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We report the first comprehensive microscopic description of the effect of strong correlations and thermal
fluctuations on the properties of noncentrosymmetric superconductors in presence of an in-plane Zeeman field.
Away from the weak coupling regime the Bardeen-Cooper-Schrieffer theory breaks down and the supercon-
ducting transitions are dictated by the pairing field phase fluctuations. Using a nonperturbative numerical
technique viz. static path approximation, we demonstrate that short-range fluctuating superconducting pair
correlations give rise to Fermi-surface segmentation with direction-dependent pair breaking and hot spots for
quasiparticle scattering. A fluctuation-driven finite-temperature topological transition of the Fermi surface is
realized, characterized by a shift of the corresponding Dirac point from k = 0 to k �= 0. Our results provide key
benchmarks for the thermal scales and regimes of thermal stability of the properties of these systems, which
are important for device applications. Our numerical estimates are in fairly good qualitative agreement with the
recent differential conductance and quasiparticle interference measurements on Bi2Te3/NbSe2 hybrid. A generic
theoretical framework for the finite momentum scattering of quasiparticles and the associated spectroscopic
features is proposed, which is expected to be applicable to a wide class of superconducting materials.
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I. INTRODUCTION

Noncentrosymmetric superconductors/superfluids (NCS)
with spin-orbit coupling (SOC) and their response to Zeeman
field have witnessed rapid progress in the past decade [1–20].
Apart from its realization in fermionic and bosonic ultra-
cold atomic gases [21,22], SOC plays the decisive role
in solid-state systems such as magnet-superconductor hy-
brid (MSH) [23], topological insulator-superconductor het-
erostructures [24], etc. Key experimental observations on
these systems include proximity superconductivity [25], Ma-
jorana bound states [26], finite momentum quasiparticle
scattering and Fermi-surface segmentation [19,24], and more
recently superconducting diode effect [27–37].

Literature on the theoretical investigation of NCS have
expanded rapidly. Based almost entirely on the mean-field
theory (MFT) there is now a consensus on the ground-
state physics of the NCS both in the presence and absence
of an applied Zeeman field [19,29,32,38–46]. SOC favors
finite-momentum Cooper pair formation and is therefore
considered to be a natural choice to realize Fulde-Ferell-
Larkin-Ovchinnikov (FFLO) superconductivity [47,48]. MFT
studies have established that an interplay of strong SOC and
in-plane Zeeman field stabilizes a phase modulated helical su-
perconducting order over a large part of the ground-state phase
diagram in two and three dimensions [42–46]. An additional
out-of-plane Zeeman field applied to such a system gives rise
to topological helical superconducting phases with nonzero
Chern number and chiral edge states [49,50].
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By construction, MFT excludes pairing field fluctuations,
which though it is a suitable approximation deep in the
Bardeen-Cooper-Schrieffer (BCS) regime, breaks down away
from the weak coupling regime where the different energy
scales of the system compete and a perturbative approach
to the problem ceases to be valid. In the regime of inter-
mediate coupling, superconducting phase fluctuations dictate
the thermal behavior of the system and alter the corre-
sponding thermal scales significantly [51]. Fluctuation effects
are particularly pertinent for the lower-dimensional [one-
dimensional (1D) and 2D] systems, where (quasi-)long-range
superconducting correlations are prone to thermal disordering
and Fermi-surface nesting plays crucial role.

For centrosymmetric superconductors, in the regime of
intermediate coupling MFT has been found to: (i) grossly
overestimate the superconducting Tc, (ii) fail to capture
the high-temperature regime of preformed pairs, and (iii)
can not account for the pseudogap phase [51]. For lattice
fermions, based on nonperturbative numerical approaches
it was demonstrated that for centrosymmetric superconduc-
tors, MFT estimation of the uniform superconducting state
Tc exceeds the experimental observation by 4 times. For the
population imbalanced FFLO state, this over estimation is by
20% [52]. A recent beyond MFT work on centrosymmetric
superconductors demonstrated that in 2D and 3D continuum
systems pairing field fluctuations destabilize the FFLO state
at T �= 0 [53]. These observations establish the relevance of
thermal fluctuations for the low-dimensional superconductors
and raises questions on the MFT estimates of their finite-
temperature properties.

