse [71–79], multipole response [80,81], and non-Abelian
statistics [82–86]. Recently, the concept of odd-frequency
pairs has encountered topological SCs. An important ob-
servation is the relationship between zero-energy states and
odd-frequency pairing [87–95]. In chiral symmetric systems,
the topological invariant not only counts the number of the
zero-energy states but also determines the spectral property of
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the odd-frequency pairs at the zero frequency limit [91]. This
is called the spectral bulk-boundary correspondence (SBBC),
which is a generalization of bulk-boundary correspondence
into complex frequencies [91,96–98]. The SBBC was recently
proved by Daido and Yanase [96] by introducing the notion
of chirality polarization. In analogy with the bulk-boundary
correspondence of electric polarization that is the relation
between the amount of surface-accumulated electric charge
and a geometric Berry phase defined in the bulk, the SBBC
refers to the equivalence of chirality charge with chirality
polarization, where the chirality charge represents the surface-
accumulated odd-frequency even-parity pairs.

The superconducting topological insulators (STIs), such
as MxBi2Se3 (M = Cu, Sr, Nb), provide a platform for in-
vestigating Majorana fermions [99–107] and odd-frequency
pairs. Several bulk measurements have revealed the emer-
gence of the uniaxial anisotropy at superconducting critical
temperature [108–118]. The rotation symmetry breaking is
compatible with odd-parity time-reversal invariant pairing
belonging to the Eu irreducible representation of the point
group D3d , which exhibits twofold symmetric gap anisotropy
[119]. Concurrently with bulk measurements, surface sensi-
tive probes were used to reveal the surface states. In point
contact measurements for M = Cu, the zero bias conduc-
tance peak (ZBCP) was reported as evidence of topological
superconductivity [101]. Although similar ZBCPs have been
observed independently [120,121], there has been the con-
flicting report [121]. The significant enhancement of zero
bias conductance has been observed in M = Nb [122]. Scan-
ning tunneling microscopy/spectroscopy (STM/STS) showed
a fully gapped local density of states (DOS) at the Fermi level
reminiscent of a conventional superconducting gap [123],
though the vortices are uniaxially elongated and host ZBCPs
consistent with nematic and topological superconductivity
[124]. No ZBCP has also been observed by STM/STS in
M = Sr [114,125–127] and M = Nb [128,129]. Hence, the
surface states of MxBi2Se3 still remain controversial.

Another important feature is that chemical dopants inter-
calate between the quintuple layers of the parent material,
involving the Fermi surface evolution from a closed ellip-
soidal shape to an open cylindrical shape. This may drive
multiple phase transitions between competing superconduct-
ing states [130–132]. When the Fermi surface is cylindrical,
the chiral state with spontaneously broken time-reversal sym-
metry, which belongs to the Eu representation of D3d , is
fully gapped and gains the condensation energy. Indeed, the
in-plane Hc2 anisotropy in CuxBi2Se3 disappears with in-
creasing the carrier density (x = 0.46 and 0.54), indicating
that the superconducting gap becomes isotropic [133]. Al-
though no evidence of the time-reversal symmetry breaking
has been reported in MxBi2Se3 so far, it is important to in-
vestigate the theory of anomalous proximity effect in order
to discriminate a signal of the chiral state from other pairing
states.

In this paper, we investigate emergent odd-frequency pairs
and anomalous proximity effect in the nematic and chiral
states of STIs. These materials possess several peculiarities:
(i) the orbital degrees of freedom, (ii) strong spin-orbit cou-
pling, (iii) Majorana fermions, and (iv) topological phase

transition. We first demonstrate that the first two factors
[(i) and (ii)] enrich the properties of odd-frequency Cooper
pairs in the bulk of MxBi2Se3. Then, we categorize emer-
gent pair amplitudes on the surface and junctions of STIs
in terms of irreducible representations of D3d symmetry. We
clarify that nematic and chiral states are accompanied by
helical and spin-polarized Majorana fermions, respectively,
which can be captured by the characteristic spectra of tunnel-
ing conductance. As mentioned above, the recent STM/STS
measurements have not observed pronounced ZBCP. As an
alternative way to discriminate the nematic and chiral states
from the conventional pairing state, we examine the anoma-
lous proximity effect in the junction of STI and dirty normal
(DN) metals. In the absence of spin-orbit interaction, odd-
frequency s-wave pairs emerge in the interface of spin-triplet
odd-parity SC and DN and penetrate into DN. As s-wave pairs
are tolerant to nonmagnetic impurities, the odd-frequency s-
wave pairs proximitized to the DN side is responsible for
a pronounced ZBCP as a signature of odd-parity supercon-
ductivity [34–36,134]. Contrary to such well-known results,
odd-frequency even-parity pairs, which appear in the interface
of STIs, are not tolerant to nonmagnetic impurities and may
not provide a fingerprint of the ground state pairing symme-
try. The anomalous proximity effect in STI/DN junctions is
sensitive to the strength of nonmagnetic impurities in the DN
region, even though odd-frequency even-parity pairs appear in
the interface region. The fragility is attributed to the interplay
of the ground-state pairing symmetry, the orbital degrees of
freedom, and strong spin-orbit interaction.

The organization of this paper is as follows. In Sec. II,
we start with the symmetry classification of even- and odd-
frequency pair amplitudes. We describe the Hamiltonian of
the parent material and discuss the emergent Cooper pairs
in bulk STIs. In Sec. III, we present the numerical results
of surface ABSs and odd-frequency pairs in the nematic and
chiral states. In Sec. IV, we present the tunneling conductance
in the junction of STIs, which captures the characteristic dis-
persion of low-lying ABSs. We also discuss the anomalous
proximity effect in STI/DN junctions. Section V is devoted
to a summary and conclusion. In Appendix A, we describe
the calculation of the critical temperatures in each irreducible
representation. We show the change of the carrier density
and the hexagonal warping drives the nematic-to-chiral phase
transition. In Appendix B, we demonstrate that nematic states
obey the SBBC and topological criticality. The anomalous
proximity effect in Dirac SCs without spin-orbit coupling is
discussed in Appendix C. In this paper, we introduce the Pauli
matrices in the spin, orbital, and particle-hole spaces, sμ, σ̂μ,
and τ̌μ, respectively, where s0, σ̂0, and τ̌0 are the unit matrices
in each space. We also set h̄ = kB = 1.

II. CLASSIFICATION OF COOPER PAIR
AMPLITUDES

A. Cooper pair amplitudes

Here we classify the Cooper pair amplitudes emergent in
SCs with two orbital degrees of freedom, where the orbital
and spin degrees of freedom are denoted by σ = 1, 2 and
s =↑,↓, respectively. Let us start with the Matsubara Green’s
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TABLE I. Pairing symmetries in terms of parities under the ex-
change of the time, spin, spatial coordinate, and orbital indices of
pairs, (ηtime, ηspin, ηmom, ηorb) [see also Eqs. (4)–(7)].

Category ηtime ηspin ηmom ηorb

ESEE + − + +
ESOO + − − −
ETOE + + − +
ETEO + + + −
OSOE − − − +
OSEO − − + −
OTEE − + + +
OTOO − + − −

function,

Ǧ(r1, r2, iεn) = −
∫ 1/T

0
dτeiεnτ 〈Tτ�(r1, τ )�̄(r2, 0)〉

≡
(

Ĝ(r1, r2, iεn) F̂ (r1, r2, iεn)
ˆ̄F (r1, r2, iεn) ˆ̄G(r1, r2, iεn)

)
, (2)

where εn = (2n + 1)πT is the Matsubara fre-
quency at temperature T (n ∈ Z). The field
operator in the Nambu space is defined as �tr =
[c(↑,1), c(↓,1), c(↑,2), c(↓,2), c†

(↑,1), c†
(↓,1), c†

(↑,2), c†
(↓,2)]

tr, where
cα ≡ cα (r, τ ) is the annihilation operator of an electron with
α ≡ (s, σ ) and atr is the transpose of a matrix a. The Green’s
function for clean systems is obtained by solving the Gor’kov
equation

Ǧ(r1, r2, iεn) = [iεn − Ȟ(r1, r2)]−1, (3)

where Ȟ(r1, r2) is the Bogoliubov–de Gennes (BdG) Hamil-
tonian density in the particle-hole space and its explicit form
is given in Eq. (41).

The anomalous component of the Green’s function in the
Nambu space, F̂ , which represents the Cooper pair ampli-
tudes under the gap function �̂. Following the conventional
terminology [2], we classify the Cooper pair amplitudes in
terms of the parities under the exchange of the imaginary time
(Matsubara frequency), spin, the relative coordinate of the
two electrons, and electron orbital, (ηtime, ηspin, ηmom, ηorb) =
(±1,±1,±1,±1), as

ηtimeF(s1σ1 ),(s2σ2 )(r1, r2, iεn) = F(s1σ1 ),(s2σ2 )(r1, r2,−iεn), (4)

ηspinF(s1σ1 ),(s2σ2 )(r1, r2, iεn) = F(s2σ1 ),(s1σ2 )(r1, r2, iεn), (5)

ηmomF(s1σ1 ),(s2σ2 )(r1, r2, iεn) = F(s1σ1 ),(s2σ2 )(r2, r1, iεn), (6)

ηorbF(s1σ1 ),(s2σ2 )(r1, r2, iεn) = F(s1σ2 ),(s2σ1 )(r1, r2, iεn). (7)

The Fermi-Dirac statistics requires the combination of the
parities to satisfy the relation

ηtimeηspinηmomηorb = −1, (8)

or, equivalently, F̂ (r1, r2, iεn) = −F̂ tr (r2, r1,−iεn).
In Table I, we summarize the classes of the Cooper pair

amplitudes. The Cooper pair amplitudes can be classified into
eightfold ways in terms of (ηtime, ηspin, ηmom, ηorb). The even-

and odd-frequency pair amplitudes, F̂ even(iεn) and F̂ odd(iεn),
are defined as

F̂ even(iεn) = 1
2 [F̂ (iεn) + F̂ (−iεn)], (9)

F̂ odd(iεn) = 1
2 [F̂ (iεn) − F̂ (−iεn)], (10)

where F̂ even and F̂ odd belong to the class of ηtime = +1
and ηtime = −1, respectively. The classes with ηtime = +1 in-
clude the even-frequency spin-singlet even-parity even-orbital
(ESEE) class, the even-frequency spin-singlet odd-parity
odd-orbital (ESOO) class, the even-frequency spin-triplet
odd-parity even-orbital (ETOE) class, and the even-frequency
spin-triplet even-parity odd-orbital (ETEO) class. The odd-
frequency pairs with ηtime = −1 are categorized to the
odd-frequency spin-singlet odd-parity even-orbital (OSOE)
class, the odd-frequency spin-singlet even-parity odd-orbital
(OSEO) class, the odd-frequency spin-triplet even-parity
even-orbital (OTEE) class, and the odd-frequency spin-triplet
odd-parity odd-orbital (OTOO) class.

The Green’s function in the clean limit is determined by
the BdG Hamiltonian,

Ȟ =
(

ĥ �̂

�̂† −ĥtr

)
, (11)

where ĥ and �̂ are the N × N matrix of the single-particle
Hamiltonian and pair potential, respectively, and N includes
the spin and orbital degrees of freedom and the number of
lattice sites. These submatrices obey the Hermiticity ĥ = ĥ†

and the Fermi statistics �̂ = −�̂tr , leading to the particle-hole
symmetry, τ̌xȞtr τ̌x = −Ȟ.