There are a limited number of works on the
effect of pairing field fluctuations in centrosymmetric
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FIG. 1. Comparison of the Tc scales obtained from the mean-
field theory (MFT) calculation (top curve) and from the static path
approximated (SPA) Monte Carlo technique (bottom curve). MFT
leads to the over estimation of the Tc by ∼4 times for the uniform
and by ∼6.5 times for the helical superconducting state. For SPA
the Tc is determined using the pairing field structure factor, for the
MFT calculation the average pairing field amplitude is tracked as the
function of temperature.

superconductors, particularly within the purview of the
lattice fermion models, while for the NCS, there are
none [2]. Experiments, however, suggest pronounced effect of
temperature on the properties of NCS [28,54]. It was recently
demonstrated that the performance of superconducting
tunnel diode made up of Cu/EuS/Al tunnel junction is
robust against thermal fluctuations up to a significantly high
operating temperature, a property that makes it appealing
for electronic devices [54]. Similarly, magnetotransport
measurements on the superconducting state of gated MoS2

demonstrated that the magnetochiral anisotropy (MA) of
this material is strongly dependent on temperature induced
superconducting fluctuations and the ab initio estimates of the
MA parameter shows a discrepancy of five times with respect
to (w.r.t.) the experimental results [28]. Such experimental
observations call for a deeper theoretical understanding of
the effect of thermal fluctuations on the NCS, which at the
moment, is lacking. This work attempts to fill this void based
on a nonperturbative numerical scheme.

We investigate the 2D NCS in the framework of lattice
fermions, using a path integral based Monte Carlo (MC) tech-
nique with static path approximation (SPA), in the combined
space of competing superconducting interaction (U ), SOC
(λ), in-plane Zeeman field (h), and temperature (T ). Figure 1
encodes one of our key results, wherein we compare the super-
conducting Tc obtained via SPA to that of the MFT estimate
in the h-T plane, for a fixed choice of U = 4t and λ = 0.65t .
In the absence of the Zeeman field (h = 0) thermal fluctuation
suppresses the Tc by a factor of ∼4 compared to the T MFT

c . In
the regime of strong Zeeman field (h ∼ t) this suppression is
by a factor of ∼6.5.

Having established the regime of thermal stability of the
superconducting state in 2D NCS, with accuracy, we next
characterized this regime based on the thermodynamic and
spectroscopic signatures. Our key results from this work are
as follows: (i) the system comprises of Zeeman field tuned
quantum critical points (QCP), hc1 and hc2, corresponding
to a first-order phase transition between the uniform and the

helical superconducting phases, and a second-order transition
between the helical superconducting and a correlated Fermi
liquid (CFL) phase, respectively. (ii) A topological transition
of the Fermi surface takes place at h = ht p, characterized by
a transition between the inter- and intraband paired helical
superconducting phases. Across the topological transition the
Dirac point shifts from the original k = 0 to k �= 0. The QCP
hc1 is not tied to ht p and no symmetry breaking takes place
across the topological transition. (iii) In the regime of inter-
mediate h, thermal fluctuations tuned topological transition is
realized, driven by the short-range superconducting pair cor-
relations. (iv) Finite momentum scattering of quasiparticles
lead to Fermi-surface segmentation in the helical supercon-
ducting state. (v) Our results are in qualitative agreement with
the experimental observations on Bi2Te3/NbSe2 hybrid [24].
The Zeeman field tuned evolution of the in-gap states as ob-
served in the differential conductance measurements, as well
as the Fermi-surface segmentation observed via quasiparticle
interference (QPI) measurements on Bi2Te3/NbSe2 are well
captured by our theoretical framework.

The rest of the paper is structured as follows. In Sec. II
we discuss the model under consideration for 2D NCS, the
numerical technique used to study this system, and the spec-
troscopic and thermodynamic indicators used to analyze it.
We map out the ground-state phases in Sec. III, followed by
our analysis of the finite-temperature properties. We discuss
the generic formalism for the finite-momentum scattering of
quasiparticles in Sec. IV, followed by our conclusions from
this work.

II. MODEL, METHOD, AND INDICATORS

Our starting Hamiltonian is the 2D attractive Hubbard
model with Rashba spin-orbit coupling (RSOC) and in-plane
Zeeman field [42,55,56],

H = −t
∑
〈i j〉,σ

(c†
i,σ c j,σ + H.c.) − μ

∑
i,σ

n̂i,σ − |U |
∑

i

n̂i,↑n̂i,↓

+ λ
∑

〈i j〉,σσ ′
(c†

i,σ (iσ̂y)σ,σ ′c j,σ ′ + c†
i,σ (−iσ̂x )σ,σ ′c j,σ ′ )

+ h
∑

i

(c†
i,↑ci,↓ + c†

i,↓ci,↑) (1)

where, t = 1 is the hopping amplitude between the nearest
neighbors on a square lattice and sets the reference energy
scale of the problem, λ is the magnitude of RSOC. |U | >

0 is the on-site attractive Hubbard interaction between the
fermions, and μ is the global chemical potential, which fixes
the electron density. The in-plane Zeeman field (h) is applied
along the x axis; σ̂x and σ̂y are the Pauli matrices.

The noninteracting (U = 0) energy dispersion of Eq. (1)
reads as, Eη

k = ξk ± |λgk + h| where, ξk = −2t (cos kx +
cos ky) − μ is the tight binding dispersion for the square
lattice. Eη

k corresponds to the helicity bands labeled by
the helicity index η = ±. The RSOC is defined as, gk =
λ(− sin ky, sin kx ) = λ(− ∂ξk

∂ky
,

∂ξk
∂kx

). For h = 0 the spectra com-
prises of four dispersion branches and with h �= 0 each branch
splits into two [56].
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In terms of the Grassmann fields ψi,σ (τ ) and ψ̄i,σ (τ )
we write the Hubbard partition function for the interacting
(|U | �= 0) Hamiltonian as,

Z =
∫

DψDψ̄e−S[ψ,ψ̄] (2)

where,

S =
∫ β

0
dτ

⎡
⎣ ∑

i j,σ,σ ′
{ψ̄i,σ ((∂τ − μ)δi j − ti j )ψ j,σ }

+ λ
∑

〈i j〉,σ,σ ′
(ψ̄i,σ (iσ̂y)σ,σ ′ψ j,σ ′ + ψ̄i,σ (−iσ̂x )σ,σ ′ψ j,σ ′ )

−|U |
∑
i,σ,σ ′

ψ̄i,σ ψi,σ ψ̄i,σ ′ψi,σ ′ +h
∑
i,σ,σ ′

ψ̄i,σ (σ̂x )σ,σ ′ψi,σ ′

⎤
⎦.

(3)

The interaction generates a quartic term in ψ , which can not
be readily evaluated. In order to make the model numerically
tractable we decouple the quartic interaction exactly using
Hubbard-Stratonovich decomposition [57,58]. The decompo-
sition introduces the complex scalar bosonic auxiliary fields
�i(τ ) and �∗

i (τ ), which couples to the superconducting pair-
ing. The corresponding partition function reads as,

Z =
∫

D�D�∗DψDψ̄e−S1[ψ,ψ̄,�,�∗], (4)

where, the action is defined as,

S1 =
∫ β

0
dτ

⎡
⎣ ∑

i j,σ,σ ′
{ψ̄i,σ ((∂τ − μ)δi jti j )ψ j,σ }

+ λ
∑

〈i j〉,σ,σ ′
(ψ̄i,σ (iσ̂y)σ,σ ′ψ j,σ ′ + ψ̄i,σ (−iσ̂x )σ,σ ′ψ j,σ ′ )

+
∑

i

(
�i(τ )ψ̄i,↑ψ̄i,↓ + �∗

i (τ )ψi,↓ψi,↑ + |�i(τ )|2
|U |

)

+ h
∑
i,σ,σ ′

ψ̄i,σ (σ̂x )σ,σ ′ψi,σ ′

⎤
⎦. (5)

The ψ integral is now quadratic but at the cost of additional
integration over �i(τ ) and �∗

i (τ ). The weight factor for the
�i configurations can be determined by integrating out the ψ

and ψ̄ and using these weighted configurations one goes back
and computes the fermionic properties. Formally,

Z =
∫

D�D�∗e−S2[�,�∗], (6)

where,

S2 = ln[Det[G−1 − �i(τ )]] + |�i(τ )|2
|U | , (7)

where, G is the electron Green’s function in the {�i} back-
ground. The weight factor for an arbitrary space-time con-
figuration �i(τ ) involves the determination of the fermionic
determinant in that background.

We address this problem using SPA, wherein we treat
�i as classical by retaining its complete spatial fluctuations
but taking into account only the �n = 0 Matsubara mode in
frequency [i.e., �i(τ ) → �i] [52,59–61]. The fermions are
thus subjected to a static random background of the auxiliary
fields.

The effective Hamiltonian reads as,

He f f = −t
∑
〈i j〉,σ

(c†
i,σ c j,σ + H.c.) − μ

∑
i,σ

n̂i,σ

+ λ
∑

〈i j〉,σ,σ ′
(c†

i,σ (iσ̂y)σ,σ ′c j,σ ′ + c†
i,σ (−iσ̂x )σ,σ ′c j,σ ′ )

+
∑

i

(�ic
†
i,↑c†

i,↓ + �∗
i ci,↓ci,↑) +

∑
i

|�i|2
|U |

+ h
∑
i,σ,σ ′

c†
i,σ (σ̂x )σ,σ ′ci,σ ′ , (8)

where, �i = |�i|eiθi is the complex scalar superconducting
pairing field with the pairing field amplitude |�i| and phase
θi.

A. Monte Carlo simulation

The random background configurations of {�i} are gener-
ated numerically via Monte Carlo (MC) simulation and they
obey the Boltzmann distribution,

P{�i} ∝ Trc,c† e−βHe f f . (9)

For large and random configurations the trace is computed
numerically, wherein He f f is diagonalized for each attempted
update of �i and converges to the equilibrium configuration
via Metropolis algorithm. The process is numerically expen-
sive and involves a computation cost of O(N3) per update
(where N = L × L is the number of lattice sites), thus the cost
per MC sweep is ∼N4. The computation cost is cut down by
using a traveling cluster algorithm (TCA), wherein instead
of diagonalizing the entire Hamiltonian for each attempted
update of �i, we diagonalize a smaller cluster of size Nc × Nc

surrounding the update site [52]. The corresponding compu-
tation cost now scales as O(NN3

c ), which is linear in N . This
allows us to access larger system sizes with reasonable com-
putation cost. The equilibrium configurations obtained via the
combination of MC and Metropolis at different temperatures
are used to determine the fermionic correlators [52,59–61].