To elucidate the Cooper pair amplitudes, let us consider the
weak coupling limit � → 0. The anomalous Green’s function
in the Matsubara representation, F̂ (iεn), is obtained from the
Gor’kov Eq. (3) as

F̂ (iεn) = −[1 + ĜN(iεn)�̂ ˆ̄GN(iεn)�̂†]−1ĜN(iεn)�̂ ˆ̄GN(iεn),
(12)

where ĜN(iεn) = (iεn − ĥ)−1 and ˆ̄GN(iεn) = (iεn + ĥtr )−1 are
the Matsubara Green’s function in the normal state. The lead-
ing order contribution of the odd-frequency pair amplitude is
then given by [62]

F̂ odd(iεn) = −iεn
(
ε2

n + ĥ2
)−1[

ĥ�̂ − �̂ĥ∗](ε2
n + ĥ∗2

)−1
,

(13)
and the even frequency pair amplitude is

F̂ even(iεn) = (
ε2

n + ĥ2
)−1

ĥ�̂ĥ∗(ε2
n + ĥ∗2

)−1
. (14)

Equation (13) indicates that the odd-frequency pairing can
emerge unless

ĥ�̂ − �̂ĥ∗ = 0. (15)

When the normal state maintains the time-reversal symme-
try, i.e., (isy)ĥtr (−isy) = ĥ, the inverse of the normal Green’s

function is given by Ĝ−1
N (iεn) = iεn − ĥ and ˆ̄GN(iεn) =

syĜN(−iεn)sy. Equation (13) is then rewritten to

F̂odd(iεn) = −iεn
(
ε2

n + ĥ2
)−1

[ĥ, ˆ̃�]
(
ε2

n + ĥ2
)−1

, (16)

where we have introduced F̂ ≡ −iF̂ sy and ˆ̃� ≡ −i�̂sy.
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B. Superconducting topological insulators

In this paper, we consider the superconducting state of
doped topological insulators, MxBi2Se3 (M = Cu, Sr, Nb).
The low-lying electrons have orbital degrees of freedom in ad-
dition to spin 1/2, and the low-energy effective Hamiltonian is
describable with two orbitals constituted from two pz orbitals
localized on the lower and upper sides of the quintuple layer.
The Hamiltonian for the parent topological insulators is given
by [135,136]

ĥ(k) = c(k) − μ + m(k)σ̂x + vz fz(k)σ̂y

+ v( f (k) × s)zσ̂z + λ f3λ(k)szσ̂z, (17)

where μ is the chemical potential. We have introduced
c(k) = c0 + c1 f⊥(k) + c2 f‖(k) and m(k) = m0 + m1 f⊥(k) +
m2 f‖(k). We consider a tight-binding model on the hexagonal
layers stacked along the z axis [137–139],

fx = [sin(k · δ1) − sin(k · δ2)]/(
√

3a), (18)

fy = [sin(k · δ1) + sin(k · δ2) − 2 sin(k · δ3)]/(3a), (19)

fz = sin(k · δ4)/c, (20)

f‖ = 4

3a2
[3 − cos(k · δ1) − cos(k · δ2) − cos(k · δ3)], (21)

f⊥ = 2[1 − cos(k · δ4)]/c2. (22)

As shown in Fig. 1(a), the nearest-neighbor bond vectors
are defined as δ1 = (

√
3

2 a, 1
2 a, 0), δ2 = (−

√
3

2 a, 1
2 a, 0), δ3 =

(0,−a, 0), and δ4 = (0, 0, c), where a and c are in-plane and
out-of-plane lattice constants, respectively. The third and fifth
terms on the right-hand side of Eq. (17) represent the insu-
lating gap and the spin-orbit coupling, respectively. The last
term in Eq. (17) introduces three mirror planes and threefold
rotational symmetry in the xy plane and gives rise to the
hexagonal warping of the axially symmetric Fermi surface
[119,140]:

f3λ(k) = − 16

3
√

3a3

3∑
j=1

sin k · a j . (23)

The next-nearest-neighbor bond vectors are introduced
as a1 = δ1 − δ2, a2 = δ2 − δ3, and a3 = δ3 − δ1. In the
vicinity of the 
 point, the Hamiltonian in Eq. (17)
reduces to ĥ(k) ≈ c(k) + m(k)σx + vzkzσy + v(k × s)zσz +
λ(k3

+ + k3
−)szσz, with replacing fμ(k) to k2

μ (μ = x, y, z),
where k± ≡kx ± iky. The quasiparticle states in STIs are ob-
tained by diagonalizing the BdG Hamiltonian in Eq. (11) with
Eq. (17).

The 4 × 4 Hamiltonian, ĥ(k), maintains the inversion sym-
metry and time-reversal symmetry

Pĥ(k)P† = ĥ(−k), (24)

T ĥ(k)T −1 = ĥ(−k), (25)

where P = σ̂x and T = isyK (K is the complex conjugation
operator). In addition, ĥ(k) is invariant under a mirror reflec-

FIG. 1. (a) Crystal structure in Eq. (17) and the gap structure
of the Eu nematic state. The crystal is composed of the hexagonal
layers stacked along the z axis and the nodal direction of the super-
conducting gap is related to the nematic angle φn. The shaded area
in the yz plane is one of the mirror planes maintained by Eq. (17).
(b) Fermi surface and superconducting gap of the Eu,x and Eu,y

nematic state (color map) for several values of the chemical potential,
μ/|m0| = 1.6, 1.85, and 2.3. In (b), we set λk2

F,‖/v = 0.1.

tion (M) and threefold rotation about the ẑ axis (R3):

Mĥ(k)M† = ĥ(k), (26)

U3ĥ(k)U †
3 = ĥ(R3k). (27)

The mirror operator, M = is · ô, flips the momentum k and
the spin s to k = k − 2ô(k · ô) and s = −s + 2ô(s · ô), where
ô = (cos φ, sin φ, 0) is three mirror axes of the crystal, φ =
0,±2π/3 [see Fig. 1(a)].

The parent material, Bi2Se3, has a layered structure consti-
tuted from stacked Se-Bi-Se-Bi-Se quintuple layers along the
(111) direction (z axis in this paper). The layers are weakly
bounded by van der Waals forces. The intercalation of Cu
atoms into the van der Waals gap between the quintuple layers
of Bi2Se3 increases the carrier density in the conduction band
and induces a small electrons pocket around the 
 point.
The highest Tc of CuxBi2Se3, Tc ≈ 3.8 K, is accomplished
by the optimal doping 0.12 < x < 0.15, where the electron
carrier density is about 1019–1020 cm−3. From the analysis
based on the Shubnikov–de Haas measurement of CuxBi2Se3,
Lahoud et al. [141] reported the Fermi surface evolution from
a spheroidal to cylindrical shape around the 1020 cm−3 carrier
density. Nontrivial bulk topological superconductivity is real-
ized in odd parity pairs when the number of Fermi surfaces
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embracing time-reversal invariant momenta (
 and Z points)
is odd [99,100]. The Fermi surface evolution is therefore
indispensable for fully understanding surface ABSs in this
material.

The Fermi surface evolution may be associated with the
fact that the intercalation enlarges the van der Waals gap and
alters the hopping energies along the z direction, (c1, m1, vz ),
from those in the parent material. To incorporate this ef-
fect, we parametrize the hopping energies along the c axis
as (c1, m1, vz ) = α(μ)(c(0)

1 , m(0)
1 , v(0)

z ). We use the values of
(c(0)

1 , m(0)
1 , v(0)

z ) and all other parameters of Eq. (17) reported
in Ref. [138]. The strength of the hexagonal warping term
in Eq. (17) is scaled as λk2

F,‖/v, using the strength of the

spin-orbit coupling v and kF,‖ ≡
√

(μ2 − m2
0 )/v. The evolu-

tion of the Fermi surface topology is described by the single
parameter α(μ), where we take α = 1.0 at μ = 1.6|m0| and
α = 0.3 at 2.3|m0|, and the intermediate region is interpolated
linearly. The μ dependence of the Fermi surface is displayed
in Fig. 1(b), where the Fermi surface topology changes at
μ = 1.8|m0|. The carrier density in the conduction band,
nCB, changes from nCB = 8.4 × 1019 cm−3 at μ = 1.6|m0|
(spheroidal Fermi surface) to nCB = 5.5 × 1020 cm−3 at μ =
2.3|m0| (cylindrical Fermi surface).

C. Nematic/chiral states and pair amplitudes in bulk STIs

Electrons in the parent material of STIs inevitably have
orbital degrees of freedom and strong spin-orbit coupling,
which enables topological odd-parity pairs even in an s-wave
channel. We first consider even-frequency s-wave pairing in
a D3d crystal. Let 
 be the irreducible representations of D3d

with the dimension n
 and {d̂

1 , . . . , d̂


n

} be basis functions of


. The pair amplitude is then expanded in terms of the basis
functions as

F̂ (k, R, iεn) = i
n
∑
j=1

F̂ (R, iεn)d̂

j (k)sy, (28)

where R is the center-of-mass coordinate of the pair ampli-
tude. In Table II, we summarize the possible basis functions.
In centrosymmetric materials, the pair amplitudes obey the
inversion symmetry,

PF̂ (k, R, iεn)P† = ηPF̂ (−k,−R, iεn), (29)

where P ≡ σx and ηP = ±1.
In Table II, we show the possible pair amplitudes in the

s-wave channel, F̂ (k, iεn). As mentioned in Sec. II A, ηP is
equivalent to ηmom in single-band centrosymmetric SCs. In
multiorbital systems, however, ηP provides different indica-
tors to classify the gap symmetry and topology. As shown in
Table II, the class of ηorb = +1 (ESEE/OTEE) takes any one
of the orbital bases, σ0, σx, and σz. The pairs with σ0 and σx

are categorized to even parity (ηP = +1) pairing, while the
pair with σz is an odd parity (ηP = −1) pairing. The class with
orbital parity ηorb = −1 is uniquely determined by σy, where
only the inversion odd parity pairing ηP = −1 is possible.
Odd-frequency pairs with the multiband, multiorbital, and
sublattice degrees of freedom have been investigated widely in
multiband SCs and SC/topological insulator hybrid systems
[59–63,65,66,142–150].

TABLE II. Pairing symmetries according to the irreducible rep-
resentation of D3d point group 
 = {A(e)

1g , A(e)
1u , A(e)

2u , E (e)
u } for even

frequency pairing and 
 = {A(o)
1g , A(o)

1u , A(o)
2u , E (o)

u } for odd-frequency
pairing, where C3 = e−i(π/3)sz , C2 = e−i(π/2)syσx , and M = −isx are
the operators associated with threefold rotation symmetry, twofold
rotation symmetry, and the mirror symmetry, respectively.

Category Basis (d̂

j ) C3 C2 M ηP 


ESEE σ0, σx +1 +1 +1 +1 A(e)
1g

σz +1 −1 +1 −1 A(e)
2u

ETEO szσy +1 +1 −1 −1 A(e)
1u

(sxσy, syσy ) −1 0 (+1, −1) −1 E (e)
u

OSEO σy +1 −1 +1 −1 A(o)
2u

szσ0, szσx +1 −1 −1 +1 A(o)
2g

OTEE (sx, sy )σ0, (sx, sy )σx −1 0 (+1, −1) +1 E (o)
g

szσz +1 +1 −1 −1 A(o)
1u

(sxσz, syσz ) −1 0 (+1, −1) −1 E (o)
u

In the same manner, the general form of the gap function is
given by

�̂(k, R) = i
n
∑
j=1

η

j (R)d̂


j (k)sy. (30)

The pair potential must satisfy �̂(k, R) = −�̂tr (−k, R). As
listed in Table II, all on-site pairing functions are categorized
into 
 = A(e)

1g , A(e)
1u , A(e)

2u , and E (e)
u , where their basis functions

are d̂A1g = (σ0, σx ), d̂A1u = szσy, d̂A2u = σz, and (d̂Eu
1 , d̂Eu

2 ) =
(sxσy, syσy), respectively. In centrosymmetric materials, the
inversion symmetry in Eq. (24) requires the pair potential to
obey P�̂(k)P† = ηP�̂(−k). Sufficient criterions for realizing
time-reversal-invariant topological superconductivity in cen-
trosymmetric materials are that the parity of the pairing is odd
(ηP = −1) and the number of Fermi surfaces enclosing time-
reversal-invariant momenta (
 and Z points) is odd [99,100].
The A(e)

1u , A(e)
2u , and E (e)

u pairing states satisfy the condition
when the Fermi surface encircles the 
 point.

In this paper, we focus on the Eu superconducting state.
The pair potential is given by

�̂(k) = (
η1d̂Eu

1 (k) + η2d̂Eu
2 (k)

)
isy. (31)

As the time-reversal symmetry imposes η1,2 ∈ R, the Eu ne-
matic state is given by

(η1, η2) = �0(n̂x, n̂y ). (32)

The uniaxial vector, n̂ = (cos φn, sin φn, 0), is a subsidiary
nematic order [119]. This state has gap anisotropy in the
low-lying quasiparticle excitation, and the direction of the
gap minimum or point nodes is represented by the nematic
angle as φnode = φn ± π/2 [see Fig. 1(a)]. The spontaneous
breaking of the rotational symmetry of the crystal ensures
the quasi-Nambu Goldstone mode associated with the fluc-
tuation of the nematicity angle [130]. The hexagonal warping
in Eq. (23) induces a three-fold symmetric potential to pin the
order parameter n̂. The mirror operator in Eq. (26) acts on the
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nematic gap function as

M�̂(k)M tr = ηM
C �̂(k), (33)

where ηM
C = +1 for n̂ ‖ ô and ηM

C = −1 for n̂ ⊥ ô. In accor-
dance with the topological Blount’s theorem [151], the parity
ηM

C is important for the topological stability of point nodes in
centrosymmetric time-reversal-invariant SCs. The point nodes
are topologically protected only when n̂ is pinned to the direc-
tion of one of three mirror axes, i.e., n̂ = ô or φn = 0, ±π/3,
and ±2π/3 [see Fig. 1(a)] [151]. Otherwise, the point nodes
in the Eu state are gapped out by the hexagonal warping term.

Another pairing in the Eu representation is the chiral state
with broken time-reversal symmetry, which is given by

(η1, η2) = �0(1,±i). (34)

By projecting the quasiparticle states onto the conduction
band of the normal electrons, the 4 × 4 matrix of the odd-
parity gap function is mapped onto the d-vector as �̂ �→
is · d(k)sy, where the d-vector is the 2 × 2 matrix in the band
representation. In the lowest order on k, the d vector in the
conduction band is given as

d(k) = [η1vz fz, η2vz fz, v(η1kx + η2ky)]/|m0|. (35)

Thus, the chiral state is the nonunitary state with d × d∗ �= 0,
and the Cooper pairs has nonvanishing magnetic moment,
m ∝ i〈d × d∗〉 [152,153], where 〈· · · 〉 is the Fermi surface
average. The spin polarization splits the quasiparticles bands
into E±(k), leading to the two distinct superconducting gaps.
The bulk excitation gaps at the Fermi momentum kF are rep-
resented by E chiral

± (kF) =
√

|d(kF)|2 ± |d(kF) × d∗(kF)|. The
E chiral

+ band is fully gapped on the whole Fermi surface, while
the E chiral

− band becomes gapless at kx = ky = 0. The pairwise
point nodes at kx = ky = 0 are regarded as the Weyl points
with opposite monopole charge ±1, and the quasiparticles
residing at the nodes behave as Weyl fermions. The d vec-
tor in Eq. (35) can be regarded as the hybrid structure of
the spin-polarized polar pair [ fz(k) |↑↑〉] and the chiral pair
(kx + iky) |↑↓ + ↓↑〉. The chiral state is the prototype of Weyl
SCs. This state is thus the prototype of Weyl SCs [154,155],
and low-lying quasiparticles with the nontrivial Berry cur-
vature are responsible for anomalous transport phenomena
[156,157].

The stability of the nematic and chiral phases is discussed
in Appendix A. It is demonstrated that the change of the
carrier density (chemical potential) and the hexagonal warp-
ing effect drives the nematic-to-chiral phase transition (see
Fig. 17). The superconducting gap of the chiral state becomes
fully isotropic when the Fermi surface is an open cylindrical
shape. The stability of the chiral state is attributed to the
gain of the condensation energy due to the Fermi surface
evolution.

We now classify Cooper pair amplitudes for all irreducible
representations (A(e)

1g , A(e)
1u , A(e)

2u , E (e)
u ) in the bulk STIs. The pair

potentials except for A(e)
1g (σ0) violate the condition in Eq. (15),

i.e., ĥ�̂ − �̂ĥ∗ �= 0, and are accompanied by odd-frequency
pair amplitudes in the bulk. In Table III, we summarize
Cooper pair amplitudes induced by the insulating gap (m0,
m1, m2), the spin-orbit coupling (v and vz), and the hexagonal
warping (λ). Let us focus on pair amplitudes in Eu nematic

TABLE III. Emergent Cooper pair amplitudes in each irreducible
representation, where primary and orbital denote the symmetry
classes of �̂ and the Cooper pair amplitudes induced by the orbital
hybridization term [m(k)σ in Eq. (17)], respectively. SOC (vz ) and
SOC (v) are spin-orbit-coupling induced pair amplitudes, and warp-
ing corresponds to the hexagonal warping term.

� Primary Orbital SOC (vz ) SOC (v) Warping (λ)

A(e)
1g ESEE ESEE ESOO/OSOE ETOE/OTOO ETOE/OTOO

A(e)
1u ETEO OTEE ETOE ETOE OSOE

A(e)
2u ESEE OSEO OSOE ETOE ETOE

E (e)
u ETEO OTEE ETOE ETOE,OSOE ETOE

states with Eq. (32). Equation (36) indicates that the commu-
tation relation, [ĥ(k), ˆ̃�(k)], determines the emergence of the
odd-frequency pairing. Equation (16) is recast into

F̂odd(k, iεn) = −iεnA(k, iεn)[ĥ(k), ˆ̃�(k)], (36)

where A(k, iεn) is a scalar coefficient obeying A(k, iεn) =
A(−k, iεn) = A(k,−iεn). In the same manner, the even-
frequency pairing in Eq. (14) is

F̂ even(k, iεn) = C1(k, iεn) ˆ̃�(k) + C2(k, iεn){ĥ(k), ˆ̃�(k)}
+ C3(k, iεn)ĥ′(k) ˆ̃�(k)ĥ′(k), (37)

where we have introduced ĥ′(k) ≡ ĥ(k) − c(k), and the co-
efficients obey Cj (k, iεn) = Cj (−k, iεn) = Cj (k,−iεn) ( j =
1, 2, 3). It is seen from Eqs. (36) and (37) that the symmetry
of Fodd is governed by the commutation relation, [ĥ(k), ˆ̃�],
while the anticommutation relation {ĥ′(k), ˆ̃�} and the term
ĥ′(k) ˆ̃�ĥ′(k) induce even frequency pairing whose symmetry
is different from that of �̂. The insulating gap (m0, m1, m2)
and the spin-orbit coupling (v) can induce the OTEE and
OSOE pairing, F̂odd = F̂OTEE + F̂OSOE, where both pair am-
plitudes are classified into the E (o)

u representation:

F̂OTEE(k, iεn) = εnA(k, iεn)m(k)(η1sy − η2sx )σz, (38)

F̂OSOE(k, iεn) = vεnA(k, iεn)[η1 fy(k) − η2 fx(k)]σx. (39)

In the vicinity of the 
 point, the former (latter) is the in-
traorbital spin-triplet s-wave (interorbital spin-singlet p-wave)
pairing channel. In the same manner, from the leading order
expansion in v/|m0|, vz/|m0|, λ/|m0|, the ETOE pairs also
emerge where the spin-orbit coupling with v and vz and the
hexagonal warping induce the intraorbital pairing (η1 fy(k) −
η2 fx(k))sz and fz(k)(η1sx − η2sy), and the interorbital pairing
f3λ(k)syσx, respectively.

Figure 2 shows the Cooper pair amplitudes for E (e)
u nematic

(sxσx), A(e)
1u , A(e)

2u , and A(e)
1g (σx) superconducting states, where

Cooper pair amplitudes at the energy ε are obtained from the
retarded/advanced Green’s functions, ǦR,A(k, ε) = [ε ± iδ −
Ȟ(k)]−1, with δ = 0.01�0. In the presence of odd-parity E (e)

u ,
A(e)

1u , and A(e)
2u pair potentials, the dominant pair belongs to the

ETEO class, which constitutes �̂ through the gap equation. As
mentioned above, however, the orbital hybridization [m(k)σ̂x]
term and spin-orbit coupling terms induce OTEE and OSOE
pair amplitudes in the odd-parity pairing states, though they
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FIG. 2. Cooper pair amplitudes, |〈FETEO(ε)〉|, |〈FOTEE(ε)〉|, and
|〈FOSOE(ε)〉|, in E (e)

u,x nematic state (a), the A(e)
1u state (b), the A(e)

2u state
(c), and the interorbital (σx) A(e)

1g state (d). We also plot the OSEO and
OTOO pair amplitudes in (c) and (d), respectively. Here we consider
bulk systems without surfaces, and set μ = 1.65|m0| and λk2

F,‖/v =
0.1 in all data.

are one or two orders of magnitude smaller than ETEO pair
amplitudes. In A(e)

2u and A(e)
1g , the nonzero amplitudes of the

OSEO and OTOO pairs also stem from the orbital hybridiza-
tion and spin-orbit coupling with v, respectively.

III. ODD-FREQUENCY PAIRS ON SURFACE OF NEMATIC
AND CHIRAL STATES

In this section, we discuss the surface ABSs and odd-
frequency pairs in the Eu nematic and chiral states. The
quasiparticle states are described by the BdG equation:∑

r j

Ȟ(ri, r j )ϕn(r j ) = Enϕn(ri ). (40)

The BdG Hamiltonian in real space is given by

Ȟ(ri, r j ) =
(

ĥ(ri, r j ) �̂(ri, r j )
�̂†(ri, r j ) −ĥ(ri, r j )

)
, (41)

where ĥ(ri, r j ) is the real-space coordinate representation
of ĥ(k). The eigenvector is the eight-component vector,
ϕn = [un,(↑,1), un,(↓,1), un,(↑,2), un,(↓,2), vn,(↑,1), vn,(↓,1), vn,(↑,2),

vn,(↓,2)]tr, which fulfills the orthonormal condition,∑
r j

ϕ†
n(r j )ϕm(r j ) = δnm. The BdG Hamiltonian obeys

the particle-hole symmetry:

CȞ(ri, r j )C−1 = −Ȟ(ri, r j ). (42)

This guarantees that the positive energy solution ϕE (r) is
associated with the negative one ϕ−E (r) = CϕE (r), where
C = τxK exchanges the particle and hole components of the
Bogoliubov quasiparticle wavefunction. We numerically solve
Eq. (40) with the periodic boundary condition in the xy
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FIG. 3. Evolution of Fermi surfaces and the distribution of topo-
logically protected zero-energy states in the Brillouin zone projected
on the xy and yz (xz) surfaces: (a) Eu,x (n̂ ‖ x̂) and (b) Eu,y (n̂ ‖ ŷ)
nematic states. The left and right figures correspond to μ = 1.6|m0|
and 1.9|m0|, respectively. In all data, we set λk2

F,‖/v = 0.1.

plane and the open boundary condition along the z axis,
ϕkx,ky

(z = 0) = ϕkx,ky
(z = L) = 0. The z axis corresponds to

the (111) direction of the D3d crystals.
The nontrivial topology of the normal electrons in the

parent material, Bi2Se3, is characterized by the Z2 invariant,
that is, the parity of m0m1. When sgn(m0m1) < 0, the bulk of
the parent material is topologically nontrivial and a gapless
Dirac cone exists on the surface. It has been observed in angle
resolved photoemission spectroscopy that the Dirac cone in
CuxBi2Se3 is well isolated from the bulk conduction band
at the Fermi level when the carrier density is small [158].
The surface Dirac fermion is fully polarized in the orbital
space and accompanied by helical spin texture in the surface
Brillouin zone. It has been discussed that the isolated Dirac
fermion significantly affects the surface ABSs and tunneling
conductance [102–104,139], as well as the superconducting
gap structure [106].

A. Nematic states

1. Chiral symmetry and topological invariant

Figure 3 shows the distribution of the zero energy
states on surface Brillouin zones in the nodal Eu,x state
[n̂ = x̂ in Eq. (32)] and the fully gapped Eu,y state
[n̂ = ŷ in Eq. (32)]. The zero-energy states are pro-
tected by two different topological invariants, w3d and
w1d(ky). The three-dimensional winding number is defined as
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w3d = 1
48π3

∫
d3kεμνηtr[
̌3Q̌μ(k)Q̌ν (k)Q̌η(k)] with Q̌μ(k) =

Ȟ−1(k)∂kμ
Ȟ(k), where the repeated Greek indices imply

the sum over x, y, z. The chiral operator is defined as a
combination of the time-reversal symmetry in Eq. (25) and
particle-hole symmetry in Eq. (42), 
̌3 = iCT . The winding
number is nonzero for odd parity SCs when the Fermi sur-
face encloses time reversal invariant momenta in the Brillouin
zone. This ensures the existence of the zero energy states at
the 
̄ point, which is the center of the surface Brillouin zone,
when an odd number of the Fermi surface encloses the 


point in the Brillouin zone. The parity of w3d still remains
as a topological invariant even when the gap has point nodes
[99–101].

Another topological invariant is the one-dimensional wind-
ing number, which is obtained from the order-two magnetic
symmetry [73,75–77],

T MȞ(kx, ky, kz )(T M)−1 = Ȟ(kx,−ky,−kz ), (43)

which is a combination of T and mirror reflection, M =
diag(M, ηM

C M∗). The mirror reflection operator on the yz plane
is defined as M = −isx and ηM

C is given in Eq. (33). Com-
bining T M with Eq. (42), we define the chiral symmetry
operator for the Eu,x nematic state (n̂ ‖ x̂) as


̌1 = eiαCT M = szτy, (44)

which is anticommutable with the BdG Hamiltonian,
{
̌1, Ȟ(0, ky, kz )} = 0. The phase factor in Eq. (44) is deter-
mined so as to satisfy 
̌2 = +1. In the chiral symmetry plane
within kx = 0 [see Fig. 1(a)], the one-dimensional winding
number is defined as [73,75,76,159]

w1d(ky) = − 1

4π i

∫ +π/c

−π/c
dkztr[
̌1Q̌z(0, ky, kz )]. (45)

In the Eu,x nematic state, the winding number is nontrivial,
w1d(ky = 0) = −2, for |ky| � kF,y unless the Fermi surface
is opened to the ẑ direction. This leads to the topological
stability of zero-energy flat band on the xy surface Brillouin
zone as shown in Fig. 3(a). At the critical carrier doping, μc =
1.8|m0|, the Fermi surface evolution from a closed spheroidal
to an opened cylindrical shape changes w1d(ky) around the

̄ point. In contrast, in the Eu,y nematic state, the zero-energy
state appears only at 
̄ for a closed Fermi surface, while it van-
ishes beyond the critical doping μ > μc [Fig. 3(b)]. We note
that the symmetry in Eq. (43) is not broken by Zeeman fields
perpendicular to the x direction, and thus the zero-energy flat
band in the Eu,x state is tolerant to such magnetic fields.

2. Surface Andreev bound states

In Fig. 4, we show the low-lying quasiparticle spectra on
the (111) surface of the Eu,x and Eu,y nematic states. As seen
in Figs. 4(a) and 4(b), in the Eu,x state, the zero-energy flat
band appears along ky as a consequence of nontrivial topo-
logical invariant in Eq. (45). In the Eu,y state, the zero-energy
state appears at the 
̄ point, which is dispersing to both kx

and ky directions [Fig. 4(c)]. The velocity is proportional to
the strength of the hexagonal warping, λ, and the dispersive
ABSs reduce to the flat band when λ = 0. The topological
phase transition occurs at μc = 1.8|m0|, and a part of the
zero-energy flat band in the Eu,x nematic state survives even

FIG. 4. Quasiparticle spectra on the (111) surface of the Eu ne-
matic states: (a) μ/|m0| = 1.8 and (b) 1.85 for the Eu,x nematic state
(n̂ ‖ x̂), and (c) μ/|m0| = 1.8 and (d) 1.85 for the Eu,y nematic state
(n̂ ‖ ŷ). Here we set λk2

F,‖/v = 0.1.

when μ > μc [Fig. 4(b)]. These results coincide with the
topological consideration with w3d and w1d(ky). Furthermore,
the peculiarity of the surface ABSs in the STIs is that the
gapless branch within kx,ya � 0.5 smoothly evolves into the
Dirac cone corresponding to the dispersion within kx,ya � 0.5.
The Dirac cone always has the steep dispersion compared to
the surface ABSs, because the dispersion of the former (latter)
is governed by the insulating gap (superconducting gap).