B. Bogoliubov-de Gennes mean-field theory

Apart from the MC simulation scheme discussed above
the ground state of the system is obtained using the al-
ternate scheme of Bogoliubov-de Gennes mean-field theory
(BdG-MFT). The corresponding free energy minimization
scheme involves optimization over trial solutions w.r.t. |�i|
and q, where |�i| is real and q is the pairing wave vector,
|�q| = �0 corresponds to the amplitude of the uniform su-
perconducting state. For the FFLO phase we choose different
trial solutions corresponding to the (i) uniaxial modulation
�i ∝ �0 cos(qxi ), (ii) 2D modulation �i ∝ �0[cos(qxi ) +
cos(qyi )], and (iii) diagonal modulation �i ∝ �0 cos[q(xi +
yi )]. For the helical superconducting phase the trial solution
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is defined as, �i ∝ �0eiq.r. We work in the grand canonical
ensemble over the regime μ ∈ [0 : −4t] with δμ = 0.5t . The
free energy optimization is carried out for different λ and
h ∈ [0 : 1.5t], in each case.

C. Indicators

The various phases of the system are characterized based
on the following indicators,

(1) Pairing field structure factor,

S(q) = 1

N2

∑
i j

〈�i�
∗
j 〉eiq.(ri−r j ). (10)

(2) Single-particle density of states (DOS),

N (ω) = 1

N

〈∑
i,n

(∣∣ui
n

∣∣2
δ(ω − En) + ∣∣vi

n

∣∣2
δ(ω + En)

)〉
,

(11)

where, ui
n and vi

n are the BdG eigenvectors corresponding to
the eigenvalue En.

(3) Spectral function,

A(k, ω) = −(1/π )ImG(k, ω). (12)

Here, G(k, ω) = limδ→0G(k, iωn)|iωn→ω+iδ , with, G(k, iωn)
being the imaginary frequency transform of 〈ck(τ )c†

k(0)〉.
(4) Low-energy spectral weight distribution at and close

to the Fermi level,

A(k, 0) = −(1/π )ImG(k, 0). (13)

(5) Momentum resolved fermionic occupation number,

n(k) =
∑

σ

〈c†
k,σ ck,σ 〉. (14)

III. RESULTS

In this section we analyze the ground-state and finite-
temperature properties of 2D NCS in terms of the aforemen-
tioned indicators. For the MC simulation we work with a
lattice size of L = 24 and for the BdG-MFT calculations a
larger system size of L = 70 is used.

A. Fermi-surface evolution with λ and h

We show the RSOC dependence of the Fermi-surface
topology in Fig. 2. The columns correspond to selected Zee-
man fields, representative of the (i) �(q = 0) �= 0 uniform
superconducting state, (ii) �(q �= 0) �= 0 helical supercon-
ducting state, and (iii) � = 0 CFL state. Each row corre-
sponds to a particular choice of RSOC, for which the Zeeman
field is varied. At any RSOC, the h � hc1 regime is trivial
and the system comprises of two concentric Fermi surfaces
with the Dirac point at k = 0. Increasing RSOC progres-
sively shrinks the inner Fermi surface while enhancing the
size of the outer. For h > hc1, the helical superconducting
state is realized at weak and intermediate RSOC. The Fermi-
surface topology is nonmonotonically altered with RSOC in
this regime and the Dirac point is shifted to k �= 0. With
increasing RSOC the inner Fermi surface progressively moves

FIG. 2. Evolution of the Fermi surface with in-plane Zeeman
field (h) for selected RSOC (λ), presented in terms of the fermionic
occupation number n(k) [the color bar corresponds to the magnitude
of n(k)]. Note the topological transition at intermediate λ-h cross
sections, wherein a single self-intersecting Fermi surface is realized.
Zeeman effect dominates at strong λ, with significant mismatch in
the size of the Fermi surfaces. The calculations are carried out using
BdG-MFT for a system size of L = 70.

towards the edge of the outer, such that at a critical Zeeman
field h = ht p they intersect each other leading to a single
self-intersecting Fermi surface, akin to the Limacon of Pascal.
The transition from the isolated to the single self-intersecting
Fermi surface is topological in nature and the corresponding
ht p is tuneable via the combination of the Zeeman field and
RSOC. The nature of the superconducting pairing changes
from inter- to intraband across this topological transition. The
bulk of our results in this paper are at λ = 0.65t for which
the topological transition between the inter- and intraband
pairing takes place at ht p ∼ t . Over the regime ht p � hc2, the
system continues to be in the helical superconducting state but
the Fermi surfaces begin to separate out and move apart. For
h > hc2 the CFL phase is realized.

B. Ground-state phases

We select λ = 0.65t as our regime of interest and in Fig. 3
present the corresponding ground-state phase diagram. Fig-
ure 3(a) shows the phase diagram in the μ-h plane. The
regimes of q = 0 and q �= 0 pairing are demarcated as the uni-
form and helical superconducting states, respectively. The low
magnetic field regime h � hc1 is a uniform superconducting
phase irrespective of the choice of μ. Over the regime hc1 <

h < hc2 a stable helical superconducting phase is realized.
The solid curves indicate the μ dependence of hc1 and hc2.
We next make a particular choice of μ = −t corresponding
to the highest hc1 and hc2. The rest of our calculations are
carried out at this μ, which corresponds to an electron filling
of n ≈ 0.75t .
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FIG. 3. (a) Ground-state phase diagram in the μ-h plane for the
selected RSOC of λ = 0.65t . The thermodynamic phases include
uniform and helical superconducting phases with the corresponding
critical fields hc1 and hc2, respectively. (b) Zeeman field dependence
of average superconducting pairing field amplitude (|�|) and pairing
momentum (q), at λ = 0.65t , in the ground state. The first-order
transition between the uniform and helical superconducting phases
is signaled by the sharp discontinuity in |�| and q. The helical phase
comprises of uniaxial modulations with q = (0, π/5) and (0, 3π/5).

Figure 3(b) shows the Zeeman field dependence of the
mean pairing field amplitude |�| = 〈|�i|〉 and the pairing
momentum q, at λ = 0.65t . Over the regime 0 < h � hc1,
|�| is nearly constant and the corresponding pairing momen-
tum is q = 0. At h = hc1 the system undergoes a first-order
transition to the helical superconducting state, accompanied
by a strong suppression in the pairing field amplitude. Con-
comitantly, the pairing momentum becomes finite. While |�|
undergoes continuous suppression with h, the pairing mo-
menta remains largely constant over the regime hc1 < h �
ht p. The topological transition between the inter- and intra-
band helical superconducting states at ht p is accompanied by
yet another first-order transition, ascertained by the disconti-
nuity in the pairing momenta q. The jump discontinuity of q
across the topological transition to a single self-intersecting
Fermi surface has been recently discussed within the purview
of MFT [38].

C. Finite-temperature behavior

We next analyze the finite-temperature behavior of the
uniform and helical superconducting phases. The thermody-
namic and spectroscopic characterization is obtained in terms
of the real space maps, thermal evolution of the Fermi sur-
face and single-particle DOS. The uniform superconducting
phase is relatively trivial with quasi-long-range phase corre-
lated uniform superconducting state. We thus mainly focus on
characterizing the helical superconducting phase.

1. Spatial maps

We begin by presenting the temperature dependence of
the real and momentum space characteristics of the heli-
cal superconducting phase. Figure 4 shows the temperature
dependence of the superconducting pairing field amplitude
(|�i|) (top row) and phase correlation [cos(θ0 − θi )] (middle
row). The low-temperature helical superconducting phase is
characterized by a spatially uniform pairing field amplitude
and a 1D modulated phase correlation. Fluctuations progres-
sively destroy the global superconducting order via the loss
of (quasi-)long-range phase coherence. The state undergoes
spatial fragmentation into phase decohered islands with large

FIG. 4. Real space maps (in the xy plane) corresponding to the
superconducting pairing field amplitude, |�i| (top row) and super-
conducting phase coherence, cos(θ0 − θi ) (middle row), showing the
thermal evolution of the helical superconducting state at h = t . The
bottom row maps out the segmented Fermi surface in terms of the
low-energy spectral weight distribution, A(k, 0) (in the kxky plane).
Thermal fluctuations lead to fragmentation of the underlying super-
conducting state and progressive accumulation of spectral weight at
the Fermi level, such that the Fermi-surface isotropy is restored at
T � 0.05t .

local pairing field amplitude, corresponding to a pseudogap
phase.

The bottom row of Fig. 4 shows the segmentation of
the Fermi surface, mapped out in terms of the low-energy
spectral weight distribution A(k, 0). Finite-q pairing leads to
direction-dependent pair breaking, such that only parts of the
gapless Fermi surface are available for the scattering of the
quasiparticles. Temperature leads to accumulation of spectral
weight such that the Fermi-surface isotropy is restored for
T � 0.05t . Our results at the low temperatures, shown in
Fig. 4 are in fairly good agreement with the experimental ob-
servations on Bi2Te3/NbSe2 hybrid [24]. QPI measurements
on this topological insulator-superconductor hybrid shows
Fermi-surface segmentation with q-dependent quasiparticle
scattering. The corresponding real space behavior, as estab-
lished via differential conductance maps show 1D standing
wave modulations [24], akin to our results on the supercon-
ducting phase coherence shown in Fig. 4.