In Fig. 4, we also plot the spin polarization of the surface
ABSs using the color bar. The spin-polarization rate of the
quasiparticle state with En(k‖) is defined as

〈sμ(k‖)〉 =
∫ L/2

0
dzU†

n(k‖, z)sμUn(k‖, z), (46)

which is the expectation value of the spin operator by the
particle component of the quasiparticle wave function, Un ≡
[un,(↑,1), un,(↓,1), un,(↑,2), un,(↓,2)]tr. While the zero energy flat
band does not possess characteristic spin texture, the disper-
sive surface ABSs, e.g., the kx (ky) dispersion in Eu,x (Eu,y),
exhibit the helical spin texture 〈s〉 ⊥ k. The spin texture of the
surface ABSs smoothly evolves the helical spin texture of the
surface Dirac cone.

To capture the evolution of the surface ABSs, we compute
the surface DOS. The local DOS is then introduced as N ≡∑

s,σ Ns,σ , where Ns,σ is defined as

Ns,σ (z, ε) = − 1

π

∑
k‖

Im
[
ǦR

k‖ (z, z, ε)
]

(s,σ ),(s,σ ). (47)
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FIG. 5. Bulk and surface DOS, N (z = 0, ε) in the Eu,x nematic
states (a)–(c) and Eu,y nematic states (d)–(f): (a), (d) μ/|m0| = 1.6;
(b), (e) μ/|m0| = 1.8; and (c), (f) μ/|m0| = 2.3, where we set
λk2

F,‖/v = 0.1. The inset figures show the Fermi surface at each μ.

The retarded Green’s function, ǦR, is obtained from Eq. (3)
with the analytic continuation, ǦR(ε) = Ǧ(iεn → ε + iη),
where η is an infinitesimal constant. For the computation of
the surface Green’s function, we utilize the recursive Green’s
function method using the prescription proposed by Umerski
[160].

Figure 5 shows the bulk and surface DOS, Nbulk (ε) ≡
N (z = L/2, ε) and Nsurf (ε) ≡ N (z = 0, ε) in the Eu,x and
Eu,y nematic states. The bulk superconducting gap in the Eu,x

state evolves from the point nodal to line nodal structure
with increasing μ. The bulk DOS in low energies changes
from N ∝ |ε|2 to the V shape. Although the zero-energy flat
band becomes dispersive in the Eu,y state, the surface DOS
exhibits the pronounced zero-energy peak irrespective of the
nematic angle. The Fermi surface evolution gives rise to the
topological phase transition and the zero-energy state at 
̄ is
gapped out. In the cylindrical Fermi surface, the characteristic
peaks around ε = 0 disappear and the low-energy surface
DOS exhibits N (ε) ∝ |ε|. In Fig. 5, we also display the
orbital-resolved DOS, Nσ=1,2(z, ε) ≡ ∑

s=↑,↓ Ns,σ (z, ε). The
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FIG. 6. Pair amplitudes on the surface, F

j (ε) ≡ F̂


j (z =
L/2, ε), in (a)–(c) the Eu,x nematic state and (d)–(f) the Eu,y nematic
state: μ̃ ≡ μ/|m0| = 1.6 (a), (d); 1.8 (b), (e); and 2.3 (c), (f). In all
data, we set λk2

F,‖/v = 0.1.

discrepancy between N1 and N2 at μ = 2.3|m0| is attributed
to the orbital polarization of the surface Dirac cones asso-
ciated with the nontrivial topology of the normal electrons,
which deviates the surface DOS from the bulk one.

3. Odd-frequency pairs and spectral bulk-boundary
correspondence

Let us now discuss the relation between low-lying quasi-
particles and odd-frequency pairs. Here we restrict our
attention to the on-site Cooper pair amplitudes. The s-wave
(on-site) components of Cooper pair amplitudes are defined
by the anomalous Green’s function, F̂ ≡ −iF̂ sy, as

F̂ (z, ε) ≡
∑

k‖

[
F̂R

k‖ (z, z, ε) − F̂A
k‖ (z, z, ε)

]
. (48)

In general, the s-wave pair amplitudes are immune to non-
magnetic disorders and can penetrate into dirty metals, while
the non-s-wave components are sensitive to disorders and do
not cause the proximity effect to dirty metals. We expand the
s-wave Cooper pair amplitudes in terms of the basis function
of the irreducible representation, d̂


j , as

F̂ (z, ε) =
∑




n
∑
j=1

F

j (z, ε)d̂


j , (49)

where the expression of d̂

j is summarized in Table II.

Figure 6 shows the Cooper pair amplitudes emergent on
the surface of the Eu,x and Eu,y nematic states. As discussed
in Sec. II C, there exist three different types of Cooper pairs:
ETEO, OTEE, and OSOE pairs. For Eu,x (Eu,y), the ETEO
pairs constitute the bulk pair potential �̂ = sxσy (�̂ = syσy),
while the OTEE pair, sxσz (syσz), and OSOE pair fyσx ( fxσx),
stem from the orbital hybridization term and spin-orbit cou-
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pling term of the normal state Hamiltonian, respectively. We
find that the OTEE pairs emergent on the surface can be
classified in terms of the irreducible representation as

F̂OTEE(z, ε) = FE (o)
g

1 (z, ε)sx + FE (o)
g

2 (z, ε)sxσ̂x

+ FE (o)
u (z, ε)sxσ̂z. (50)

The first two terms (sx and sxσx) belonging to E (o)
g are proper

to the surface, while the third term sxσz is the odd-frequency
pairs residing in the bulk.

One of the OTEE pair amplitudes proper to the surface,

FE (o)
g

1 sx, is directly associated with Majorana fermions through
the SBBC. The SBBC is an extension of the bulk-boundary
correspondence of the chiral symmetric systems to the com-
plex frequency, and clarify the relation between the spectral
singularity of the odd-frequency pair amplitudes and the exis-
tence of the Majorana fermions [91]. The SBBC is explicitly
written with the complex frequency ω ∈ C as

F SBBC(ky, ω) = W (ky, ω)

ω
. (51)

The quantity on the left-hand side is the Cooper pair ampli-
tude integrated along the z direction, defined with the chiral
operator as

F SBBC(ky, ω) =
∑

j

tr[
̌1Ǧkx=0,ky (z j, z j, ω)], (52)

where the sum
∑

j is taken over the semi-infinite system.
The pair amplitude is an odd function of ω, F̂ SBBC(ky, ω) =
−F̂ SBBC(ky,−ω). The right-hand side of Eq. (51) is evaluated
from the bulk Green’s functions Ǧ(k, ω) = [ω − Ȟ(k)]−1 and
the generalization of the one-dimensional winding number
Eq. (45) to the complex frequency plane, limω→0 W (ky, ω) =
w1d(ky). Therefore, the SBBC states that the bulk quan-
tity W (ky, ω) is related to the accumulation of the Cooper
pair amplitudes at the boundary. The odd-frequency pair
amplitude accumulated at the boundary is expressed in the
low-frequency limit as

F SBBC(ky, ω) = w1d(ky)

ω
+ χ (ky)ω + O(ω3). (53)

As demonstrated in Appendix B, the bulk quantity χ (ky) ex-
hibits a power-law divergence, χ (ky) ∼ |ky − kc|−2, where kc

denotes an endpoint of the zero-energy flat band in the surface
Brillouin zone. Therefore, the odd-frequency pairs associated
with the SBBC have two different singularities at ω → 0 and
ky → kc.

In the Eu,x nematic state, the chiral operator is defined in
Eq. (44) as 
̌1 = sx τ̌y. It is then found that the E (o)

g com-
ponent of the odd-frequency pair amplitudes contains the
chiral-symmetry-protected odd-frequency pair:

∑
ky

F SBBC(ky, ω) ⊂
∑

j

FE (o)
g,sx

1 (z j, ω). (54)

In Appendix B, we numerically confirm that the E (o)
g com-

ponent of the OTEE pairs accumulated at the boundary is
equivalent to the spectral features of the bulk and obeys the
topological critical behaviors at ω → 0 and ky → kc.

In addition to the E (o)
g pairs, the OTEE pairs in Eq. (50)

include the E (o)
u component. As in Fig. 6(a), the large am-

plitude of the E (o)
u pair appears on the surface though it is

negligible in the bulk. Its amplification on the surface is at-
tributed to the interplay of the surface ABSs with the orbital
polarization of the surface Dirac fermions. This resembles
that the surface Dirac fermions induce the parity mixing of
the pair potential near the surface [106]. Although the E (o)

u
component exists even in the bulk, as seen in Fig. 2(a), the pair
amplitude is a few orders of magnitude smaller than that of
the even-frequency E (e)

u pairs in the bulk. As seen in Fig. 6(a),
however, the amplitude of the E (o)

u component on the surface
becomes comparable to that of E (e)

u pairs. As mentioned in
Sec. III A 2, the gapless surface ABSs in the nematic state
smoothly evolve into the steep dispersion of surface Dirac
fermions around the momenta kxa ≈ 0.5 and kya ≈ 0.5. The
wave function of the Dirac fermions in the normal state is fully
polarized in the orbital space as a consequence of the inversion
symmetry breaking on the surface. The orbital polarization of
the Dirac fermions gives rise to the orbital polarization of the
OTEE pair amplitudes on the surface as well as the surface
ABSs with k‖ � kF. Hence, the possible form of the orbitally
polarized OTEE pairs is given by the linear combination of sx

and sxσz as FE (o)
g

1 sx + FE (o)
u sxσ̂z. The E (o)

g component exhibits

a singular behavior as FE (o)
g

1 (ω → 0) ∝ 1/ω, which induces
a large parity mixing of the E (o)

u component with E (o)
g . As

the strong enhancement of the E (o)
u component on the surface

stems from the orbital polarization of the surface ABSs, the
amplitude of the E (o)

g component reduces with increasing μ

and disappears at μ/|m0| = 2.3, as shown in Fig. 6(c), where
the nematic state with an open cylindrical shape of the Fermi
surface is fully gapped and accompanied by no surface ABSs.

We plot in Figs. 6(d)–6(f) the emergent Cooper pair ampli-
tudes in the Eu,y nematic state. The Eu,y state spontaneously
breaks the symmetry in Eq. (43) and the zero-energy ABSs
for k‖ �= 0 are gapped out by the warping term with λk2

F,‖/v =
0.1, the symmetry and amplitude of the emergent pairs are
essentially same as those of the Eu,x state. Hence, the evolution
of the surface ABSs and emergent odd-frequency pairs reflect
the topological phase transition driven by the change of carrier
concentration, while they are less sensitive to the nematic
angle n̂.

B. Chiral states

Let us now turn to the chiral state in the Eu representation,
whose pair potential is obtained from Eq. (34) as

�̂ = �0(sxσy + isyσy). (55)

For the weak coupling limit �0 � εF, the gap structure is
represented by the d vector in Eq. (35). As mentioned in
Sec. II C, the d vector is the admixture of the chiral pair [(kx +
iky) |↑↓ + ↓↑〉] and the spin-polarized polar pair [ fz(kz ) |↑↑〉
with fz(kz ) = − fz(−kz )], and the nonunitary chiral state has
two distinct gaps in the bulk, E chiral

± . For a closed Fermi sur-
face, the E chiral

− band has pairwise Weyl points at kx = ky = 0,
which are responsible for the appearance of the zero-energy
flat band of the spin-polarized chiral Majorana fermions on
the x and y surfaces. For the (111) surface, no characteristic
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FIG. 7. Quasiparticle spectra on the (111) surface of the Eu chiral
state: (a) μ/|m0| = 1.80 and (b) 1.85, where we set λ = 0.

surface states stem from the Weyl point in the E chiral
− band

topology.
Figure 7 shows the low-lying quasiparticle spectra on the

(111) surface of the Eu chiral state. For a closed Fermi surface
in Fig. 7(a), the low-lying branch is dispersing from the zero
energy, which is embedded in the continuum excitations from
the Weyl points in E chiral

− (k). This gapless state, which is ab-
sent in the bulk, is the surface ABSs which smoothly evolve to
the surface Dirac cone. The gapless dispersion stems from the
polarlike component of the pair potential, fz(kz ) |↑↑〉, which
turns out to be protected by the chiral symmetry. The chiral
state spontaneously breaks both the time-reversal symmetry
(T = −isyK) and mirror reflection symmetry (M = −isx).
The time-reversal operation flips the chirality of the gap func-
tion, but the flip of the chirality is compensated by the mirror
reflection x �→ −x. Hence, the chiral state is invariant under
the combined symmetry:

T M�̂(T M )tr = �̂. (56)

This leads to the chiral symmetry in Eq. (44), and the well-
defined winding number in Eq. (45). The chiral gap function
in Eq. (55) reduces to the spin-polarized polar pair, kz |↑↑〉,
at kx = ky = 0. Therefore, the winding number is nontrivial,
|w1d(ky = 0)| = 1, unless the Fermi surface is opened in the
kz direction. The nontrivial topology protects the zero-energy
eigenstate in the ↑ spin sector at kx = ky = 0, that is, the spin-
polarized Majorana zero mode. The spin-polarization rate 〈sz〉
is plotted with color map in Fig. 7. We numerically confirm
that the zero-energy state is fully polarized 〈sz〉 = +1, which
is consistent to the topological consideration. As μ further in-
creases, as shown in Fig. 7(b), the zero energy state is gapped
out by the Fermi surface evolution to an open cylindrical
shape.

We note that the spin polarization of the surface bound
states is different from that of the bulk quasiparticles. In
Fig. 8, we display the bulk and surface DOS in the chiral
states for several μ’s. The bulk DOS has two coherence peaks
at ε = �+ and �−, corresponding to the two gaps of the
non-unitary state, min E chiral

+ and min E chiral
− , respectively. In

Fig. 8, we also plot the spin-resolved DOS, Nspin(z, ε) =
N↑(z, ε) − N↓(z, ε), where Ns(z, ε) = ∑

σ=1,2 Ns,σ (z, ε). As
mentioned above, in the bulk, the spin polarization is in-
duced by the splitting of quasiparticle bands due to nonzero
spin density of Cooper pairs m ∝ id(k) × d∗(k). According
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FIG. 8. Bulk DOS (upper row) and surface DOS (lower row) in
the chiral state: (a) μ/|m0| = 1.6, (b) 1.8, and (c) 2.3, where we set
λ = 0. Here we also plot the spin-resolved DOS, Nspin.

to the d-vector representation of the chiral pair potential,
the (kx + iky) |↑↓ + ↓↑〉 component is accompanied by the
spin-degenerate quasiparticles states around the Weyl points
(kx = ky = 0). In contrast, the polar component fz(kz ) |↑↑〉
gaps out the ↑-spin sector with the energy gap �+, leading
to the gapless spectrum in the ↓-spin sector. This results in
the sign change of the spin-resolved DOS at ε = ±�+ in the
bulk. The two coherence peaks approach each other and the
spin-polarization rate decreases with increasing μ.

In contrast to the spin polarization of the bulk, as shown
in Figs. 8(a) and 8(b), the surface DOS in closed Fermi
surfaces (μ = 1.6|m0| and 1.8|m0|) has sharp peaks around
ε = 0, which mainly stem from the gapless surface ABSs in
the spin-↑ sector. The intensity of the zero-energy peak is
enhanced by the twist of the gapless surface ABSs around
kxa ∼ kya ∼ 0.5 [see Fig. 7(a)]. Unlike the Eu,x nematic state,
only the zero-energy state at the 
̄ point stems from nontrivial
bulk topology and thus the zero-energy peak is not protected
by the topology. Hence, the two peaks of the surface DOS
split and gradually spread as μ increases. The surface DOS
becomes identical to the bulk one in the limit of the cylindrical
Fermi surface [Fig. 8(c)].

In Fig. 9, we plot the emergent pair amplitudes on the
surface of the chiral state for μ/|m0| = 1.6, 1.8, and 2.3.
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FIG. 9. Pair amplitudes on the surface of the chiral state: μ̃ ≡
μ/|m0| = 1.6 (a), 1.8 (b), and 2.3 (c), with λ = 0.
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Similarly with the nematic state, the OTEE pair amplitude is
expanded in terms of the irreducible representation as

F̂OTEE(z, ε) = FE (o)
g

1 (z, ε)s+ + FE (o)
g

2 (z, ε)s+σ̂x

+ FE (o)
u (z, ε)s+σ̂z, (57)

while the ETEO pair s+σy survives on the surface. Here
s+ ≡ sx + isy reflects the spin polarization of the chiral pair
potential, giving rise to the spin polarization of the surface
ABSs and Cooper pair amplitudes. The emergent Cooper pairs
are essentially the same as those in the nematic state, except
for the spin polarization. The E (o)

g component of the OTEE
pairs is responsible for the pronounced zero-energy peak of
the surface DOS, and accompanied by the E (e)

u component
as a consequence of the parity mixing effect induced by sur-
face Dirac fermions with strong orbital polarization. As μ

increases through the topological phase transition, however,
both the E (o)

g and E (e)
u components associated with the surface

ABSs disappear.

IV. ODD-FREQUENCY PAIRS IN JUNCTIONS

In the previous sections, we have classified the odd-
frequency Cooper pairs emergent in the bulk and surface. Here
we discuss the contributions of odd-frequency pairs to the
tunneling conductance and anomalous proximity effect in the
STI junctions.

A. Tunneling conductance in STI/normal metal junctions

Let us consider the tunneling conductance in an
STI/normal metal junction. The tunneling spectroscopy has
been established as a direct probe for the surface ABSs and
the odd-frequency pairs, especially in the low transmissivity
limit [2,161,162]. The junction which we consider here is
depicted in Fig. 10(a). The junction is stacked along the z
direction, i.e., the (111) direction of the D3d crystal, and an
insulating film is situated between the SC (z < zI) and the
normal metal (z > zI). The translational symmetry is imposed
in the xy plane. Here we consider the Hamiltonian in Eq. (17)
for the normal metals. Thus, the Hamiltonian in the normal
state is given by adding the potential reflecting the insulat-
ing barrier at the interface, V (r) = V0δ(z − zI ), as ĥ(ri, r j ) →
ĥ(ri, r j ) + V (ri )δi j , where V0 determines the transmissivity of
electrons at the interface zI. We also replace �̂ with �̂(zi ) =
�̂�(zI − zi ), where �(x) is the step function.

To compute the tunneling conductance in STI/normal
metal junctions, we derive the current operator in STIs.
Here we consider an electric field applied to the z direction,
Ez(r, t ) = Ez(r)e−iωt . The gauge invariance of the Hamilto-
nian requires the creation operator of an electron at a site to
obey the gauge transformation c†

α (r) → c†
α (r)e−ie�(r), where

�(r) is an arbitrary scalar function and the gauge field is
transformed as A → A + ∇�. As a result, the gauge fields
are incorporated by the Peierls substitution, (c1, m1, vz ) →
(c1, m1, vz )eiφi j , where the hopping terms along the z direc-
tion acquire the Peierls phase, φi j ≡ e

∫ ri

r j
A(r′)dr′ ≈ eA(r) ·

(ri − r j ). The electric bond current density from site r to
r + δ4 is then obtained from Eq. (11) as Jz = −δH/δAz =
1
2�(ri+1)J̌z�(ri ) + H.c. [for the definition of δ4 see Fig. 1(a)],

FIG. 10. (a) Schematics of an STI/normal metal junction, where
the SC, the insulator, and the normal metal are stacked along the z
direction. (b)–(g) Normalized tunneling conductance σS(ε)/σN(ε) in
STI/normal metal junctions: (b)–(d) Eu,x nematic state and (e)–(g)
Eu,y nematic state for several chemical potentials μ̃ ≡ μ/|m0| = 1.6,
1.8, and 2.3. In all data, we set λk2

F,‖/v = 0.1.

where the current operator in the particle-hole space is given
by

J̌z ≡
(

ĵz 0
0 − ĵ∗z

)
, (58)

with

ĵz = −ie[−(c1/c2)σ0 − (m1/c2)σx + i(vz/c)σy/2]. (59)

The tunneling conductance in the STI/normal metal junction,
σS(ε), is obtained from the Lee-Fisher formula in terms of the
retarded and advanced Green’s functions in the equilibrium,
ǦR and ǦA, as [163]

σS(ε) = 1

2h

∑
k‖

tr′[J̌zǦ
′′
z,z+1J̌zǦ

′′
z,z+1 + J̌ †

z Ǧ′′
z+1,zJ̌ †

z Ǧ′′
z+1,z

+ J̌zǦ
′′
z,zJ̌ †

z Ǧ′′
z+1,z+1 + J̌ †

z Ǧ′′
z+1,z+1J̌zǦ

′′
z,z], (60)

where we set Ǧ′′
z,z′ ≡ ǦR

k‖ (z, z′, ε) − ǦA
k‖ (z, z′, ε). The Green’s

function at the interface is numerically solved by using the
recursive Green’s function method combined with the Möbius
transformation [160,164,165].

In Fig. 10, we plot the normalized tunneling conductance
σS(ε)/σN(ε) in the nematic states for different nematic angles
n̂ = x̂ and n̂ = ŷ, where σN is the tunneling conductance in the
normal state. Here we compute σS/σN for V0/|m0| = 0.0, 1.0,
and 5.0. The normalized conductance stays constant σS/σN =
2.0 for |ε| � � in high transmissivity limit (V0 = 0), while
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FIG. 11. Normalized tunneling conductance σS(ε)/σN(ε) in the chiral state for the interface of low transmissivity (a)–(c) and high
transmissivity (d)–(f): μ/|m0| = 1.6 (a), (d); 1.8 (b), (e); and 2.3 (c), (f). We also plot the spin-resolved tunneling conductance σ

spin
S = σ↑ − σ↓.

In all data, we set λ = 0.

a pronounced peak is developed at ε = 0 with increasing
V0, i.e., with decreasing transmissivity. For n̂ = x̂, as seen
in Figs. 10(b)–10(d), the intensity of the ZBCP gradually
weakens and the V-shaped gap is opened when μ increases
across the topological phase transition. For n̂ = ŷ, where the
mirror reflection symmetry is spontaneously broken by the
nematic order, the tunneling conductance at μ/|m0| = 2.3 has
a subgap structure within |ε| ∼ 0.1�. This subgap structure
reflects the uniaxially anisotropic full gap of the nematic state
with n̂ = ŷ due to the hexagonal warping effect. This is in
contrast to the case of n̂ = ŷ where the nodal lines are pro-
tected by the mirror reflection symmetry. Hence, the spectral
evolution of σS in the low transmissivity limit clearly captures
the evolution of the surface DOS in Fig. 5.

Figure 11 shows the normalized tunneling conductance
in the chiral state for the interface of low transmissiv-
ity (V0/|m0| = 5) and high transmissivity (V0 = 0). We also
plot the spin-resolved tunneling conductance σ

spin
S = σ↑ −

σ↓. The spin polarization of the odd-frequency pairs can be
directly detected by STS with the ferromagnetic tip as a sig-
nature of the chiral state [153].

B. Proximity effect to dirty normal metals

Let us now discuss the anomalous proximity effect in the
various irreducible representations of the STIs. We consider
the STI/DN junction depicted in Fig. 12(a), which is similar
to that of Fig. 10(a). The STI is attached to the DN without
the insulating barrier at the interface. Let LS and LN be the
thickness of the STI and DN region along the z axis, re-
spectively. The nonmagnetic impurities are absent in the STI
region within LS � z � 0, while they are randomly distributed

in the DN side within 0 < z < LN. In our calculation, we fix
LS/c = LN/c = 150.

The interaction of electrons with randomly distributed im-
purities is described by

Ȟimp =
Nimp∑
a=1

V̌impδ(r − Ra), (61)

where Ra is the position of an impurity atom and Nimp

is the number of impurity atoms. The impurity po-
tential, V̌imp, is the 8 × 8 matrix in the spin, orbital,
and particle-hole spaces. The full Green’s function for
Ȟ + Ȟimp is defined as Ǧ(ri, r j, iεn) = [Ǧ(0)−1(ri, r j, iεn) −
Ȟimp(ri )δ(ri j )]−1. The Green’s function in the clean limit,
Ǧ(0), is obtained from Eq. (3). By taking the average over
the randomly distributed impurities, the Green’s function in
equilibrium is governed by the Gor’kov equation in real space
as [166]

Ǧk‖,i j = Ǧ(0)
k‖,i j +

∑
l

Ǧ(0)
k‖,il�̌imp,l Ǧk‖,l j, (62)

where we introduce the abbreviations, Ǧk‖,i j ≡ Ǧk‖ (zi, z j ; iεn)
and �̌imp,l ≡ �̌imp(zl , iεn). Within the self-consistent Born
approximation, the impurity self-energy �̌imp is obtained with
the renormalized Green’s function as

�̌imp(z, iεn) = nimp

∑
k‖

V̌impǦk‖ (z, z; iεn)V̌imp, (63)

where nimp = Nimp/V is the concentration of impurity atoms
(V is the volume of the system).
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FIG. 12. (a) Schematics of a STI/DN junction, where the STI
(−LS < z � 0) is attached to the DN (0 < z < LN). (b) Pair ampli-
tudes in STI/DN junctions in the A(e)

1g state with �̂(z) = �0σ0�(−z).
The DN in z > 0 is the doped topological insulator with nonmag-
netic impurities, γN/�0 = 0.2 (dashed lines) and 4.0 (solid lines).
(c) Local DOS, N (z, ε), at z = 50c for γN/�0 = 0.1, 1.0, and 2.0.
The local DOS for γN/�0 = 0.2 (d) and 4.0 (e). In all data, we set
μ/|m0| = 1.6 and λ = 0.

Here we consider the nonmangetic impurities independent
of spin and orbital degrees of freedom, i.e., V̌imp = vimpτ̌z.
Within the self-consistent Born approximation, the impurity
scattering is characterized by the single parameter, that is, the
scattering rate of the normal electrons, γN ≡ πNFv

2
impnimp.

The impurity self-energy in Eq. (63) is then recast into

�̌imp(z, iεn) = �(z)
γN

πNF

∑
k‖

τ̌zǦk‖ (z, z; iεn)τ̌z. (64)

The Green’s functions at equilibrium are determined by
self-consistently solving Eqs. (62) and (64). The retarded
and advanced Green’s functions are obtained by the ana-
lytic continuation of Matsubara Green’s functions as ǦR(ε) =
Ǧ(iεn → ε + i0+) and ǦA(ε) = Ǧ(iεn → ε − i0+), respec-
tively. From now on, we fix the chemical potential to be
μ = 1.6|m0|. This corresponds to the closed spheroidal Fermi
surface around the 
 point and all odd-parity (E (e)

u , A(e)
1u , and

A(e)
2u ) superconducting states are in the topological phase.