2. Thermal evolution of the Fermi surface

We next investigate the effect of thermal fluctuations
induced short-range superconducting pair correlations. Fig-
ure 5 shows the thermal evolution of the Fermi surface at
the selected Zeeman field of h = 0.6t and h = t . At h =
0.6t , the low-temperature phase (T � 0.04t) corresponds to
a gapped uniform superconductor, with the Dirac point at k =
0, followed by a gapless superconducting regime, 0.04t <

T � 0.15t . Within the gapless phase (0.09t < T � 0.15t),
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FIG. 5. Temperature dependence of Fermi-surface topology at
intermediate (h = 0.6t) and strong (h = t) Zeeman fields, shown in
terms of the fermionic occupation number (n(k)). The dashed lines
are guide to the eyes for k = 0. Note the self-intersecting Fermi
surface at T = 0.005t for h = t . The color bar corresponds to the
magnitude of n(k).

temperature alters the Fermi-surface topology by progres-
sively shifting the Dirac point from k = 0 to k �= 0. The
change in the Fermi surface at finite temperature arises out
of the short-range (q �= 0) superconducting pair correlations
induced by the thermal fluctuations. In the pseudogap regime
the Fermi surface undergo fluctuations induced broadening.

At h = t , the ground state of the system is in the helical
superconducting state with a single self-intersecting Fermi
surface over the regime 0 < T � 0.02t . Temperature decou-
ples the Fermi surfaces and progressively shifts the inner
Fermi surface away from the edge of the outer. The system
thus undergoes a temperature-tuned topological transition be-
tween the inter- and intraband helical superconducting pair
correlations. Loss of local superconducting correlations for
T > 0.04t is indicated by the broadening of the Fermi surface.

3. Determination of the thermal scales

The transition temperature (Tc) corresponding to the loss
of (quasi-)long-range superconducting phase coherence is de-
termined based on the temperature dependence of the pairing
field structure factor [S(q)]. We show the same in Fig. 6(a) at
different Zeeman fields. The point of divergence of each curve
corresponds to the respective Tc. The Zeeman field strongly
suppresses the Tc and at h ∼ hc1 a first-order transition to the
helical superconducting phase is realized. Within the helical
superconducting phase (hc1 < h � hc2) the S(q) changes with
h via consecutive first-order transitions. The system loses the
superconducting order at h ∼ hc2 via a second-order phase
transition, as signaled by the vanishing S(q).

In Figs. 6(b)–6(d) we show the h dependence of the single-
particle DOS at the Fermi level at three different thermal cross
sections. At T = 0.05t [Fig. 6(b)], the system is a gapped uni-
form superconductor at h = 0.2t with a robust spectral gap at
the Fermi level. Increasing h suppresses the gap progressively
as observed at h = 0.4t and finally leads to its closure at h ∼
0.6t , indicated by a finite spectral weight at the Fermi level.
h = 0.6t corresponds to a gapless superconducting state with
(quasi-)long-range phase coherence indicated by the broad-
ened but prominent quasiparticle peaks at the gap edges. The
system undergoes transition to a regime with helical supercon-
ducting correlations at h � 0.9t , characterized by a gapless

FIG. 6. (a) Temperature dependence of the pairing field structure
factor [S(q)] at λ = 0.65t and different Zeeman fields. The point
of divergence of each curve corresponds to the respective Tc. (b)–
(d) Zeeman field dependence of the single particle DOS at the Fermi
level for the selected temperatures of T = 0.05t , T = 0.10t , and
T = 0.15t , respectively.

spectra and thermally diffused signatures of in-gap states. At
h ∼ 1.1t the spectra is featureless, akin to a magnetic metal.

At T = 0.10t [Fig. 6(c)], the system is a uniform super-
conductor with suppressed spectral gap at h = 0.2t and a
gapless superconductor at h = 0.4t . For h = 0.6t , a change
in the Fermi-surface topology with the shift of the Dirac
point to k �= 0 takes place. The corresponding single-particle
DOS shows a sudden large spectral weight accumulation at
the Fermi level, which we attribute to the short-range q �= 0
superconducting correlations. The coherence peaks at the gap
edges are strongly suppressed via transfer of spectral weight
away from the Fermi level. With further increase in h the
system progressively crosses over to the pseudogap phase
and eventually to the CFL. The T = 0.15t [Fig. 6(d)] cross
section corresponds to a gapless superconductor at low h,
which progressively gives way to the pseudogap and then to
the CFL phases via spectral weight accumulation at the Fermi
level.

The finite-temperature phases are characterized by three
thermal scales, Tc, Tg, and T ∗, corresponding to the loss
of global superconducting phase coherence, collapse of the
zero-energy superconducting spectral gap and the crossover
between the pseudogap and CFL regimes, respectively. While
the Tc is determined based on the temperature dependence of
S(q), the crossover scales Tg and T ∗ are determined based
on the thermal evolution of N (ω) at the Fermi level. The
high-temperature pseudogap phase is smoothly connected to
the CFL via the gradual degradation of the short-range super-
conducting pair correlations.