Before going to the anomalous proximity effect in the
odd-parity pairing states, we begin with the proximity effect in
the conventional s-wave state. Figures 12(b)–12(d) show the
Cooper pair amplitudes and the local DOS in the A(e)

1g , where

the pair potential is given by �̂ = �0σ̂0 for z � 0 and �̂ = 0
for z > 0. This is the conventional s-wave pairing state with
a fully gap and accompanied by no low-lying ABS on the
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FIG. 13. (a), (b) Pair amplitudes in STI/DN junctions for the
E (e)

u,x nematic state with �̂ = �0sxσ̂y�(−z) and λ̃ ≡ λk2
F,‖/v = 0.

The nonmagnetic impurities in the DN region (z > 0) are set to be
γN/�0 = 0.2 (a) and 2.0 (b). (c), (e) Zero-energy OTEE (E (o)

g,sx
) pair

amplitudes and (d), (f) local DOS at ε = 0 for γN/�0 = 0.2, 1.0,
2.0, and 4.0 at λ̃ = 0 (c), (d) and 0.1 (e), (f). In all data, we set
μ/|m0| = 1.6.

surface. In Fig. 12(b), we plot the amplitude of the on-site
Cooper pairs in the vicinity of the interface. The two A(e)

1g
components of the pair amplitudes (σ̂0 and σ̂x), which are
dominant in the STI region, penetrate into the DN region. It is
seen from Fig. 12(b) that the proximitized A(e)

1g pair amplitudes
are insensitive to the increase of γN and thus survive in the
DN region. As shown in Figs. 12(c)–12(e), the penetration of
the even-frequency even-parity pairs result in the opening of
the finite energy gap in the DN region, where the gap is of
the order of the Thouless energy depending on the diffusion
constant and the length of the DN [167,168].

The pair amplitudes in the E (e)
u,x nematic state are displayed

in Figs. 13(a) γN/�0 = 0.2 and 13(b) for γN/�0 = 2.0, where
we set λk2

F,‖/v = 0.0. The spatial profile of the pair potential
is given by

�̂(z) = �0sxσ̂y�(−z). (65)

In the clean case (γN/�0 = 0.2), the even-frequency odd-
parity E (e)

u pair, which constitutes the pair potential in the
STI, penetrates into the DN, while the amplitude of the odd-
frequency even-parity E (o)

g,sx
pair significantly increases at the
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interface and penetrates into the DN region. It is seen from
Fig. 13(b) that as γN increases, the penetration depth of the
odd parity E (e)

u pair becomes short and its amplitude van-
ishes in z/c � 50. The γN-dependencies of the odd-frequency
even-parity (E (o)

g,sx
) pair amplitude and local DOS at ε = 0 are

plotted in Figs. 13(c) and 13(d). In the clean case (γN/�0 =
0.2), the E (o)

g,sx
pairs penetrate into the DN region. The pen-

etration of the odd-frequency pairs is responsible for the
enhancement of the zero-energy peak of the local DOS in the
DN region, N (z > 0, ε = 0) > NF, which is referred to as the
anomalous proximity effect [28,34]. As seen in Figs. 13(c)
and 13(d), however, the E (o)

g,sx
pair amplitude is sensitive to

the nonmagnetic impurity potential and suppressed in the DN
region as γN increases, where the local DOS at ε = 0 reduces
to N (z > 0, ε) ≈ NF. Hence, the anomalous proximity effect
in the nematic state of STIs is not immune to nonmagnetic
impurities.

We note that as γN increases, the odd-frequency even-
parity pair amplitude is tightly accumulated in the vicinity
of the interface [see Fig. 13(c)]. As shown in Fig. 13(d), the
localization of the E (o)

g,sx
pair gives rise to the pronounced peak

of the local DOS at ε = 0. However, the peak structure of
the pair amplitude and local DOS is not robust and depends
on the detail of the parameters in the Hamiltonian. Indeed, it
disappears when the hexagonal warping increases [Figs. 13(e)
and 13(f)].

In contrast to ordinary spin-triplet SCs, the anomalous
proximity effect of the Eu nematic state of the STI is frag-
ile to nonmagnetic impurities. To understand the fragility of
the anomalous proximity effect, we revisit the anomalous
proximity effect in ordinary spin-triplet SCs which have no
spin-orbit coupling effect. As an example, in Appendix C, we
demonstrate the anomalous proximity effect in Dirac SCs with
the d vector given by Eq. (C3). The superconducting state
has a similar gap structure and surface ABSs with those of
the Eu,x nematic state [see Fig. 20(a)], except the absence of
spin-orbit coupling; The pairwise point nodes appear on the ky

axis in the bulk Brillouin zone and the zero-energy flat band
on the surface is protected by the chiral symmetry. As shown
in Fig. 21, the odd-frequency even-parity pairs penetrating
into the DN region are insensitive to nonmagnetic impurities,
which are responsible for the pronounced zero-energy peak
of the local DOS in the DN region. The zero energy peak is
immune to nonmagnetic impurities, when spin-orbit coupling
is absent [34].

The γN dependence of the anomalous proximity effect in
the nematic state of STIs is essentially different from that in
Dirac SCs. We attribute this discrepancy to strong spin-orbit
coupling inherent to the parent material of the STIs. In the
Eu,x nematic state, as shown in Fig. 13, the dominant com-
ponent of proximitized pairs belong to the E (o)

g irreducible
representation with basis function, sxσ̂0. Let Û ∈ U (4) be
a unitary matrix that diagonzalizes the normal-state Hamil-
tonian ĥ(k) as Û †ĥ(k)Û = diag(ε+(k), ε+(k), ε−(k), ε−(k)),
where ε±(k) are the energies of the normal electrons in the
conduction band (ε+) and valence band (ε−). By using the
unitary operator, the Cooper pair amplitude in the spin and
orbital space, F̂ , is mapped to the band representation as
F̂ → F̂ ′ ≡ Û †F̂Û ∗. Owing to the strong spin-orbit coupling
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FIG. 14. (a), (b) Pair amplitudes in STI/DN junctions for the
chiral state. The nonmagnetic impurities in the DN region (z > 0)
are set to be γN/�0 = 0.2 (a) and 2.0 (b). (c) Zero-energy OTEE
(E (o)

g,s+ ) pair amplitudes and (d) local DOS at ε = 0 for γN/�0 = 0.2,
1.0, 2.0, and 4.0. The OTEE pairs are not protected by the chiral
symmetry. In all data, we set μ/|m0| = 1.6 and λk2

F,‖/v = 0.

in the parent material, the odd-frequency even-parity pairs in
the band representation, F̂ ′

Eg
, are regarded as an admixture of

the s-wave pair component and non-s-wave (e.g., the d-wave)
pair components. Although the s-wave component of E (o)

g
pairs can survive in the DN region, the additional ingredients
of non-s-wave components in the E (o)

g pairs are not immune
to nonmagnetic impurities. This results in the fragility of the
anomalous proximity effect in STIs.

Cooper pair amplitudes and local DOS in the junction
of the chiral state are shown in Fig. 14, where the pair
potential is given by �̂(z) = �0(sx + isy)σ̂y�(−z). Simi-
larly with the nematic state, the odd-frequency even-parity
(E (o)

g,s+ ) pair penetrates into the DN region, but its ampli-
tude is sensitive to nonmagnetic impurities. As shown in
Fig. 14(d), for γN/�0 = 0.2, the local DOS in the DN region
is enhanced by the proximitized E (o)

g,s+ pairs. In addition, the
spin-polarization of the local DOS, Nspin �= 0, reflects the spin
structure of E (o)

g,s+ pairs. As γN increases, however, the local
DOS reduces to NF and spin-polarization of the local DOS is
weakened.

In Fig. 15, we display the local DOS and spin-resolved
local DOS in the DN region (z = LN/2) for the Eu,x nematic
state, the Eu,y nematic state, the Eu chiral state, and the A1u

state. The spatial profiles of the local DOS in the vicinity
of the interface are also shown in Fig. 16. As mentioned in
previous section, the Eu,x nematic state preserves the chiral
symmetry, while the Eu,y state spontaneously breaks the sym-
metry. The low-lying ABS of the latter state on the specular
surface is gapped out and becomes dispersive in the surface
Brillouin zone. However, we do not observe the apparent
difference from the local DOS, where both nematic states have
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FIG. 15. Local DOS at z = LN/2 of the DN region: (a) the Eu,x

nematic state, (b) the Eu,y nematic state, (c) the chiral state, and
(d) the A1u state. In (c), we also plot the spin-resolved local DOS,
Nspin(LN/2, ε). In all data, we set μ/|m0| = 1.6 and λk2

F,‖/v = 0.1.

similar profiles of the local DOS. When the impurity potential
is weak, all the odd-parity states have a pronounced peak of
the local DOS at ε = 0. As γN increases, however, the peak
structure reduces to NF and the characteristic structure of the
local DOS disappears in the DN region.

FIG. 16. Local DOS in STI/DN junctions for the Eu,x nematic state (a), the Eu,y nematic state (b), the chiral state (c), and the A1u state (d),
where the z � 0 (z > 0) region corresponds to STI (DN). The DN is the doped topological insulators with nonmagnetic impurities, where the
impurity parameter is set to be γN/�0 = 0.2, 1.0, and 4.0, in the upper, middle, and lower rows, respectively. In all data, we set μ/|m0| = 1.6
and λk2

F,‖/v = 0.1.

V. CONCLUDING REMARKS

We have studied emergent odd-frequency pairs and anoma-
lous proximity effect in the nematic and chiral states of STIs,
MxBi2Se3 (M = Cu, Sr, Nb). We have shown how the multior-
bital degrees of freedom and strong spin-orbit coupling induce
odd-frequency pairing in the bulk. The nematic and chiral
states in the Eu representation of the D3d crystalline symme-
try are the prototypes of topological SCs with and without
time-reversal symmetry, respectively. As a reflection of such
nontrivial topology, the nematic state hosts helical Majorana
fermions on the surface, while the chiral state is accompa-
nied by spin-polarized Majorana fermions. In particular, the
nematic state with the particular configuration of the nematic
angle (n̂ ‖ x̂) preserves the chiral symmetry. The chiral sym-
metry ensures the existence of the odd-frequency even-parity
pair amplitudes at the boundary as a consequence of the
spectral bulk-boundary condition, implying the topological
aspect of odd-frequency even-parity pairing. In addition, the
surface ABSs are orbitally polarized as a consequence of
the interplay with the Dirac fermions inherent to the normal
STIs. Such orbital polarization induces the parity mixing of
the odd-frequency pairs on the surface, and the E (o)

g pair
amplitude associated with the SBBC necessarily leads to the
large amplification of the E (o)

u pairs. Hence, a rich variety
of odd-frequency pairs emerge from the bulk and surface of
the STIs as a reflection of the symmetry and topology of the
nematic and chiral states.

We have applied the symmetry classification to
STI/normal-metal junctions, and examined the anomalous
proximity effect of the odd-frequency pairs into DN metals. It
has been emphasized that the tunneling conductance reflects
the information of normal electrons and superconducting
gap symmetry. In the nematic state, the topological phase
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transition induced by the increase of the carrier density gives
rise to the evolution of the tunneling conductance from the
pronounced ZBCP to the V-shaped profile reflecting the nodal
structure of the superconducting gap on the cylindrical Fermi
surface. In the case of the chiral state, the nonunitary pairing
induces the spin polarization in the tunneling conductance,
which discriminates the chiral state from other pairing states.
In junction systems with the dirty metals, we have observed
that the anomalous proximity effect in the nematic state
of STIs is sensitive to nonmagnetic impurities, while the
Dirac SCs without spin-orbit coupling yield anomalous
proximity effect immune to nonmagnetic impurities. The
odd-frequency even-parity pairs proximitized to the DN
side are the admixture of s-wave and d-wave pair channels
through the strong spin-orbit coupling inherent to the parent
material of STIs, and the resulting anomalous proximity
effect is sensitive to the strength of nonmagnetic impurities.
These results imply that strong spin-orbit coupling can
essentially change the properties of odd-frequency pairs and
the odd-frequency even-parity pairs emergent in STIs may not
provide a fingerprint of the ground state pairing symmetry.
The systematic study on the effect of spin-orbit coupling
remains as a future problem.