4. Thermal phase diagram

We sum up our observations on the finite-temperature be-
havior of 2D NCS in terms of the thermal phase diagram of
the system in the h-T plane, shown in Fig. 7. For our choice
of λ = 0.65t the QCPs are at hc1 ≈ 0.85t and hc2 ≈ 1.1t . The
thermal scales, Tg, Tc, and T ∗, demarcating the gapped and
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FIG. 7. Thermal phase diagram in the h-T plane at λ = 0.65t ,
showing the thermal scales Tc, Tg, and T ∗. The finite temperature
regime bounded by the dotted curves correspond to the fluctuation
induced change in the Fermi-surface topology, characterized by the
shift in the Dirac point from k = 0 to k �= 0. The thermal crossover
scales are indicated by the dashed curves and the thermal transition
scale is represented by the solid curve with points.

gapless superconducting phases and a pseudogap phase are
shown in the figure. The finite-temperature regime enclosed
by the dotted curves correspond to the topological helical su-
perconducting phase where the topological transition between
the inter- and intraband superconducting pairing is tuned by
thermal fluctuations. Fluctuations lead to significant suppres-
sion of the thermal scales as compared to the mean-field
estimates (see Fig. 1). Our accurate estimates of the thermal
scales are expected to serve as benchmarks for the experi-
ments probing the thermal stability of the superconducting
states in 2D NCS, which is important for device applications.

D. Comparison with experiment and finite-energy pairing

Within the purview of a lattice fermion model we have
established the ground-state and finite-temperature behavior
of 2D NCS. Based on a nonperturbative numerical approach
we have provided accurate estimates of the thermal scales

and the regime of stability of the system against thermal
fluctuations. We now compare the spectroscopic properties
of the system as obtained via our numerical calculations
with the corresponding experimental observations. For the
same, in Fig. 8 we compare the Zeeman field dependence of
the low-temperature N (ω) with the differential conductance
measurement on Bi2Te3/NbSe2 hybrid [24]. In consonance
with the experimental observation, the N (ω) exhibits Zeeman
field tuned evolution of the in-gap states. We understand this
as follows: owing to the finite-q pairing the |k↑〉 state not
just connects with |−k↓〉, but with |−k + q↓〉 and |−k − q↓〉
states as well. The resulting dispersion spectra contains
multiple branches and gives rise to additional van Hove sin-
gularities, which shows up as the in-gap states in N (ω).

We understand the spectroscopic properties of this system
in some detail using Fig. 9 where we show the systematic evo-
lution of the low-temperature spectroscopic indicators of the
2D NCS across the QCPs. At h = 0, the RSOC split disper-
sion spectra contains four branches, as shown via the A(k, ω)
map. The uniform SC state is interband paired with fermions
belonging to the two helicity bands pairing up. The spectra
is gapped at the zero energy (Fermi level) [the corresponding
A(k, 0) is featureless] with sharp van Hove singularities at the
gap edges, as observed in N (ω). Zeeman field (h = 0.6t) splits
the dispersion branches, the spectral gap at the zero energy
arising from the uniform interband pairing is suppressed in
magnitude. Additional finite-energy shadow gaps open up,
which are symmetrically located at ω ≈ ±U/2. These shadow
gaps, which are the replicas of the zero-energy gap and re-
cently discussed in the context of Ising superconductors [62],
arise out of the intraband pairing in the individual helicity
bands. The intermediate (0 < h � hc1) Zeeman field regime
thus contains superconducting state with admixture of uni-
form inter- and intraband pairing. The multiple branches of
the dispersion spectra arises out of the interplay between the
RSOC and the Zeeman field. The superconducting pairing
is between the |k↑〉 and the |−k↓〉 states and there are no
Fermi-surface segmentation and in-gap states.

The helical superconducting phase (h = 0.85t) with finite-
q pairing contains multiple dispersion branches, which

FIG. 8. Comparison of the evolution of the in-gap states with Zeeman field in the helical superconducting phase with the experimental
observations on Bi2Te3/NbSe2 hybrid [24]. The top panels correspond to the numerically computed single-particle DOS as function of the
Zeeman field and the bottom panels show the results obtained via differential conductance measurement on Bi2Te3/NbSe2 hybrid, as function
of the applied magnetic field B||� − M [24]. The arrows indicate the in-gap states.
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FIG. 9. Spectroscopic properties: (i) spectral function, A(k, ω) (top row), (ii) low-energy spectral weight distribution at/close to the Fermi
level, A(k, 0) (middle row), and (iii) single-particle DOS, N (ω) (bottom row), at the ground state as function of h, determined using BdG-
MFT for L = 70. For h = 0 uniform interband superconductivity is realized between the helicity bands, giving rise to a robust zero-energy
superconducting gap. The corresponding A(k, 0) is featureless and N (ω) shows prominent gap edge singularities. h �= 0 splits the helicity
bands, allows for finite-energy intraband superconducting pairing and opens up symmetrically located shadow gaps. For h > hc1 the system is
in the helical superconducting state and the multibranched dispersion gives rise to gapless spectra. The corresponding N (ω) has finite spectral
weight at the Fermi level and in-gap states. The Fermi surface is segmented, as observed via A(k, 0), with isolated hot spots for quasiparticle
scattering. The strong h regime (h > hc2) corresponds to the correlated Fermi liquid phase with anisotropic Fermi surface akin to a magnetic
metal.