In Appendix B, we have demonstrated that the Eu,x ne-
matic state with the chiral symmetry maintains the SBBC,
which ensures the existence of odd-frequency pair amplitudes
at the boundary. The SBBC also uncovers the two different
divergent behaviors of the odd-frequency pairs, which are
associated with the bulk topology and symmetry. The SBBC
may ensure the robustness of the ZBCP on the surface of the
Eu,x nematic state. Although the SBBC is recently general-
ized to the chiral-symmetric system with randomly distributed
impurities, its relation to the anomalous proximity effect still
remains an unresolved puzzle. It might be important to revisit
the anomalous proximity effect in chiral-symmetric systems
with/without spin-orbit coupling from the viewpoint of the
SBBC.
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APPENDIX A: THERMODYNAMIC STABILITY OF
NEMATIC AND CHIRAL STATES

Here we discuss the thermodynamic stability of the Eu

nematic and chiral states. Let us consider the interaction
Hamiltonian [100]

Hint =
∫

dr
[
U (n2

1(r) + n2
2(r)) + 2V n1(r)n2(r)

]
, (A1)

where nσ ≡ ∑
s=↑,↓ c†

s,σ cs,σ is the density operator in orbital
σ , and U and V denote the intraorbital and interorbital interac-
tion constants, respectively. The U -V model, which describes
the short-range density interaction between electrons, is the

simplest model to describe the competition between intraor-
bital pairing (A1g and A2u) and interorbital odd-parity pairing
states (A1u and Eu) in doped Bi2Se3. Recently, inelastic neu-
tron scattering measurements on Sr0.1Bi2Se3 unveiled highly
anisotropic acoustic phonons along the [001] direction [169].
Contrary to isotropic electron-phonon coupling, the observa-
tion reflects the singular electron-phonon coupling which may
assist the interorbital pairing rather than conventional s-wave
(A1g) pairing. Hence we start with the U -V model to elucidate
the role of the hexagonal warping effect on the stability of the
interorbital pairing states.

We start with the 8 × 8 Matsubara Green’s function at tem-
perature T defined in Eq. (2). For spatially uniform systems,
the formal solution of the Gor’kov equation is obtained as

Ǧ(k, iεn) =
(

Ĝ(k, iεn) F̂ (k, iεn)
ˆ̄F (k, iεn) ˆ̄G(k, iεn)

)
= [

iεn − Ȟ(k)
]−1

.

(A2)
The Green’s function is determined by self-consistently solv-
ing Eq. (A2) with the gap equation:

�̂(r) = −iVT
∑

n

F̂ (r, r, iεn)sy. (A3)

Here we consider the interaction Hamiltonian in Eq. (A1),
which is composed of a contact and attractive intraorbital
and interorbital interactions. Hence, the coupling constant in
Eq. (A3) is set to be V = U for intraorbital channels and
V = V for interorbital channels.

Let ĜN(k, iεn) = [iεn − ĥ(k)]−1 be the Green’s function
in the normal state, where ĥ is introduced in Eq. (17). The
normal-state Hamiltonians are diagonalized as ĥ(k) |u±(k)〉 =
ε±(k) |u±(k)〉, where the dispersions of the conduction band
(E+) and valence band (E−) are

ε±(k) = c(k) − μ

±
√

m2(k) + (vz fz )2 + v2( f 2
x + f 2

y ) + λ2 f 2
3λ. (A4)

The Green’s function in the normal state, ĜN, is given by

ĜN(k, iεn) = I+(k)

iεn − ε+(k)
+ I−(k)

iεn − ε−(k)
, (A5)

where the projection operator onto the conduction (valence)
band, I+(k) [I−(k)] is defined as

I± ≡ |u±(k)〉 〈u±(k)| + PT |u±(k)〉 〈u±(k)| (PT )−1. (A6)

The anomalous Green’s function is then expanded in terms of
ĜN as

F̂ (k, iεn) = ĜN(k, iεn)�̂(k) ˆ̄G(k, iεn). (A7)

At the superconducting transition temperature, T = Tc,
the Green’s function can be expanded as Ĝ(k, iεn) =
ĜN(k, iεn) + O(�/Tc). To obtain the phase diagram in
Fig. 17, therefore, we linearize the gap equation by replacing
ˆ̄G(k, iεn) with −syĜN(k,−iεn)sy. Let d̂


j be the basis function

of the irreducible representation of D3d , i.e., (d̂A1g

1 , d̂
A1g

2 ) =
(1, σx ) for the A1g state, d̂A1u = σysz for the A1u state, d̂A2u =
σz for the A2u state, and (d̂Eu

1 , d̂Eu
2 ) = (σysx, σysy) for the Eu

state. We now expand the pair potential in terms of d̂

i as
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FIG. 17. (a) Phase diagram in the plane of the pair interaction
U/V and the strength of the hexagonal warping term, where we set
|m0|/μ = 0.2 (solid lines), 0.4 (dashed lines), and 0.6 (dotted-dashed
lines). (b) Phase diagram within the Eu representation, where we set
λ = 0.

� = ∑
j η j d̂


j , where η j ∈ R without loss of generality. The
linearized gap equation for the 
 representation is given as

ηi =
∑

j

χ

i j (T )η j, (A8)

where the susceptibilities in each channel are obtained by
substituting F̂ = ĜN�̂ ˆ̄G into the gap Eq, (A3) as

χ

i j (T ) = −1

4
T

∑
n

∑
k

tr
[
d̂


i VĜN(k,−iεn)d̂

j ĜN(k, iεn)

]
.

(A9)

We have introduced the coupling constants, V = U for in-
traorbital interaction and V = V for interorbital interaction.
The superconducting susceptibility tensor, χi j , is reduced to

χ

i j = −1

4

∫
d3k

(2π )3

tr[d̂

i M j (k)]

2ε+(k)
tanh

(
ε+(k)

2T

)
, (A10)

where [M̂ j (k)]αβ ≡ Vαβ [I+(k)d̂

j I+(k)]αβ . The nontrivial

solution of the linear homogeneous Eq. (A9) is determined
by

det(1 − χ (Tc)) = 0. (A11)

This is the linearized equation for determining the supercon-
ducting transition temperature Tc in each pairing channel.

It is seen from Fig. 17(a) that the A1g phase enlarges in the
small λ region. The phase boundary between the A1g and A1u

states is indeed given by

U

V
= 1 − 2m2

0

μ2
− λ2|δ(Tc)|, (A12)

where

δ(Tc) = 1

χ0(Tc)

∫
d3k

(2π )3

(k3
+ + k3

−)2

E0 + μ

tanh(E0/2Tc)

2E0
, (A13)

with E0 being the dispersion of the conduction band for λ = 0
and χ0(Tc) = − 1

2

∫
d3k

(2π )3 tanh(E0/2Tc)/2E0 < 0. The leading
order correction of the hexagonal warping effect, δ(Tc), turns
out to be negative definite: δ(Tc) < 0. The deviation, δ(Tc),
originates from the leading order correction of the hexagonal
warping effect. The warping correction narrows the stable
region of the A1u state against the A1g state. The leading order

correction spreads the phase boundary between the Eu state
and the A1g state as

U

V
= 2

3
− 5

3

m2
0

μ2
+ 1

2
λ2|δ(Tc)|. (A14)

Hence, the warping correction stabilizes the Eu state relative
to the other gapped states, such as the A1g and A1u states.

In Fig. 17(a), we show the phase diagram in the plane of
the pair interaction U/V and the strength of the hexagonal
warping term. We compute the critical temperature T (
)

c in
each irreducible representation by solving the linearized gap
equation. We take |m0|/μ = 0.2 and v = vz, corresponding
to a spheroidal Fermi surface. The value of the interorbital
interaction constant V is set to be T Eu

c = 0.001TF at λ = 0.
For λ = 0, the A1u odd parity pairing can be stabilized in the
region of U/V < 1 − 2m2

0/μ
2 [100].

As λ in Eq. (17) increases, however, the Eu nematic state
is fully gapped and can become energetically competitive to
the other gapped A1g and A1u states. The stability is directly
attributed to the spin structure of electrons on the Fermi sur-
face. When the warping term is absent, the electron states
have helical spin textures on the basal plane, which favors the
A1u state for |V | � |U |. In contrast, the hexagonal warping
term aligns the spin texture to the out-of-plane (z) direction,
and as λ increases, the threefold rotational spin configuration
favors the Eu state c↑,1c↑,2 ± c↓,1c↓,2. In the regime of the
moderate hexagonal warping, therefore, the Eu nematic states
are competitive to the A1u state. In Fig. 17(a), the A1u state
indeed appears in the regime of λk2

F,‖/v � 1, while the Eu

nematic state becomes stable as the hexagonal warping term
increases. We note that the nematic state with n̂ ‖ ŷ breaks
the mirror reflection symmetry and its low-lying excitation
becomes gapfull.

The Fermi surface evolution from a closed spheroidal to
open cylindrical shape causes the phase transition from the
nematic to chiral state. To clarify this, we introduce the effec-
tive pairing interaction,

Vab;cd (k, k′) = −
n
∑
j=1

V 

j

(
id̂ (
)

j (k)sy
)

ab

(
id̂ (
)

j (k′)sy
)∗

cd
, (A15)

where V 

j > 0 is the effective coupling constant in the irre-

ducible representations 
 = {A1g, A2g, A2u, Eu} of the point
group D3d with the dimension n
 and basis functions
{d̂ (
)

j (k)} j=1,...,n

. To focus on the nematic-to-chiral phase

transition, we assume the Eu channel as the dominant pairing
interaction and set V A1g = V A1u = V A2u = 0. Employing the
quasiclassical approximation for electrons in the conduction
band, we compute the thermodynamic potential and deter-
mine the thermodynamically stable phase under T and μ. The
first-order nematic-to-chiral phase transition occurs around
μ = 0.7 eV = 2.5|m0|. In such high carrier density with a
two-dimensional cylindrical Fermi surface, the gap function
of the chiral state in the band representation [Eq. (35)] re-
duces to that of the two-dimensional chiral p-wave state,
d(k) ≈ [0, 0, v(kx + iky)]/|m0|. The fully gapped chiral state
is energetically favored in high carrier density regime, com-
pared with the nematic state, d(k) ≈ (0, 0, vkx )/|m0|, having
the line nodes along the kz direction. We note that the phase
boundary in Fig. 17(b) is less sensitive to the strength of the
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hexagonal warping term, as the stability of the chiral state is
attributed to the gain of the condensation energy due to the
Fermi surface evolution.

Lastly, we mention the stability of the odd-parity Eu states.
It has been pointed out that the critical temperature of the odd-
parity A1u and Eu states is sensitive to nonmagnetic impurities
[170,171]. This is in contrast to the case of the even-parity
A1g state which is basically robust against nonmagnetic im-
purities. Recently, twofold rotational symmetry was reported
above Tc in SrxBi2Se3 [117,172]. This indicates that the Eu

nematic state can be stabilized by the explicit breaking of
the threefold symmetry in the basal plane of the D3d crystal
[117,172,173] or externally applied uniaxial stress [174]. As
the nonunitary chiral state in the Eu representation is accom-
panied by magnetization at zero fields, magnetic impurities
can also help stabilize the chiral state [131].

APPENDIX B: SPECTRAL BULK-BOUNDARY
CORRESPONDENCE IN NEMATIC STATES

In chiral symmetric systems, the Hamiltonian density,
Ȟ(k), is the anticommutable with the chiral operator 
̌. The
bulk-boundary correspondence reflects the intrinsic relation
between the nontrivial topology of the bulk and boundary
states. The winding number defined with chiral operator pre-
dicts the number of the zero energy states at boundaries
[159]. In addition, the SBBC, which is a generalization
of bulk-boundary correspondence in one-dimensional chiral
symmetric systems into complex frequencies, reflects the in-
trinsic relation between the bulk quantity evaluated over the
entire frequency range and and the odd-frequency Cooper
pairs accumulated at the boundary [91,97]. The SBBC was
proved by using an analogy to the concept of electric po-
larization [96] and recently generalized to systems with
impurities and dynamical self-energies [98]. Here we numer-
ically demonstrate that the Eu,x nematic state in STIs without
nonmagnetic impurities, which holds the chiral symmetry in
the ky-kz plane, satisfies the SBBC and the characteristic crit-
ical behaviors of the odd-frequency pairs.

Let us recall the chiral operator in Eq. (44), which is de-
fined as a combination of the mirror reflection symmetry, the
time-reversal symmetry, and the particle-hole symmetry, and
anticommutable with the BdG Hamiltonian:

{
̌1, Ȟ(0, ky, kz )} = 0. (B1)

In the chiral symmetric ky-kz plane, i.e., kx = 0, the SBBC is
then explicitly written as

F SBBC(ky, ω) = W (ky, ω)

ω
. (B2)

The quantity on the left-hand side is defined as

F SBBC(ky, ω) ≡ Tr j[
̌1Ǧ(ky, ω)], (B3)

where Ǧi j (ky, ω) ≡ [ω − Ȟ (zi, z j, kx = 0, ky)]−1 is the
Green’s function with the open boundary condition along
the z axis and the trace is taken over a semi-infinite space:
Tr j · · · ≡ tr

∑
j〈 j| · · · | j〉. The quantity F SBBC is an odd

function on ω,

F SBBC(ky, ω) = −F SBBC(ky,−ω), (B4)

which is responsible for ZBCPs in tunneling conductance and
anomalous proximity effect as shown in Sec. IV B. In super-
conducting states, the chiral operator is constructed from the
particle-hole operator; therefore, the left-hand side of Eq. (B2)
represents the odd-frequency Cooper pairs accumulated at the
boundary. The right-hand side of Eq. (B2) is evaluated from
the bulk Green’s function, Ǧ(k, ω) = [ω − Ȟ(k)]−1, as

W (ky, ω) = −
∫ +π/c

−π/c

dkz

4π i
tr[
̌Ǧ(k, ω)∂kz Ǧ

−1(k, ω)]kx=0.

(B5)

This is the generalization of the one-dimensional winding
number to the complex frequency plane.

We note that W (ω) can be well-defined only when a finite
energy gap is opened in the momentum plane invariant un-
der the chiral symmetry, i.e., the ky-kz plane. Then, the bulk
quantity W (ω) can be expanded in terms of the small value of
ω as W (ω) = ∑

l�0 Wlω
l , as far as |ω| is sufficiently smaller

than the energy gap of the quasiparticle spectrum in the chiral-
symmetric momentum space. From the Laurent expansion on
the complex ω plane and Eq. (B2), the odd frequency pair
amplitude accumulated at the boundary is expressed in the
low-frequency limit as

F SBBC(ky, ω) = w1d(ky)

ω
+ χ (ky)ω + O(ω3). (B6)

The zeroth-order coefficient Wl=0 corresponds to the topolog-
ical invariant associated with the chiral symmetry:

Wl=0 = lim
ω→0

W (ky, ω) = w1d(ky). (B7)

Thus, W (ky, ω) reduces to the one-dimensional winding num-
ber in Eq. (45) at ω → 0, and Eq. (B2) connects the nontrivial
topological invariant w1d(ky) ∈ Z to the odd-frequency pair
through the singular functional form limω→0 F SBBC(ky, ω) =
w1d(ky)/ω at ω → 0. It has also been shown that the coeffi-
cient of the next-leading-order term,

χ (ky) ≡ Wl=1 = 1

2

∂2W (ky, ω)

∂ω2

∣∣∣∣
ω→0

, (B8)

yields a power-law divergence at the topological quantum
phase transition. Hence, Eq. (B6) describes two different type
singularities of odd-frequency pair amplitudes protected by
the chiral symmetry, the 1/ω divergence in the topological
phase with w1d(ky) �= 0, and a power-law divergence of χ (ky)
at the topological quantum phase transition.

Here we numerically demonstrate the SBBC in Eq. (B2)
and the critical behavior of χ (ky) in the Eu,x nematic state of
STIs. We note that in the Eu,x nematic state, |w1d(ky)| = 2 for
|ky| < kF,y protects the existence of the flat-band zero-energy
states along ky and the end points ky = ±kF,y correspond to
the nodal points of the bulk superconducting gap at which
W is not well-defined. We consider the system same as that
in Sec. III, which is described by the BdG Hamiltonian in
Eq. (41) with open boundary along z direction and periodic
boundary conditions in the x-y plane.

Figure 18 shows the odd-frequency pair amplitudes as-
sociated with the SBBC, F SBBC(ky, iεn), for a closed Fermi
surface (μ = 1.65|m0|) and an open Fermi surface (μ =
1.86|m0|), where we take pure imaginary frequencies ω = iεn
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FIG. 18. Odd-frequency pair amplitudes associated with the
SBBC, F SBBC(ky, iεn), in the Eu,x nematic state with a closed Fermi
surface μ = 1.65|m0| (a) and an open Fermi surface μ = 1.86|m0|
(b). F SBBC is defined in Eq. (B2). In all data, we set λk2

F,‖/v = 0.1.

(εn ∈ R). The pair amplitude, F SBBC(ky, iεn), is obtained from
Eq. (B3) with the Green’s function computed in the finite
system. Note that the pair amplitudes associated with the
SBBC is equivalent to the odd-frequency even-parity (Eg) pair
amplitudes:

F SBBC(ky, ω) = F OTEE
Eg

(ky, ω). (B9)

In the case of the closed Fermi surface (μ = 1.65|m0|), the
winding number is nontrivial w1d(ky) = −2 and the zero-
energy flat bands appear in the momentum segment |ky| <

kc ≈ 0.45a−1 [see also Fig. 19(a)]. As shown in Fig. 19(b), the
topologically nontrivial momentum region splits to two parts,
kc1 ≈ 0.2a−1 < ky < kc2 ≈ 0.5a−1 and −kc2 < ky < −kc1, in
the open Fermi surface. Figures 18(a) and 18(b) show the
divergent behavior of F SBBC(ky, iεn) at εn → 0 in topologi-
cally nontrivial momentum segments. We calculate the bulk
quantity W (ky, ω) and confirm that Eq. (B2) holds within
numerical accuracy |iεnF SBBC(ky, iεn) − W (ky, iεn)| � 10−8

for any values of ky except the vicinity of the nodal points.
We also plot in Figs. 19(a) and 19(b) the bulk quantity

χ (ky) and the winding number w1d(ky) in the Eu,x nematic
state as a function of ky. The bulk quantity χ (ky) exhibits
a power-law divergence at which the winding number w1d

changes. As shown in Fig. 19(c), the critical behavior at ky →
kc is well describable with χ (ky) ∼ |ky − kc|α with α = −2
(solid line), which is consistent with the Ising universality
[175]. As ky moves away from kc, however, the exponent
crossovers into α = −1 for ky < kc (dashed line) and α =
−5/2 for ky > kc (dotted-dashed line). The similar behaviors
of χ (ky) are observed in μ = 1.86|m0| [Fig. 19(d)], where the
zero-energy flat bands appear in two different segments on ky.
The asymmetry of the critical exponent α is consistent with
that of the Kitaev chain and Rashba nanowire models [91].
The asymmetric exponents α = −1 and −5/2 indicate that
the topological critical phenomena associated with the chiral

FIG. 19. (a), (b) The bulk quantity χ (ky ) and the winding number
w1d(ky ) in the Eu,x nematic state as a function of ky: (a) μ = 1.65|m0|
and (b) 1.86|m0|. The zero-energy flat bands appear in the momen-
tum segments within |ky| < kc ≈ 0.45a−1 in (a) and kc1 ≈ 0.2a−1 <

ky < kc2 ≈ 0.5a−1 and −kc2 < ky < −kc1 in (b). (c), (d) The critical
behavior of |χ (ky )| close to the topological phase transition points
kc (c) and kc1 and kc2 (d). In (c), (d), the solid, dashed and dotted-
dashed lines correspond to |k − kc1,c2|α with α = −2, −1, and −5/2,
respectively. In all data, we fix λk2

F,‖/v = 0.1.

symmetry cannot be categorized to ordinary Ising universality
class [91].

APPENDIX C: ANOMALOUS PROXIMITY EFFECT
IN DIRAC SCs

The Eu,x nematic state in STIs preserves the time-reversal
symmetry and has a pair of nodal points without Berry cur-
vatures. Similarly with the nematic SCs, Dirac SCs are the
time-reversal-invariant spin-triplet p-wave superconducting
state with a pairwise nodal points and accompanied by zero-
energy surface flat band protected by the chiral symmetry.
As a comparison with the nematic state in STIs, therefore,
we discuss the anomalous proximity effect in Dirac SCs
without spin-orbit coupling. For simplicity, we consider a
tight-binding model for spin-1/2 electrons on the cubic lattice,

ĥ(k) = −2t
∑

i=x,y,z

cos(kia) − μ, (C1)

where a is the lattice constant. In the numerical calculation,
we fix μ = −5t , where the closed Fermi surface encloses
the 
 point. The 2 × 2 pair potential in the spin space is
represented by the d vector, which is the order parameter of
spin-triplet odd-parity superconducting state:

�̂(k) = i�0[s · d(k)]sy. (C2)
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FIG. 20. (a) Quasiparticle spectrum on the z surface of the Dirac
SC with Eq. (C3), where the point nodes exist at ky = ±kF,y. (b) Spa-
tial profiles of odd-frequency pair amplitude F odd(z, iεn) (solid line)
and pair amplitude protected by the chiral symmetry FSBBC(z, iεn)
(shaded area) at εn/�0 = 0.02. The inset shows F odd(iεn) ≡∑

j F odd(z j, iεn) (solid line) and FSBBC(iεn) ≡ ∑
j FSBBC(z j, iεn)

(dashed line) accumulated at the surface as a function of εn.

As a prototype of Dirac SCs, we here consider the following
d vector:

d(k) = (sin(kza), sin(kxa), 0). (C3)

This has a pair of nodal points at ky = ±kF,y, where kF,y is the
Fermi momentum on the ky axis. The zero-energy flat band
exists along the ky axis in the x-y surface Brillouin zone, which
has similar nodal and spectral structures as those of the Eu,x

nematic state in STIs. We note that as the x component of the d
vector, dx ∝ sin(kza), breaks the translational symmetry in the
junction, the component of the anomalous Green’s function,

Fz(z, z, kx, ky, iεn) ≡ tr[szτ̌yǦ(z, z, kx, ky, iεn)], (C4)

is only the nonvanishing amplitude of the odd-frequency even-
parity pair at the interface. As mentioned below, Fz contains
the pair amplitude protected by the chiral symmetry which is
responsible for the SBBC.

We first show the surface ABSs in the Dirac SC with
the d vector given by Eq. (C3), where we consider a semi-
infinite system with a specular surface at z = 0 and periodic
boundary conditions in the x-y plane. The low-lying quasi-
particle spectrum is displayed in Fig. 20(a). The zero-energy
flat band appears along the ky axis and the dispersion of the
low-lying surface ABSs is given by E (kx, ky) = ±�0kx/kF.
In the case of the d vector with Eq. (C3), the chiral operator

̌ is defined as a combination of the time-reversal symme-
try, mirror reflection symmetry on the y-z plane (M̌yz =
isx τ̌z), and the particle-hole symmetry, 
̌ = szτ̌y, which obeys
{
̌, Ȟ(0, ky, kz )} = 0. The one-dimensional winding number
w1d(ky) is evaluated from Eq. (45) as w1d = −2 for |ky| < kF,y

and w1d = 0 for |ky| > kF,y, which ensures the existence of
the zero-energy flat band along ky. The chiral operator is also
responsible for the SBBC in Eq. (B2), which is accompanied
by the chiral-symmetry-protected odd-frequency pairs:

F SBBC(ky, ω) =
∑

j

tr[
̌Ǧ(z j, z j, kx = 0, ky, ω)]

=
∑

j

Fz(z j, z j, kx = 0, ky, ω). (C5)
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FIG. 21. (a) Spatial profiles of odd-frequency even-parity pair
amplitudes F odd(z, iεn) in the Dirac SC/DN junction for γN/�0 =
0.2, 1.0, 2.0, and 4.0, where z < 0 (z > 0) corresponds to the SC
(DN) region. We fix εn = 0.02�0. (b) Local DOS in the DN region
(z = LN/2 = 100a) for γN/�0 = 0.2, 1.0, and 2.0.

Fz is the odd-frequency pair amplitude defined in Eq. (C4).
We numerically confirmed that the Dirac SC in a semi-infinite
system satisfies the SBBC within numerical accuracy and
F SBBC(ky, ω) has two different divergent behaviors at ω → 0
and ky → ±kF,y. In Fig. 20(b), we plot the spatial profiles
of the odd-frequency even-parity pair amplitude at εn/�0 =
0.02:

F odd(z, iεn) ≡ 1

2

∑
kx,ky

[Fz(z, z, kx, ky, iεn)

− Fz(z, z, kx, ky,−iεn)]. (C6)

As mentioned above, this contains the chiral-symmetry-
protected pair amplitude. Thus, we also plot in Fig. 20(b)
the spatial profile of the chiral-symmetry-protected pair am-
plitude (shaded area):

FSBBC(z, iεn) ≡
∑

ky

Fz(z, z, kx = 0, ky, ω). (C7)

Since the pair amplitude is a purely imaginary function, we
do not show the real part of F in Fig. 20(b). At εn → 0,
the odd-frequency pair amplitude localized at the boundary is
solely composed of FSBBC(z, iεn) and protected by the chiral
symmetry. The inset of Fig. 20(b) plots the odd-frequency
pair amplitude accumulated at the boundary, F odd(iεn) =∑

j F odd(z j, iεn), as a function of εn (solid lines). It di-
verges in the limit εn → 0, and the singularity is attributed to
FSBBC(iεn) ≡ ∑

j FSBBC(z j, iεn) (dashed lines), obeying the
SBBC, FSBBC(iεn → 0) = ∑

|ky|<kF,y
w1d(ky)/iεn ∝ 1/iεn.

Let us now move on to the junction of the Dirac SC and
DN. We consider the junction system the same as that in
Sec. IV B, where the nonmagnetic impurities are randomly
distributed only in the DN region within 0 < z � LN and
absent in the SC region within −LS � z � 0. Below, we fix
LS/a = 400 and LN/a = 200. The nonmagnetic impurities are
incorported by the self-consistent Born approximation, where
γN is the single parameter for the impurity potential (see
Sec. IV B for details). Figure 21(a) shows the spatial profiles
of odd-frequency even-parity pair amplitudes F OF(z, iεn) in
the Dirac SC/DN junction, where we fix εn = 0.02�0. As
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expected, the odd-frequency even-parity pair amplitudes pen-
etrating to the DN region are insensitive to the strength of
nonmagnetic impurities and survive even in the diffusive limit
γN � �0. In Fig. 21(b), we plot the local DOS in the DN
region (z = LN/2) for several values of γN. The penetration of
odd-frequency even-parity pairs is accompanied by the pro-
nounced zero-energy peak in the local DOS at the DN region,
which is referred to as the anomalous proximity effect. The
peak structure of the local DOS is robust against nonmagnetic
impurities.

The robustness of the anomalous proximity effect in the
Dirac SC is in contrast to the proximity effect of the nematic
state in STIs. As discussed in Sec. IV B, the odd-frequency
even-parity pairs in STIs penetrate into the DN region, while
the amplitudes are sensitive to the strength of the nonmagnetic
impurities even though the nonmagnetic impurities preserve
the chiral symmetry. Hence, we attribute the fragility of the
anomalous proximity effect in STIs to strong spin-orbit in-
teraction which is essential for the topologically nontrivial
property of the parent material.
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