connects a larger set of states. Some of these disper-
sion branches cross the Fermi level, giving rise to the
gapless superconductivity. Superconducting pairing is inter-
band in the regime hc1 < h � ht p and the shadow gaps are
strongly suppressed. A recent MFT study have discussed the
possibility of finite-energy finite-momentum pairing in Fulde-
Ferrell superconductors, in the absence of RSOC [63]. The
Fermi surface of the helical superconducting state is seg-
mented with direction-dependent pair breaking, as shown
via [A(k, 0)]. The crossing of the dispersion branches [as
observed in A(k, ω)] give rise to additional van Hove sin-
gularities and the associated in-gap states [see N (ω)]. The
self-intersecting Fermi surface realized at h = ht p = t is re-
flected in A(k, ω) as self-intersecting dispersion branches.
Superconducting correlations are lost at h = 1.3t and the
dispersion spectra is akin to that of a magnetic metal with
anisotropic Fermi surface [64].

IV. DISCUSSION AND CONCLUSIONS

Segmentation of the Fermi surface and multibranched
dispersion are generic properties associated with finite-q
scattering of the quasiparticles. The helical superconduct-
ing state constitutes one such example, while the oth-
ers include FFLO [52,64–73], magnet-superconductor hy-

brids [23,74,75], magnetic superconductors such as rare-earth
quaternary borocarbide (RTBC) [25,64,76–79], etc. Our
analysis based on Fig. 9 is generic. Gapless superconducting
phase with anisotropic (nodal) Fermi surfaces have been ex-
perimentally observed in YNi2B2C and LuNi2B2C [80–83].
Magnetic fluctuations were proposed to play a key role in
defining the Fermi surface and the superconducting gap ar-
chitecture in these [78] and related class of materials [64,79].

In a similar spirit, nuclear magnetic resonance (NMR)
measurements on 2D organic superconductor β ′′-(BEDT-
TTF)2SF5CH2CF2SO3 (BEDT-TTF) showed that the high
magnetic field low-temperature regime hosts FFLO state
with 1D modulated superconducting order [73]. de Hass-van
Alphen measurements and angle-dependent magnetoresis-
tance oscillations were utilized to map out the highly
anisotropic 2D Fermi surface of BEDT-TTF [70]. Theo-
retically, a nonperturbative SPA-based study of the FFLO
phase in an isotropic s-wave superconductor have established
Fermi-surface segmentation in terms of the corresponding
spectroscopic signatures [68]. Thus, irrespective of its origin,
finite-q scattering of quasiparticles bring out similar physics
in widely different classes of superconducting systems.

In conclusion, based on a nonperturbative numeri-
cal approach (viz. static path approximation) we have
investigated the physics of spin-split two-dimensional
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noncentrosymmetric superconductors in presence of an in-
plane Zeeman field. In the complex parameter space of
superconducting interaction, Rashba spin-orbit coupling, Zee-
man field, and temperature we have provided the first accurate
estimate of the thermal scales and the regime of stability of
the superconducting state against fluctuations. We showed
that in low-dimensional systems, away from the weak cou-
pling regime the mean-field theory breaks down and leads
to gross overestimation of the superconducting phase coher-
ence. Further, we demonstrated finite-temperature topological
transition between inter- and intraband paired states, dictated
by short-range pairing field fluctuations. The correspond-
ing change in the Fermi surface topology is different from
the well-known Lifshitz transition and involves the shift-
ing of the Dirac point from k = 0 to k �= 0. We further
showed that a temperature-controlled Fermi-surface segmen-
tation is realizable in these systems, such that only parts
of the Fermi surface serves as hot spots for quasiparticle
scattering.

The results presented in this paper provide benchmarks
for the thermal scales and the regime of stability of two-
dimensional noncentrosymmetric superconductors against
thermal fluctuations, which are important from the perspective
of device applications. Our results are compared with the
experimental observations on Bi2Te3/NbSe2 hybrid and are
found to be in fairly good qualitative agreement. A generic
theoretical framework for finite-momentum scattering of the
quasiparticles and the associated Fermi-surface signatures is
provided, which should be applicable to a wide class of super-
conducting materials.
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